

Informe técnico:

MONITOREO DE LOS VOLCANES COROPUNA, TICSANI Y TUTUPACA, 2015

Fredy Apaza, Beto Ccallata, Rafael Miranda, Domingo Ramos

AREQUIPA – PERU 2015

Director Dirección de Geología Ambiental y Riesgo Geológico

Lionel Fidel Smoll

Coordinador del Observatorio vulcanológico del INGEMMET:

Marco Rivera Porras

Integrantes del grupo de monitoreo volcánico del Observatorio Vulcanológico del INGEMMET:

Domingo Ramos Pablo Masías Edú Taipe Roger Machaca Beto Ccallata Mayra Ortega Fredy Apaza Ivonne Lazarte Dino Enríquez Rafael Miranda Rosa Anccasi André Gironda Guido Núñez Jonathan Díaz Albert Ramos

Observatorio Vulcanológico del INGEMMET

Creado por Resolución dePresidencia № 037–2013–INGEMMET-PCD

TABLA DE CONTENIDO

1.0	INTRODUCCIÓN	04
2.0	MONITOREO SÍSMICO	05
3.0	MONITOREO GEOQUÍMICO	.11
4.0	MONITOREO DE DEFORMACIÓN	25
5.0	CONCLUSIONES	30
6.0	RECOMENDACIONES	30
7.0	BIBLIOGRAFÍA	31

1.0 INTRODUCCIÓN

Estudios recientes efectuados por el Observatorio Vulcanológico del INGEMMET muestran que en el sur peruano se localizan 8 volcanes activos, todos ubicados en la Zona Volcánica Central de los Andes (ZVC), dentro de ellos se encuentra el volcán Coropuna con coordenadas geográficas: Lat.: 15,521 S, Long: 72,653 O, así como el volcán Ticsani con coordenadas geográficas: Lat.: 16,755° S, Long: 70,595 O y el volcán Tutupaca con coordenadas geográficas: Lat.: 17,026 S, Long: 70,372 O, que presentaron actividad eruptiva reciente, es decir al menos durante los últimos 600 años (figura 1.1).

Figura 1.1 Ubicación de los volcanes Coropuna, Ticsani y Tutupaca.

El volcán Coropuna se ubica a 150 km al noroeste de la ciudad de Arequipa, entre las provincias de Castilla y Condesuyo. El volcán Ticsani se ubica a 59 km al noroeste de la ciudad de Moquegua y se encuentra localizado en la provincia Mariscal Nieto. El volcán Tutupaca se ubica a 100 km al norte de la ciudad de Tacna, en la provincia de Candarave.

El Observatorio Vulcanológico del INGEMMET (OVI), realiza la vigilancia de los volcanes activos en la región sur del Perú desde el año 2007 como Grupo de Vulcanología del INGEMMET y desde el año 2013 como el Observatorio Vulcanológico (OVI), esto a través de un sistema multidisciplinario que comprende el uso de cinco métodos: (1) monitoreo sísmico (movimiento interno ligado a la actividad del volcán), (2) monitoreo geodésico (variaciones en la forma y posición del volcán), (3) monitoreo geoquímico (composición química de aguas y gases), (4) monitoreo visual (características de emisiones y fenómenos asociados) y (5) monitoreo térmico (presencia de cuerpos calientes en la superficie del volcán). Que componen la red de vigilancia para registro temporal, permanente y transmitido vía telemetría (en tiempo real) hacia el OVI.

Dirección: Barrio Magisterial Nro. 2 B-16 / Umacollo - Arequipa Central Lima: 016189800 - Anexo 415 Oficina Arequipa Telefax: 054- 250575 - 250648

2.0 MONITOREO SÍSMICO

Durante el 2015 se realizó el monitoreo sísmico del volcán Ticsani, con ayuda la estación sísmica temporal TIC01. Esta estación cuenta con un sensor sísmico de banda ancha, marca Guralp, modelo CMG-6TD. Las especificaciones de dicha estación se muestran en el cuadro 1.1, cuyos datos son registrados a razón de 50 muestras por segundo, por canal, en un rango de frecuencias de 30 s a 100 Hz.

Estación	Fecha de instalación	UTM-E	UMT-S	Componente
TIC01	11/12/2015	347405	8150166	3C

Cuadro 1.1. Detalles de la ubicación de la estación sísmica TIC01.

La estación TICO1 está conformada por tres sensores sísmicos y un digitalizador, integrados, una antena GPS para la calibración del tiempo, una batería de 12 V, un panel solar, un regulador de voltaje y accesorios.

Figura 2.1. Mapa de ubicación de la estación sísmica temporal TIC01.

2.1 Instalación de la estación sísmica temporal TIC01

INSTITUTO GEOLÓGICO MINERO Y METALÚRGICO DIRECCIÓN DE GEOLOGÍA AMBIENTAL Y RIESGO GEOLÓGICO

En la instalación y configuración del sensor sísmico se tuvo en cuenta algunos aspectos técnicos tales como la elección del sitio, aspectos instrumentales relacionados con el nivel de amplificación y frecuencia de muestreo de las señales.

- Elección del sitio: Se optó por ubicar sobre una sólida colada de lava, ya que el suelo blando actúa como un potente filtro de la señal e introduce contenidos espectrales relacionados con la estructura que podrían enmascarar la información radiada por la fuente. Eventualmente se puede enterrar los sensores a 50 cm o más profundidad para evitar el efecto provocado por capas superficiales meteorizadas.
- Nivel de amplificación: Si se configura la estación con alta amplificación, se incrementa el rango de defectibilidad del instrumento, pero también lo hace más sensible a la presencia de ruido.
- Frecuencia de muestreo: La frecuencia de muestreo elegida condiciona la resolución temporal de los sismogramas; por ejemplo, 100 muestras por segundo que significa una resolución de 10 ms es aceptado como adecuado en el registro de muchos volcanes.

Con estos aspectos técnicos en consecuencia, durante este periodo de estudio, se instaló la estación sísmica temporal TICO1, el 11 de diciembre de 2015.

Figura. 2.2 Instalación de la estación sísmica temporal <u>TICO1</u>, volcán Ticsani.

DIRECCIÓN DE GEOLOGÍA AMBIENTAL Y RIESGO GEOLÓGICO

INSTITUTO GEOLÓGICO MINERO Y METALÚRGICO

2.2 Descarga y operatividad de la Estación Sísmica

Las estaciones temporales, almacenan datos internamente y no están disponibles para su análisis en tiempo real, por ello se realizan campañas temporales para recuperar la data almacenada. Además se realizan trabajos de mantenimiento y reconfiguración de todo el sistema, lo cual consiste en limpiar el panel solar, cambiar batería y revisión de todos los accesorios para el buen funcionamiento de la estación sísmica temporal. La figura 2.3 muestra la operatividad de las tres componentes (E-O: rojo, N-S: verde y Z: azul) de la estación sísmica temporal TIC01 del volcán Ticsani durante el periodo de operatividad.

Figura 2.3. Periodo de operatividad de la estación sísmica TIC01 del volcán Ticsani, durante el 2015.

