INFORME DE EVALUACIÓN DEL RIESGO POR INUNDACIÓN FLUVIAL EN EL CENTRO POBLADO DE ILLAURA, DISTRITO DE SAN MIGUEL, PROVINCIA DE LA MAR, DEPARTAMENTO DE AYACUCHO

ENERO 2018
Profesional Responsable
Ing. Adriel Guillama Torres – CIP N° 57897
Evaluador de Riesgo: R.J. N° 023-2016-CENEPRED/J

Equipo Técnico
Ing. Edgar A. Vílchez Obando – CIP N° 148810
Evaluador de Vulnerabilidades R.J. N° 027-2016-CENEPRED/J

Especialista GIS:
Bach. Geo. Jhon Kevin Chávez Rojas

Participación:
Municipalidad Provincial de La Mar – Ayacucho
CONTENIDO

PRESENTACIÓN .. 6
INTRODUCCIÓN .. 7
I. ASPECTOS GENERALES ... 8
 1.1 OBJETIVO GENERAL .. 8
 1.2 OBJETIVOS ESPECÍFICOS ... 8
 1.3 FINALIDAD ... 8
 1.4 JUSTIFICACIÓN .. 8
 1.5 ANTECEDENTES .. 9
 1.6 MARCO NORMATIVO .. 10
II. CARACTERÍSTICAS GENERALES .. 11
 2.1 UBICACIÓN GEOGRÁFICA ... 11
 2.1.1 LIMITES .. 11
 2.2 VIAS DE ACCESO .. 14
 2.3 CARACTERÍSTICAS SOCIALES ... 14
 2.3.1 POBLACIÓN ... 14
 2.3.2 VIVIENDA .. 16
 2.3.3 AGUA POTABLE .. 16
 2.3.4 SERVICIOS HIGIÉNICOS ... 17
 2.3.5 ENERGÍA ELÉCTRICA .. 17
 2.3.6 EDUCACIÓN ... 18
 2.3.7 SALUD ... 18
 2.4 CARACTERÍSTICAS ECONÓMICAS ... 19
 2.5 CONDICIONES GEOLÓGICAS ... 20
 2.6 CONDICIONES GEOMORFOLÓGICAS .. 22
 2.7 CLIMA ... 24
 2.8 TEMPERATURA .. 25
 2.9 PRECIPITACIONES .. 25
 2.10 HIDROLOGÍA .. 26
 2.11 PENDIENTES .. 26
III. DETERMINACIÓN DEL PELIGRO .. 31
 3.1 METODOLOGÍA .. 31
INFORME DE EVALUACIÓN DEL RIESGO POR INUNDACIÓN FLUVIAL EN EL CENTRO POBLADO DE ILLAURA DEL DISTRITO DE SAN MIGUEL, PROVINCIA LA MAR – AYACUCHO

3.2 RECOILACIÓN Y ANÁLISIS DE INFORMACIÓN .. 31
3.3 IDENTIFICACIÓN DEL ÁREA DE INFLUENCIA .. 32
3.4 SUSCEPTIBILIDAD DEL TERRITORIO .. 32
3.4.1 ANÁLISIS FACTOR DESENCADENANTE .. 32
3.4.2 ANÁLISIS FACTORES CONDICIONANTES .. 34
3.5 PARÁMETRO DE EVALUACIÓN ... 37
3.6 DEFINICIÓN DE ESCENARIOS .. 38
3.7 NIVELES DE PELIGRO .. 38
3.8 ANÁLISIS DE ELEMENTOS EXPUESTOS ... 41
3.8.1 ELEMENTOS EXPUESTOS SUSCEPTIBLES A NIVEL SOCIAL 41

IV. ANÁLISIS DE LA VULNERABILIDAD .. 43
4.1 ANÁLISIS DE VULNERABILIDAD ... 43
4.2 ANÁLISIS DE LOS FACTORES DE LA VULNERABILIDAD .. 43
4.2.1 EXPOSICIÓN .. 43
4.2.2 FRAGILIDAD .. 44
4.2.3 RESILIENCIA .. 44
4.3 ANÁLISIS DE ELEMENTOS EXPUESTOS ... 44
4.3.1 ANÁLISIS DE LA DIMENSIÓN SOCIAL ... 44
4.3.1.1 EXPOSICIÓN SOCIAL ... 45
4.3.1.2 Análisis de la Fragilidad en la Dimensión Social ... 45
4.3.1.3 Análisis de la Resiliencia en la Dimensión Social .. 46
4.3.2 ANÁLISIS DE LA DIMENSIÓN ECONÓMICA ... 48
4.3.2.1 Análisis de la Fragilidad en la Dimensión Económica ... 48
4.3.2.2 Análisis de la Resiliencia en la Dimensión Económica .. 50
4.3.3 ANÁLISIS DE LA DIMENSIÓN AMBIENTAL .. 51
4.3.3.1 EXPOSICIÓN AMBIENTAL ... 52
4.3.3.2 FRAGILIDAD AMBIENTAL ... 52
4.4 NIVELES DE VULNERABILIDAD ... 52
4.5 ESTRATIFICACIÓN DE LA VULNERABILIDAD .. 53

V. CÁLCULO DEL RIESGO .. 55
5.1 METODOLOGÍA .. 55
5.2 CÁLCULO DEL RIESGO .. 55
5.3 NIVELES DE RIESGO .. 56
5.4 ESTRATIFICACIÓN DEL NIVEL DE RIESGO .. 57
5.5 MATRIZ DE RIESGOS .. 59
5.6 CÁLCULO DE LOS EFECTOS PROBABLES .. 59
VI. CONTROL DE RIESGO .. 60
6.1 ACEPTABILIDAD O TOLERANCIA DEL RIESGO ... 60
CAPITULO VII: CONCLUSIONES Y RECOMENDACIONES .. 62
7.2 CONCLUSIÓN GENERAL .. 62
7.3 RECOMENDACIONES ... 62
BIBLIOGRAFÍA ... 63
PRESENTACIÓN

Las inundaciones producidas por ríos, estuarios, la acción del mar o fuentes de precipitaciones suponen un riesgo para las personas y causan significativos costes económicos. En la última década del siglo XX, las inundaciones ocasionaron el fallecimiento de cerca de 100 000 personas y en general afectadas alrededor de 1.4 millones de personas en todo el mundo.

Específicamente en el departamento de Ayacucho se han registrado 1195 reportes por INUNDACIONES Y PRECIPITACIONES ANÓMALAS en el Sistema Nacional de Información para la Prevención y Atención de Desastres – SINPAD (Período enero 2003 – octubre 2017), registrándose en total 30 fallecidos, 7 personas desaparecidas, 37 Heridos, 29222 personas damnificadas y un total de 150759 personas afectadas.

Las inundaciones se producen cuando las lluvias intensas o continuas sobre pasan la capacidad de campo del suelo, el volumen máximo de transporte del río es superado y el cauce principal se desborda e inunda los terrenos circundantes.

Las inundaciones generan daños para la vida de las personas, sus bienes e infraestructura, pero además causan graves daños sobre el medio ambiente y el suelo de las terrazas de los ríos. Las inundaciones son causas de erosión y sedimentación de las fuentes de agua. En zonas de la selva, el agua de lluvia desde que se precipita sobre la tierra sufre los procesos de filtración, acumulación subterránea, drenaje, retención, evaporación y consumo.

La cubierta vegetal cumple entonces una función muy