2.3 Actividad sísmica observada

En general, la actividad sísmica del volcán Ticsani, observada durante el periodo de operatividad, corresponden a sismos de tipo volcano-tectónicos **VT**. Dichos eventos están asociados a fracturamiento de rocas volcánicas al interior del volcán. Se registraron alrededor de 50 sismos Volcano Tectónicos (**VT**) por día. Sin embargo, también se han observado incrementos puntuales de varias centenas de sismos de tipo volcano tectónicos por día (por ejemplo día 19 de diciembre de 2015). No obstante, cabe señalar que este tipo de sismicidad es propia de un **volcán activo**. Por ejemplo, en la figura 2.4, se observa la ocurrencia del incremento de la actividad volcano-tectónica.

bservatorio Vulcanológico del INGEMMET Creado por Resolución dePresidencia № 037–2013–INGEMMET-PCD

INSTITUTO GEOLÓGICO MINERO Y METALÚRGICO DIRECCIÓN DE GEOLOGÍA AMBIENTAL Y RIESGO GEOLÓGICO

Figura 2.4. Sismograma de 24 horas registrado el 19 de diciembre de 2015 en la estación TICO1. Componente Vertical (Z). Se observa la ocurrencia de eventos tipo Volcano Tectónicos (VT).

Los sismos volcano-tectónicos (VT) son eventos provocados por el fracturamiento de rocas, ligados a veces, al ascenso de magma desde el interior de la tierra hacia el volcán. Los eventos VT se caracterizan por tener claras llegadas de las ondas P y S y por el contenido de altas frecuencias (> 5Hz). Un ejemplo de ellos se presenta en la figura 2.5.

Figura 2.5. Ejemplo de un evento volcano-tectónico VT, registrado el 19 de diciembre de 2015 en la estación TIC01, componente Vertical Z.

2.4 Análisis Estadístico

La actividad sísmica registrada en el volcán Ticsani consistió principalmente de sismos tipo volcano-tectónico (VT), con una tasa de ocurrencia promedio casi constante, de 50 eventos por día, llegando a registrarse un máximo de 387 eventos el 19 de diciembre de 2015 (cuadro 2.2). Finalmente y en menor proporción, tenemos a los eventos tipo Tectónicos, con una ocurrencia de 10 evento por día, ver figura 2.6.

Fecha	Sismos VT/día	Sismos TEC/día
01/12/2015		
02/12/2015		
03/12/2015		
04/12/2015		
05/12/2015		
06/12/2015		
07/12/2015		
08/12/2015		
09/12/2015		
10/12/2015		
11/12/2015	11	7
12/12/2015	22	14
13/12/2015	14	13
14/12/2015	15	18
15/12/2015	11	17
16/12/2015	11	14
17/12/2015	9	12
18/12/2015	32	9
19/12/2015	387	9
20/12/2015	102	8
21/12/2015	35	16
22/12/2015	36	8
23/12/2015	51	10
24/12/2015	23	15
25/12/2015	25	9
26/12/2015	39	17
27/12/2015	48	13
28/12/2015	44	8
29/12/2015	29	5
30/12/2015	103	7
31/12/2015	62	7
TOTAL	1109	236

Cuadro 2.2. Resumen estadístico de la actividad sísmica del volcán Ticsani.

2.5 Energía Sísmica Liberada

La actividad sísmica del volcán Ticsani registrada durante el año 2015, también puede ser cuantificada, en función de la energía sísmica liberada por los eventos sismo-volcánicos (sismos tipo VT). Así, estos eventos han liberado una energía acumulada total de 87.29 MJ de energía (figura 2.7). Siendo esta energía leve, en comparación con volcanes Ubinas (alerta naranja) y Sabancaya (alerta amarilla).

Figura 2.7. Energía sísmica liberada del volcán Ticsani para el 2015. VT: sismo Volcano-tectónico, asociado al fracturamiento de rocas.

3.0 MONITOREO GEOQUÍMICO

El monitoreo volcánico mediante el método geoquímico consiste en la medición sistemática de los parámetros físicos y químicos de los fluidos volcánicos emitidos por un volcán y generalmente asociados a un sistema hidrotermal volcánico (Hochtein & Broune, 2000). Estos fluidos se desplazan desde el reservorio magmático hacia la superficie, donde se manifiestan como fumarolas, respiraderos de vapor, fuentes termales, etc., (figura 3.1).

El presente informe presenta los resultados obtenidos en los trabajos de monitoreo geoquímico tanto en fumarolas y fuentes termales de los volcanes Coropuna, Ticsani y Tutupaca, hasta diciembre de 2015.

3.1 Fundamento del monitoreo geoquímico en volcanes

En periodos de baja actividad volcánica existe un equilibrio entre los fluidos de la cámara magmática y las manifestaciones geotermales, sin embargo al arribar nuevo material o magma a la cámara magmática este equilibrio se rompe y se manifiesta con un aumento de presión, temperatura y/o cambio de concentración de los componentes que constituyen las fuentes de agua y/o gases. Estos parámetros alteran la química "normal" de las manifestaciones geotermales. Estas variaciones se pueden detectar y monitorear con un registro continuo de parámetros y componentes químicos de estas manifestaciones. Desde el año 2007 el INGEMMET viene realizando el monitoreo geoquímico de los volcanes Coropuna, Ticsani y Tutupaca, empleando diferentes técnicas para el monitoreo de fuentes termales y fumarolas, en las cuales se mantiene el monitoreo actualmente realizando mediciones periódicas.

Figura 3.1. Modelo de un sistema hidrotermal y su interacción con los gases volcánicos (modificado de Hochtein & Broune, 2000).

3.2 Monitoreo de fuentes de agua

El monitoreo de fuentes termales consiste en realizar medidas periódicas de fuentes surgentes de agua caliente que brotan en los alrededores de los volcanes Coropuna, Ticsani y Tutupaca. Estas fuentes termales están localizadas a menos de 35 km alrededor de cada volcán respecto al cráter. En el caso del volcán Coropuna, se ubicaron 6 fuentes termales alrededor de dicho volcán (figura 3.2).

Figura 3.2. Mapa de ubicación de las fuentes termales asociadas al volcán Coropuna.

En el volcán Ticsani, se ubicaron también 5 fuentes termales que brotan en sus alrededores (ver figura 3.3). En el caso del volcán Tutupaca se ubicaron 2 fuentes termales en sus alrededores (figura 3.4), de todas estas fuentes se toman muestras, y se registran los parámetros fisicoquímicos. Posteriormente, las muestras son enviadas al Laboratorio de Química del INGEMMET para análisis químico.

Figura 3.3. Mapa de ubicación de las fuentes termales asociadas al volcán Ticsani.

Figura 3.4. Mapa de ubicación de las fuentes termales asociadas al volcán Tutupaca.

3.3 Métodos de muestreo y análisis del agua

El muestreo de agua de las fuentes se realiza en el punto de surgimiento del agua utilizando la técnica de inmersión simple, llenando 2 botellas de plástico para el análisis los aniones y para metales disueltos, esta última es previamente filtrada (0,45 μ m) y preservada con ácido nítrico (HNO₃ 1:1) hasta pH =2. Adicionalmente, se miden los parámetros fisicoquímicos en la fuente termal, como la Temperatura (T°) con un termómetro electrónico, el potencial de hidrogeno (pH) con un pH-metro electrónico, conductividad eléctrica y solidos totales disueltos (TDS) con un conductímetro. Los detalles de los equipos se pueden observar en el cuadro 3.1 y la figura 3.5.

Equipo	Parámetro	Marca	Modelo	Precisión
Termómetro	Temperatura	AA	Precisión	±0,1
Termómetro (*)	Temperatura	TECPEL	318	±0.1
pH-metro	рН	Cyberscan	waterproof	±0.01
pH-metro (*)	рН	WTW	3210	±0.001
Conductímetro	CE	HACH	sensION5	±0.5%
Conductímetro	TDS	HACH	sensION5	±0.1

(*) Usado desde enero del 2012

Cuadro 3.1. Equipos de medición de los parámetros fisicoquímicos

Figura 3.5 Equipos utilizados en el monitoreo geoquímico (A) Termómetro TECPEL, (B) pH-metro WTW, (C) Conductímetro HACH.

Una vez tomadas las muestras, estas son enfriadas hasta los 4 °C y almacenadas en cajas (coolers) y trasladadas al Laboratorio de Química Analítica del INGEMMET ubicada en la ciudad de Lima para su respectivo análisis. Los análisis de las muestras recolectadas se realizaron en el laboratorio de Química INGEMMET, la metodología de dichos análisis se detalla en el cuadro 3.2.

bservatorio Vulcanológico del INGEMMET Creado por Resolución dePresidencia № 037–2013–INGEMMET-PCD

INSTITUTO GEOLÓGICO MINERO Y METALÚRGICO DIRECCIÓN DE GEOLOGÍA AMBIENTAL Y RIESGO GEOLÓGICO

Analíto	Formula	M. análisis	LDM	Analíto	Formula	M. análisis	LDM
Carbonato	CO_{3}^{-2}	Titrmétrico	1,0	Cadmio	Cd	ICP-AES	0,001
Bicarbonato	HCO3	Titrmétrico	1,0	Cobalto	Co	ICP-AES	0,001
Fluoruro	F	C. I.	0,5	Cromo	Cr	ICP-AES	0,02
Cloruro	CĽ	C. I.	0,5	Cobre	Cu	ICP-AES	0,003
Nitrato	NO ₃	C. I.	1,0	Hierro	Fe	ICP-AES	0,01
Sulfato	SO4 ⁻²	C. I.	2,0	Manganeso	Mg	ICP-AES	0,001
Sodio	Na	ICP-AES	0,1	Molibdeno	Mo	ICP-AES	0,005
Magnesio	Mg	ICP-AES	0,1	Níquel	Ni	ICP-AES	0,005
Potasio	к	ICP-AES	0,2	Plomo	Pb	ICP-AES	0,01
Calcio	Ca	ICP-AES	0,3	Antimonio	Sb	ICP-AES	0,006
Estroncio	Sr	ICP-AES	0,02	Selenio	Se	ICP-AES	0,05
Litio	Li	ICP-AES	0,02	Estaño	Sn	ICP-AES	0,005
Aluminio	Al	ICP-AES	0,02	Titanio	Ti	ICP-AES	0,003
Arsénico	As	ICP-AES	0,01	Talio	тΙ	ICP-AES	0,02
Bario	Ba	ICP-AES	0,003	Vanadio	V	ICP-AES	0,02
Bismuto	Bi	ICP-AES	0,1	Zinc	Zn	ICP-AES	0,003
O. de silicio	SiO ₂	ICP-AES	0,5				

C. I.: Cromatografía lónica

ICP - AES: Espectrometría de Emisión Atómica por Plasma Acoplado Inductivamente

Cuadro 3.2. Métodos de análisis de agua efectuados en el Laboratorio de Química de INGEMMET.

3.4 Resultados del monitoreo de aguas en el volcán Coropuna

ULC

Durante el año 2015 se realizó el muestreo de 6 fuentes de agua. La mayoría de las fuentes termales se ubican al Sur y sureste, cerca de los poblados de Viraco, Machaguay y Pampacolca (figura 3.2): CR1, CR2, CR3, CR4 y CR5. Al Norte del Coropuna, cerca del poblado de Maucallacta, se ubica la fuente CR6. Se realizó el estudio de un total de 12 muestras. Los resultados de los parámetros fisicoquímicos y análisis químicos se encuentran en el cuadro 3.4.

ANOI

00

Nombre Fuente	Codigo	Zona	UTM	Latitud	Longitud	Altura
Antaura	CR1	Pampacolca	18L	752425	8266968	3936
Ccolpa	CR2	Viraco	18L	765538	8268635	3305
Viquez	CR3	Viraco	18L	763271	8268698	3535
Accoplapa	CR4	Machaguay	18L	769181	8265628	2332
Aguas Calientes	CR5	Viraco	18L	757012	8273759	4482
Huamani Loma	CR6	Maucallacta	18L	756681	8291183	4578

Cuadro 3.3. Ubicación de las 06 fuentes de agua que fueron muestreadas

N	' Fue	nte Feo	:ha	Be	Bi	Cd	Ce	Co	Cr	Cu	Fe	La	Mn	Мо	Ni	Pb	S	Sb	Se	Sn	Th	Ti
				mg/l	mg/l	m g/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/	l mg/	1 mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
1	C	R1 28/10	/2013	< 0.001	<0.005	<0.001	<0.03	< 0.001	<0.001	0.01	0.01	<0.00	0.96	6 <0.005	<0.005	< 0.005	519.10	<0.005	<0.03	< 0.005	<0.050	0.01
2	CI	R1 11/11	/2015	0.00	<0,0002	<0,0002	<0,0002	0.00	<0,001	0.00	0.02	<0,00	02 0.92	2 <0,000	2 <0,0007	<0,0005	505.00	<0,0008	<0,002	<0,0005	<0,0002	0.01
3	C	29/10	/2013	< 0.001	< 0.005	< 0.001	< 0.03	< 0.001	< 0.001	0.00	32.68	<0.00	1.34	4 <0.005	< 0.005	< 0.005	246.00	< 0.005	<0.03	<0.005	<0.050	<0.005
4	C	12/11	/2015	0.00	<0,0002	<0,0002	<0,0002	0.00	<0,001	0.00	10.40)	1.38	3 <0,0002	<0,0007	<0,0005	247.00	<0,0008	<0,002	<0,0005		0.01
5	C	83 29/10	/2013	< 0.001	< 0.005	<0.001	<0.03	< 0.001	<0.001	<0.002	44.51	<0.00	0.59	< 0.005	< 0.005	<0.005	169.90	< 0.005	<0.03	<0.005	<0.050	<0.005
6	C	12/11	/2015		<0,0002	<0,0002		0.00	<0,001	0.00	40.70)	0.63	3 <0,0002	0.00	<0,0005		<0,0008	<0,002	<0,0005		0.00
7	C	R4 29/10	/2013	< 0.001	< 0.005	<0.001	<0.03	< 0.001	<0.001	0.00	0.01	<0.00	1.70	< 0.005	< 0.005	<0.005	270.10	< 0.005	<0.03	<0.005	<0.050	<0.005
8	C	84 12/11	/2015		<0,0002	<0,0002		<0,0002	<0,001	0.00	0.15		1.89	<0,0002	2 <0,0007	0.00		<0,0008	<0,002	<0,0005		0.01
9	C	85 30/10	/2013	0.01	<0.005	<0.001	<0.03	< 0.001	<0.001	0.01	0.01	<0.00	15 8.48	3 <0.005	<0.005	<0.005	896.70	<0.005	<0.03	<0.005	<0.050	0.01
1) CI	85 13/11	/2015		<0,0002	<0,0002		0.00	<0,001	0.00	0.42		9.53	3 <0,0002	2 <0,0007	<0,0005		<0,0008	<0,002	<0,0005		0.02
1	CI	86 30/10	/2013	<0.001	<0.005	<0.001	<0.03	<0.001	<0.001	<0.002	<0.01	. <0.00	15 < 0.00	01 <0.005	<0.005	<0.005	24.70	<0.005	<0.03	<0.005	<0.050	<0.005
1.	CI	86 13/11	/2015		<0,0002	<0,0002		<0,0002	<0,001	0.00	<0,01		0.00) 0.00	<0,0007	<0,0005		<0,0008	<0,002	<0,0005		0.00
N°	Fuente	Fecha	CO	,⁼ HC(0 ₃ . E	, c	n N	0, ⁻ S	0 ₄ = N	10 ₂	Na	Mg	К	Ca	Sr L	i Sic) ₂ A	Ag A	I As	s B	Ba	I
			mg	/I mg	g∕l mg	g/Im	g/I m	g/I m	g/In	ng/l	mg/l	mg/l	mg/l	mg/l	mg/Im	g/Img	/I m	g/I mg	g/I mg	/I mg	/I mg	/I
1	CR1	28/10/2013	<1	85.	00 <0	.5 250).50 «	<1 155	2.00	<1 4	92.80	23.70	68.10	220.40	1.20 0.	70 84.3	10 <0.	.005 0.0	0.0	8 6.3	0.0	2
2	CR1	11/11/2015	<1	. 74.	00 1.5	50 259	9.00 <	0,5 151	8.00 <	:0,5 5	31.00	22.00	54.00	242.00	1.38 0.	80 81.3	70 <0,0	0003 0.0	0.2	8 6.1	3 0.0	2
3	CR2	29/10/2013	<1		0.6	50 135	5.30 4	<1 75	8.00	<1 1	.32.90	63.10	46.90	124.90	0.03 0.	09 136.	00 <0.	.005 1.3	34 0.2	1 6.5	0.0	1
4	CR2	12/11/2015	<1	<1	L 1.(00 136	5.00 <	0,5 74	1.00 <	:0,5 1	.33.00	53.00	44.00	132.00	0.02 0.	10 132.	00 <0,0	0003 1.0	0.0	4 6.3	5 0.0	1
5	CR3	29/10/2013	<1		1.2	20 81	.40 .4	<1 51	9.00	<1	78.50	31.60	25.40	83.20	0.02 0.	04 118.	10 <0.	.005 6.7	75 0.3	2 4.1	3 <0.0	03
6	CR3	12/11/2015	<1	. <1	L 1.5	50 82	.00 <	0,5 51	4.00 <	:0,5	81.80	28.00	24.00	87.00	0.02 0.	05 114.	00	5.3	36 0.3	5	0.0	0
7	CR4	29/10/2013	<1	502	.00 0.5	50 233	3.40	<1 78	5.00	<1 2	91.90	76.40	63.40	174.20	0.60 0.	33 34.4	40 <0.	.005 0.0	03 0.1	0 8.2	2 0.0	3
8	CR4	12/11/2015	5.0	0 441	.00 1.2	20 239	9.00 <	0,5 81	1.00	3	12.00	69.00	64.00	214.00	0.70 0.	38 35.0	00	0.0	0.0	8	0.0	3
9	CR5	30/10/2013	<1		1.1	10 354	1.40 4	<1 282	1.00	<1 8	370.80	208.80	81.70	71.40	0.28 0.	31 66.2	20 <0.	.005 0.9	90 0.0	1 7.0	7 0.0	2
10	CR5	13/11/2015	<1	<1	1 2.3	30 356	5.00 <	0,5 287	0.00	1	100.00	198.00	79.00	71.00	0.34 0.	38 64.3	10	1.3	39 0.0	2	0.0	2
11	CR6	30/10/2013	<1	68.	00 <0	.5 6.	20 4	<1 75	.00	<1	31.10	7.90	7.20	13.50	0.08 0.0	02 97.9	90 <0.	.005 <0.	02 < 0.0	01 0.2	9 0.0	2
12	CR6	13/11/2015	<1	48.	00 0.4	40 6.	70 <	0,5 80	.00		34.00	7.60	7.30	15.00	0.07 0.0	03 99.0	00	<0.0	005 0.0	0	0.0	2

Cuadro 3.4. Resultados de la composición química de las fuentes de agua del volcán Coropuna hasta el 2015

ULCANOLOG

3.4.1 Resultados de los lones solubles en las aguas del volcán Coropuna

Los resultados de los análisis y composición química de los principales aniones mayoritarios y principales cationes de las fuentes termales se muestran en la siguiente figura 3.6, en la cual se observan los resultados obtenidos entre el año 2013 y el 2015.

Observatorio Vulcanológico del INGEMMET Creado por Resolución dePresidencia № 037–2013–INGEMMET-PCD

INSTITUTO GEOLÓGICO MINERO Y METALÚRGICO DIRECCIÓN DE GEOLOGÍA AMBIENTAL Y RIESGO GEOLÓGICO

Figura 3.6. Gráfica de los resultados de los iones en las aguas del volcán Coropuna entre el 2013 y el 2015.

Los aniones y metales disueltos en el agua de las fuentes termales se distribuyen de la siguiente manera (figura 3.6):

- Cloruros Las fuentes con mayor contenido en cloruro es CR5 (~350 mg/L), seguido de las fuentes CR1 y CR4 (~230 mg/L). Aquí cabe señalar que la cantidad de cloruros no presentan mayores variaciones en el periodo de estudio, es decir entre 2013-2015.
- Sulfatos La fuente con mayor contenido de sulfatos es CR5 (2800 mg/L), seguido de la fuente CR1 (1500 mg/L). Las demás fuentes se encuentran por debajo de los 1000 mg/L. Por otro lado, no se observan variaciones importantes en el periodo de estudio entre 2013-2015.

Bicarbonatos - Las fuente con mayor contenido de bicarbonato son las fuentes CR4 (~400 mg/L), CR1 y CR6 (~50 mg/L). Las fuentes CR2, CR3, CR5 presentan valores por debajo del límite de detección < 1 mg/L. Para este periodo se presentan ligeras variaciones en la fuente CR4.

- **Sodio** La fuente con mayor contenido es CR5 (~800 mg/L), seguida de CR1 (~500 mg/L), para este periodo se observa un ligero aumento en la fuente CR5 (~200 mg/L).
- **Calcio** Las fuentes con mayor contenido son CR1 y CR4 con ~200 mg/L, seguida de las fuente CR2, CR3 y CR5. Para este periodo se observa un ligero ascenso del calcio de esta fuente CR1 (~200 mg/L).
- Flúor La fuente con mayor contenido en fluor es la fuente CR5, con un valor de 2.3 presentando un incremento desde el año 2013 cuando registraba 1.1 mg/L, el resto de valores se mantienen por debajo de 1.5 mg/L.
- Potasio La fuente con mayor contenido en potasio es CR5 (~80 mg/L), seguida de CR1 y CR4 (~60 mg/L). De manera general se observan ligeras variaciones en los valores de potasio.
- *Estroncio* La fuente con mayor contenido es CR5 (~0.3 mg/L), las demás fuentes se encuentran con valores debajo de 0.4 mg/L, solo se observa un ligero incremento en este periodo.
- *Sílice* La fuente con mayor contenido en sílice es CR2 (~130 mg/L), seguida de CR3 y CR6. Para este periodo de tiempo no se observan variaciones significativas.
- *Litio* La fuente con mayor contenido es CR1 (0,7 mg/L), mientras que el resto de fuente se encuentra por debajo de (0,4 mg/L). No se observan variaciones importantes para este periodo.
- Arsénico La fuente con mayor contenido es CR3 (0,3 mg/L), seguido de CR1 que presenta un aumento de arsénico (0.2 mg/L), a diferencia de la fuente CR2 que presenta un descenso entre el 2013 y 2015.
- Hierro Es un elemento que alguna veces se encuentra por debajo del límite de detección (>0.01), la fuente con mayor contenido es CR3 (40 mg/L), que presenta una ligera variación.

En base a los resultados obtenidos de la composición química de las 6 fuentes termales ubicadas alrededor del volcán Coropuna se observa que no existen variaciones significativas que indiquen que la actividad volcánica presente cambios, por lo cual se concluye que el volcán se encuentra con muy niveles bajos de actividad.

3.5 Resultados del monitoreo de aguas en el volcán Ticsani

Durante el año 2015 se realizó el muestreo de 5 fuentes de agua que brotan en inmediaciones del volcán Ticsani (ver figura 3.3). La ubicación de estos lugares se presenta en el cuadro 3.5. Se realizó el estudio de un total de 10 muestras completas de las que se presentan los resultados de su composición química y parámetros fisicoquímicos. La mayoría de las fuentes termales se ubican al Oeste, cerca de los poblados de Calacoa, Cuchumbaya y San Cristóbal: HIB, CU4, CUF, PA1 y PU1. Los resultados de los parámetros fisicoquímicos y análisis químicos se encuentran en el cuadro 3.6.

Nombre Fuente	Codigo	Zona	UTM	Latitud	Longitud	Altura
Hierba Buena	HIB	Cuchumbaya	19 K	320563	8146953	3226
Putina	PA1	Calacoa	19 K	319623	8149105	3064
Cuchumbaya	CU4	Cuchumbaya	19 K	320637	8147230	3292
Cuchumbaya frio	CUF	Cuchumbaya	19 K	320502	8147187	3191
Putina	PU1	Calacoa	19 K	319317	8149033	2906

Cuadro 3.5. Ubicación de las 05 fuentes de agua que fueron muestreadas en el 2015

INGEMMET

bservatorio Vulcanológico del INGEMMET Creado por Resolución dePresidencia № 037–2013–INGEMMET-PCD

INSTITUTO GEOLÓGICO MINERO Y METALÚRGICO DIRECCIÓN DE GEOLOGÍA AMBIENTAL Y RIESGO GEOLÓGICO

N°	Fuente	Fecha	CO₃⁼	HCO3.	F	Cľ	NO ₃ -	SO₄⁼	NO ₂ ⁻	Na	Mg	к	Ca	Sr	Li	SiO ₂	Ag	AI	As	в	Ва
			mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
1	PA1	12/07/2013	7,03	173,49	1,15	682,40	<1	366,58	<1	523,25	6,33	49,92	75,66	1,88	2,76	159,80		<0.02	3,30		0,10
2	PA1	19/11/2015	<1	70,00	1,90	835,00	<0,5	408,00		702,00	2,10	64,00	33,00	1,90	3,34	198,00		0,02	4,02	22,20	0,09
3	PU1	19/11/2015	5,00	225,00	2,20	733,00	<0,5	384,00	<0,5	620,00	10,00	53,00	89,00	1,97	2,93	188,00		0,02	4,27	18,60	0,07
4	HIB	13/07/2013	<1	279,90	2,04	135,06	<1	592,56	<1	184,78	31,69	13,96	206,56	1,42	0,51	138,47		<0.02	0,39		0,01
5	HIB	19/11/2015	3,00	249,00	2,70	137,00	<0,5	601,00	<0,5	190,00	29,00	14,00	207,00	1,53	0,43	120,00	<0,0003	0,01	0,41	4,46	0,01
6	CU4	10/07/2013	<1	386,59	1,37	663,76	<1	441,59	<1	552,52	23,10	46,66	125,90	1,97	2,91	127,59		<0.02	2,51		0,03
7	CU4	19/11/2015	3,00	323,00	1,90	612,00	<0,5	429,00	<0,5	564,00	23,00	45,00	126,00	2,01	2,54	124,00	<0,0003	<0,005	3,12	20,40	0,03
8	CU4	05/12/2015	4	290	2,4	548	<0.5	411	<0.5	439	22	40	106	2,02	2,6173	123	< 0.0003	0,008	2,320	16,76	0,0311

N°	Fuente	Fecha	Be	Bi	Cd	Ce	Co	Cr	Cu	Fe	La	Mn	Мо	Ni	Pb	S	Sb	Se	Sn	Th	Ti
			mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
1	PA1	12/07/2013		<0.1	< 0.001		<0.001	<0.02	< 0.003	0,01		0,19	0,01	< 0.005	<0.01		0,11	<0.05	0,02		<0.003
2	PA1	19/11/2015		<0,0002	<0,0002		<0,0002	<0,001	0,00	<0,01		0,00	0,01	<0,0007	<0,0005		0,21	<0,002	<0,0005	<0,0002	0,00
3	PU1	19/11/2015	0,00	<0,0002	<0,0002	<0,0002	<0,0002	<0,001	0,00	0,29		0,36	0,01	<0,0007	<0,0005		0,19	<0,002	<0,0005	<0,0002	0,00
4	HIB	13/07/2013		<0.1	< 0.001		< 0.001	< 0.02	< 0.003	0,09		0,26	0,02	< 0.005	< 0.01		< 0.006	<0.05	< 0.005		< 0.003
5	HIB	19/11/2015	0,00	<0,0002	<0,0002	<0,0002	0,00	<0,001	0,00	0,02	<0,0002	0,28	0,01	<0,0007	<0,0005	201,00	0,00	<0,002	<0,0005	<0,0002	0,01
6	CU4	10/07/2013		<0.1	< 0.001		< 0.001	< 0.02	< 0.003	0,32		0,29	< 0.005	< 0.005	< 0.01		0,04	<0.05	0,03		< 0.003
7	CU4	19/11/2015	0,00	<0,0002	<0,0002	<0,0002	0,00	<0,001	0,00	0,02	<0,0002	0,28	0,01	<0,0007	<0,0005	157,00	0,51	<0,002	<0,0005	<0,0002	0,00
8	CU4	05/12/2015	0,0007	< 0.0002	< 0.0002	< 0.0002	0,0003	< 0.001	0,0017	0,08	< 0.0002	0,2410	0,0075	<0.0007	<0.0005	144	0,0405	< 0.002	< 0.0005	< 0.0002	0,0040

Cuadro 3.6. Resultados de la composición química de las fuentes de agua del volcán Ticsani.

3.5.1 Resultados de los Iones solubles en las aguas del volcán Ticsani

Los resultados de los análisis y composición química de las fuentes termales se muestran en la figura 3.7, en la cual los resultados de los principales aniones mayoritarios y principales cationes obtenidos entre el 2013 y el 2015 son presentados a través de diagramas.

Observatorio Vulcanológico del INGEMMET Creado por Resolución dePresidencia № 037–2013–INGEMMET-PCD

INSTITUTO GEOLÓGICO MINERO Y METALÚRGICO DIRECCIÓN DE GEOLOGÍA AMBIENTAL Y RIESGO GEOLÓGICO

Figura 3.7. Resultados de la composición química de las fuentes de agua del volcán Coropuna muestreadas entre 2013-2015.

Los aniones y metales disueltos en el agua de las fuentes termales se distribuyen de la siguiente manera (figura 3.7):

- Cloruros Las fuentes con mayor contenido de cloruros son PA1, PU1 y CU4 (~700 mg/L). En el diagrama se puede distinguir que los valores de cloruros no presentan mayores variaciones en el periodo de estudio 2013-2015.
- Sulfatos La fuente con mayor contenido en sulfatos es HIB (600 mg/L), seguido de las fuentes CU4, PA1 y PU1 (400 mg/L). Cabe resaltar que no se observan variaciones importantes en sus valores en el periodo de estudio 2013-2015.

Bicarbonatos - Las fuente con mayor contenido de bicarbonatos es CU4 (~300 mg/L), las fuentes HIB y PU1 (~200 mg/L). Estas últimas presentan variaciones en la cantidad de bicarbonatos para este periodo de estudio.

- **Sodio** La fuente con mayor contenido es PA1 (~650 mg/L), seguida de PU1 (~50 mg/L). Para este periodo se observa un ligero aumento en la fuente PA1 (~10 mg/L).
- **Calcio** La fuente con mayor contenido en calcio es HIB con ~200 mg/L, seguida de las fuentes CU4 y PU1. Cabe señalar que para este periodo se observa un ligero descenso de los valores de la fuente PA1 (~20 mg/L).
- Flúor La fuente con mayor contenido en flúor es HIB (~2.5 mg/L). En la gráfica se distingue un ligero incremento en todas las fuentes desde el año 2013.
- Potasio La fuente con mayor contenido de potasio es PA1 (~60 mg/L), seguida de CU4 y PU1 (~50 mg/L), en general se observan ligeras variaciones en los valores encontrados.
- **Estroncio** La fuente con mayor contenido en estroncio es CU4 (~2 mg/L). Las demás fuentes se encuentran con valores similares sin presentar cambios significativos.
- *Sílice* Las fuentes con mayor contenido son PA1 y PU1 (~180 mg/L). Los valores presentan ligeras variaciones para este periodo de estudio.
- *Litio* Las fuentes con mayor contenido en litio son PA1, CU4 y PU1 (3 mg/L), el resto de fuente se encuentra por debajo de (0,5 mg/L). No se observan variaciones importantes para este periodo.
- Arsénico Las fuentes con mayor contenido son PA1 y PU1 (4 mg/L), seguido de CU4, que presenta un ligero aumento de (0.2 mg/L) en el periodo de estudio.
- Hierro La fuente con mayor cantidad en Hierro es la fuente CU4 (0.3 mg/l), presenta un ligero descenso en el periodo de estudio.

En base a los resultados obtenidos de la composición química de las 5 fuentes termales ubicadas alrededor del volcán Ticsani se observa que no existen variaciones significativas que indiquen que la actividad volcánica presente cambios, por lo cual se concluye que el volcán se encuentra con niveles bajos de actividad.

3.6 Resultados del monitoreo de aguas en el volcán Tutupaca

Durante el año 2015 se realizó el muestreo de 06 fuentes termales que se ubican al pie del flanco SE del volcán Tutupaca (figura 3.4). La ubicación de estos lugares se presenta en el cuadro 3.7. De estos, se realizó el estudio de un total de 4 muestras de las que se muestran resultados de su composición química y parámetros fisicoquímicos.

Los resultados de los parámetros fisicoquímicos y análisis químicos se encuentran en el cuadro 3.8.

Nº	Nombre Fuente	Codigo	Zona	UTM	Latitud	Longitud
1	Azufre Grande	TU23	Candarave	19K	361604	8110992
3	Azufre Chico	TU12	Candarave	19K	361375	8110079

Cuadro 3.7. Ubicación de las 02 fuentes de agua que fueron muestreadas

Fuente	Fecha	Be	Bi	Cd	Ce	Co	Cr	Cu	Fe	La	Mn	Мо	Ni	Pb	S	Sb	Se)	Sn	Th	Ti
		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg	/I I	mg/l	mg/l	mg/l
TU12	18/07/2013		<0.1	0,003		<0.001	<0.02	<0.003	36,09		2,34	< 0.005	<0.005	<0.01		<0.00	5 <0.0)5	0,02		<0.003
TU12	07/12/2015	0,004	9 <0.0002	< 0.0002	0,0003	0,0002	<0.001	0,0026	37,0	<0.0002	2,7976	<0.0002	< 0.000	7 <0.0005	387	<0.000	8 <0.0	02 <0	0.0005	<0.0002	0,0106
TU23	18/07/2013		<0.1	0,004		<0.001	<0.02	<0.003	37,26		2,18	<0.005	<0.005	<0.01		<0.00	5 <0.0)5	0,03		<0.003
TU23	07/12/2015	0,005	0 <0.0002	< 0.0002	0,0019	<0.0002	<0.001	0,0027	39,8	0,0003	2,6138	< 0.0002	< 0.0007	7 <0.0005	380	<0.000	8 <0.0	02 <0	0.0005	0,0004	0,0098
Fuente	Fecha	CO₃⁼	HCO3.	F	CI	NO3.	SO₄⁼	NO ₂ ⁻	Na	Mg	К	Ca	Sr	Li Sic	D ₂	Ag	AI	As	В	Ba	
		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l r	ng/In	ng/I mg	y/I	mg/l i	ng/l	mg/l	mg/	l mg/	1
TU12	18/07/2013	<1	<1	2,3	137,54	<1	1084	<1	158	41	17	150	0,09 0	,53 19	4		36,6	2,76		0,02	2
TU12	07/12/2015	<1	<1	5,2	154	<0.5	1155	<0.5	157	41	19	146 0	,1184 0,5	5821 21	0 <	0.0003 4	0,207	3,834	4,72	0,025	53
TU23	18/07/2013	<1	<1	2,7	162,89	<1	1055	<1	180	41	24	144	0,03 0	,65 20	3		24,5	2,33		0,01	L
TU23	07/12/2015	<1	<1	6,3	180	<0.5	1102	<0.5	186	41	27	149 0	,0461 0,6	5797 23	4 <	0.0003 2	6,836	3,260	5,51	0,010)5
	Fuente TU12 TU23 TU23 Fuente TU12 TU12 TU12 TU23 TU23	Fuente Fecha TU12 18/07/2013 TU12 07/12/2015 TU23 18/07/2013 TU23 07/12/2015 Fuente Fecha TU12 18/07/2013 TU23 07/12/2015 Fuente 07/12/2015 TU12 18/07/2013 TU12 07/12/2015 TU23 18/07/2013 TU24 07/12/2015	Fuente Fecha Be TU12 18/07/2013 mg/l TU12 07/12/015 0.004 TU23 18/07/2013 0.005 TU23 07/12/2015 0.005 Fuente Fcena C TU12 18/07/2013 0.005 TU23 07/12/2015 0.005 TU12 18/07/2013 0.005 TU12 18/07/2013 0.1 TU12 18/07/2013 0.1 TU12 18/07/2013 0.1 TU12 18/07/2013 0.1 TU23 18/07/2013 0.1	Fuente Fecha Be Bi TU12 18/07/2013	Fuente Fecha Be Bi Cd TU12 18/07/2013 mod 0,003 TU12 18/07/2013 0,004 0,003 TU12 18/07/2013 0,004 0,004 TU23 18/07/2013 0,005 0,004 TU23 0,712/2015 0,005 0,005 Fuente Fecha Cg* MCJ M TU12 18/07/2013 0,005 MOI 1 TU12 19/07/2013 0,1 1 2,3 1 TU12 18/07/2013 0,1 0,1 2,3 1 TU12 19/07/2013 0,1 0,1 2,3 1 TU12 18/07/2013 0,1 0,1 2,7 1 TU12 18/07/2013 0,1 0,1 0,1 1	Fuente Fecha Be Bri Cd Cde TU12 18/07/2013 - - 0.003 0.003 TU12 18/07/2013 0.004 0.000 0.000 0.000 0.000 TU12 18/07/2013 0.004 - 0.004 0.004 0.004 TU23 18/07/2013 0.005 - 0.004 0.005 0.005 TU23 0.71/2/2015 0.005 0.005 0.006 0.005	Fuente Fecha Be Bi Cd Ce Co mgl mgl mgl mgl mgl mgl mgl TU12 18/07/2013 $< < < < < < < < < < < < < < < < < < < $	Fuente Fecha Be Bi Cd Ce Co C TU12 18/07/2013 \cdot	Fuente Fecha Be Bi Cd Ce Co Ce Ce	Fuente Fecha Be Bi Cd Ce Co Cr Cu Fe TU12 18/07/2013 - - 0,003 - 0,003	Fuente Fecha Be Bi Cd Ce Co Cr Cu Fe La TU12 18/07/2013 mgl mgl mg	Fuente Fecha Be fil Cd Ce Co Ce Cu Fe La Man MU mg/ mg/	Fuente Fecha Be Bi Cd Ce Co Cr Cu Fe La Mn Mot TU12 18/07/2013 mg/l mg/l	Fuente Fecha Be Bi Cd Ce Co Cu Fe La Mn Mo Mo Mo TU12 18/07/2013 - Mol Mol	Fuente Fecha Be Bi Cd Ce Co Ce Ce Fe La Mn Mn Mn Mp Mp <	Fuente Fecha Be Bi Cd Ce Co Cu Fe La Mn Mo Mi Pio Set TU12 18/07/2013	Fuente Fecha Be Bi Cd Ce Co Cu Fe La Mn Mo Ni Pi S S TU12 18/07/2013 - Mol Mol	Funch Be Bi Cd Ce Co Cr Cu Fe La Mn Mo Ni Pio S Si S S S S TU12 18/07/2013 - -0.01 0.003 -0.01 0.003 0.002 0.002 0.003 <t< th=""><th>Funch Be Bi Cd Ce Co Ci Fe La Mn Mo Ni Pb S Sb Sb</th><th>Functe Fecha Be Bi Cd Ce Co Ce Cu Fe La Mn Mo Mi Mi</th><th>Funch Be/ Bi Cd Ce Co Ce Cu Fe La Mn Mo Ni Pb Si Si</th></t<>	Funch Be Bi Cd Ce Co Ci Fe La Mn Mo Ni Pb S Sb Sb	Functe Fecha Be Bi Cd Ce Co Ce Cu Fe La Mn Mo Mi Mi	Funch Be/ Bi Cd Ce Co Ce Cu Fe La Mn Mo Ni Pb Si Si

Cuadro 3.8. Resultados de la composición química de las fuentes de agua del volcán Tutupaca.

3.6.1 Resultados de los lones solubles en las aguas del volcán Tutupaca

Los resultados sobre la composición química de los principales aniones mayoritarios y principales cationes de las fuentes termales se muestran en la siguiente figura 3.8, en la cual se observan los resultados obtenidos entre el año 2013 y el 2015.

Figura 3.8. Gráfica de los resultados de los iones mediciones de SO2 en la pluma del volcán Tutupaca hasta el 2015.

Los aniones y metales disueltos en el agua de las fuentes termales se distribuyen de la siguiente manera (figura 3.8):

Cloruros – La fuente con mayor contenido en cloruro es TU23 (~180 mg/L). La cantidad de cloruros de ambas fuentes presentan un ascenso en el periodo de estudio 2013-2015.

- Sulfatos La fuente con mayor contenido en sulfatos es TU12 (1100 mg/L). La cantidad de sulfatos de ambas fuentes presentan un ascenso en el periodo de estudio 2013-2015.
- *Magnesio* Ambas fuentes estudiadas TU23 y TU12 presentan valores de (40 mg/L), sin variaciones importantes para este periodo de estudio.
- **Sodio** La fuente con mayor contenido es TU23 (~180 mg/L), ambas fuentes no presentan variaciones importantes para el periodo de estudio.
- **Calcio** Ambas fuentes estudiadas TU12 y TU23 presentan ligeras variaciones en el periodo de estudio entre 140 mg/L y 150 mg/L.
- *Flúor* Para ambas fuentes TU12 y TU23 presentan un ascenso de sus valores (~3 mg/L) en el periodo de estudio.
- **Potasio** Para ambas fuentes TU12 y TU23 se observan un ascenso de sus valores (~6 mg/L) en el periodo de estudio.
- **Estroncio** Para ambas fuentes TU12 y TU23 se observan un ligero ascenso de sus valores (~0.1 mg/L) en el periodo de estudio.
- *Sílice* Para ambas fuentes TU12 y TU23 se observan un ligero ascenso de sus valores (~30 mg/L).
- Litio Para ambas fuentes TU12 y TU23 se observan un ligero ascenso de los valores en Litio (~0.1 mg/L) en el periodo de estudio.
- Arsénico Para ambas fuentes TU12 y TU23 se observan un ligero ascenso de los valores en arsénico (~1 mg/L) en el periodo de estudio.
- Hierro Para ambas fuentes TU12 y TU23 se observan un ligero ascenso de sus valores (~4 mg/L) en el periodo de estudio.

En base a los resultados obtenidos de la composición química de las 5 fuentes termales ubicadas alrededor del volcán Ticsani se observa que no existen variaciones significativas que indiquen que la actividad volcánica presente cambios, sin embargo se establece que el sistema hidrotermal se encuentra en constante actividad. Por otro lado, se concluye que el volcán se encuentra con niveles bajos de actividad. INSTITUTO GEOLÓGICO MINERO Y METALÚRGICO

DIRECCIÓN DE GEOLOGÍA AMBIENTAL Y RIESGO GEOLÓGICO

4.0 MONITOREO DE DEFORMACIÓN

La deformación en superficie es un fenómeno común en los volcanes activos en respuesta a la dinámica interna del sistema volcánico (intrusión magmática). Para el estudio de este fenómeno en los volcanes Tutupaca (figura 4.1), Ticsani (figura 4.2) y Coropuna (figura 4.3), el OVI emplea dos métodos: método de monitoreo de forma temporal llamado EDM (Medición de Distancia Electrónica) y GNSS (Sistema Satelital de Navegación Global). La distribución de esta red de hitos de monitoreo permiten observar de manera temporal el comportamiento de los volcanes.

Figura 4.1. Red de hitos geodésicos de monitoreo en el volcán Tutupaca mediante el método GNSS.

Figura 4.2. Red de hitos geodésicos de monitoreo para el volcán Ticsani mediante el método GNSS.

Figura 4.3. Red de hitos geodésicos de monitoreo para el volcán Coropuna mediante el método GNSS.

4.1 Reseña del sistema de monitoreo

El sistema de monitoreo mediante los métodos GNSS en los volcanes Tutupaca, Ticsani y Coropuna se implementaron progresivamente. En el volcán Tutupaca se implementó en setiembre de 2012 con cinco (5) hitos geodésicos (TUBN, TUP1, TUP2, TUP3, TUP4) que cuenta con un solo registro de datos para esa fecha. Posteriormente, durante agosto de

2012 se implementó nueve (09) hitos geodésicos (TXCA, TXDO, TXGN, TXFB, TXFD, TXFC, TXFE, TXFF, TXFG y TXFH) en el volcán Ticsani. Finalmente, en el volcán Coropuna durante octubre de 2013 se implementa seis (6) hitos geodésicos (COVI, COAC, COVQ, COMA, COBN y COBE), para los que se tienen dos épocas de registro (o periodos de medición 2013 y 2015), efectuadas durante salidas de campo programados.

Por otro lado, el método EDM se implementó en el volcán Ticsani con una base TXBW (base Oeste) y tres prismas distribuidos alrededor del primer domo. Cabe mencionar que no se cuenta con mediciones recientes ya que estas fueron destruidas por personas extrañas de la zona.

4.2 Resultado de Mediciones GPS

Para el presente reporte los resultados corresponden a aquellos hitos geodésicos reocupados en dos periodos, esto permite comparar y obtener el mapa de desplazamientos en base al primer periodo de registro. Para ello se ha empleado la base geodésica AREQ para establecer la línea base hacia los hitos geodésicos distribuidos en el volcán.

4.2.1 Volcán Coropuna

Dos periodos de registro de datos han permitido obtener el mapa de desplazamientos calculados para el volcán Coropuna. En la figura 4.4, se muestran los vectores de desplazamiento horizontal y vertical correspondientes al periodo octubre 2013 v noviembre 2015. Los resultados de los hitos geodésicos monitoreados se observan en detalle en la cuadro 4.1, de las cuales podemos concluir que los hitos COVI (Viraco), COBE (Base Este) y COVQ (Viques) se mantuvieron estables sin mayores desplazamientos, cuyo orden de los valores obtenidos se encuentran dentro del margen de error. Así mismo, en ambas hitos la componente vertical presenta tendencia positiva del orden de 8 a 16.6 mm. Los desplazamientos evidencian que el hito COAC (Acopallpa) se desplaza en dirección sur-oeste (rio Acopallpa), su ubicación se encuentra en áreas geológicamente inestables y susceptibles a desplazamientos, los resultados corroboran dichos desplazamientos y la deformación positiva. En el hito COBN (base Norte), se ha cuantificado que la componente horizontal se desplazó 4 mm. El resultado para la componente vertical evidencia que dicha área (zona) sufre una deformación alrededor de 848 mm (84.8 cm) en sentido positivo, probablemente debido a un proceso tectónico local. El hito se encuentra ubicado aproximadamente a 11 km al norte del domo principal.

Finalmente, en el hito geodésico COMA (Machaguay) se ha observado que la componente vertical presenta deformación alrededor de 1.01 m (cuadro 4.1). Probablemente la causa de esta variación sea debido a la composición del tipo de suelo que es muy susceptible a cambios en su volumen, sin desplazarse debido al incremento de contenido de agua (Sowers et al, 1990). Aquí el hito se ubica sobre terrazas, en la periférica del distrito de Machaguay (figura 4.3). Se sugiere continuar con las mediciones para observar las variaciones y descartar si estas corresponden a dicho fenómenos. La escala representada en la figura 4.4 de dichos hitos geodésicos está reducida 30 veces su tamaño.

HITO GEODESICO	VECTOR DESPLAZAMIENTO COROPUNA			
	HORIZONTAL (mm)	DIRECCION	VERTICAL (mm)	TENDENCIA
COVI	13	NOR-ESTE	8	POSITIVO
COAC	181	SUR-OESTE	89	POSITIVO
COBE	8	NOR-ESTE	11	NEGATIVO
COBN	4	NOR-ESTE	848	POSITIVO
COMA	8	NOR-OESTE	1000.01	POSITIVO
COVQ	2	SUR-OESTE	16.6	POSITIVO

Cuadro 4.1. Valores calculados de los vectores de desplazamiento para el volcán Coropuna.

bservatorio Vulcanológico del INGEMMET Creado por Resolución dePresidencia № 037–2013–INGEMMET-PCD

INSTITUTO GEOLÓGICO MINERO Y METALÚRGICO DIRECCIÓN DE GEOLOGÍA AMBIENTAL Y RIESGO GEOLÓGICO

Figura 4.4 Mapa de vectores de desplazamiento para el volcán Coropuna, periodo octubre de 2013 y noviembre de 2015.

4.2.2 Volcán Ticsani

Durante noviembre de 2015 en el volcán Ticsani se ha establecido la línea base para futuras mediciones GPS sobre los nueve hitos geodésicos existente como se observa en la figura 4.2, las cuales fueron registrados con GPS marca TRIMBLE modelo R10 (Fotos adjunta) a un intervalo de registro de 01 seg, como se mencionó en el ítem 4.1 se tienen un solo periodo de registro de datos que corresponde al año 2015.

5.0 CONCLUSIONES

El monitoreo de los volcanes Coropuna, Ticsani y Tutupaca, para el periodo entre enero a diciembre de 2015, ha permitido llegar a las siguientes conclusiones:

- El monitoreo sísmico, mediante la actividad sísmica del volcán Ticsani estuvo conformada por eventos Vulcano Tectónicos, durante el periodo de operatividad, por otro lado la energía sísmica liberada fue de 87.29 MJ.
- Uno de los trabajos de monitoreo geodésico del volcán Ticsani previsto para el año 2015 fue definir y establecer la línea base para mediciones mediante el método GNSS y EDM.
- El monitoreo geodésico del volcán Coropuna mediante el método GNSS sobre seis hitos geodésicos, ha observado que dos de estos hitos: COBN y COAC presentan valores de desplazamiento muy grandes entre 84.8 cm a 1 m, las mismas probablemente asociados a fenómenos de tectónica muy local. Para lo cual, se recomienda continuar con nuevas observaciones sobre dichos puntos. Así mismo los demás hitos no presentan mayores variaciones, estando los valores dentro de los límites de error del instrumento.
- El monitoreo geoquímico del volcán Coropuna mediante el monitoreo de la composición química de las fuentes termales no presenta variaciones que indiquen un cambio en la actividad volcánica al menos durante los tres últimos años.
- El monitoreo geoquímico efectuado sobre el volcán Ticsani muestra que la composición química de las fuentes termales no presentan variaciones que indiquen un cambio en la actividad volcánica hasta el 2015.
- El monitoreo geoquímico del volcán Tutupaca mediante el monitoreo de la composición química de las fuentes termales no presenta variaciones que indiquen un cambio en la actividad volcánica hasta el 2015.

6.0 RECOMENDACIONES

- Es necesario seguir complementando las redes de monitoreo sísmico, geodésico, geoquímico y visual, en los volcanes Coropuna, Ticsani y Tutupaca con transmisión de datos en tiempo real. Así mismo priorizar los trabajos de vigilancia en tiempo real.
- A las autoridades y pobladores que habitan en áreas aledañas a los volcanes Coropuna, Ticsani y Tutupaca se les recomienda:

-Mejorar las acciones de preparación y respuesta frente a un eventual proceso eruptivo, ya que la mayoría de pueblos aledaños a dichos volcanes carecen de planes de evacuación y contingencia inmediata.

7.0 BIBLIOGRAFÍA

White R., Miller A, Lynch L. and Power J. (1998). Observation of hybrid seismic events al Soufrier Hills Volcano, Montserrat: July 1995 to September 1996. Geophys. Res. Lett. 3657-3660.

Lesage P., Mora M., Alvarado G., Pacheco J. and Métaxian J-P (2006). Complex behavior and source model of the tremor at Arenal volcano, Costa Rica. Journal of Volcanology and Geothermal Research 157, 49–59.

Dzurisin D. (2007). Volcano Deformation, Geodetic Monitoring Techniques. United States Geological Survey. 441 p.

Hochstein, M. & Browne, P. (2000) - Surface Manifestations of Geothermal Sistems with Volcanic Heat Sources. Encyclopedia of Volcanoes. Academic Press. USA, págs. 837.

Huamán, D., Chorowicz, J., Deffontaines, B., Guillande, R. y Rudant, J. (1993). Cadre structural et risques géologiques étudiés á l'aide de l'imagerie spatiale: la région du Colca (Andes du Sud Pérou): Bull. Soc. Géol. France, t.164, no 6, p. 807-818.

Ibáñez, J. (1997) – Apuntes de Sismología Volcánica. Instituto Andaluz de Geofísica, Universidad de Granada, 58 p.

Ibáñez, J. & Carmona, E. (2000) – Sismicidad Volcánica. Serie: Casa de los volcanes n° 7. Editores: Astiz M. Y García A. 269-282 p.

Sowers, george b; et al: "Introducción a la mecánica de suelos y cimentaciones". Editorial LIMUSA, México 1990

ENLACE:

http://www.ingemmet.gob.pe/ http://ovi.ingemmet.gob.pe/ http://www.senamhi.gob.pe/site/volcan/ http://www.mirovaweb.it/?action=volcanoe

OBSERVATORIO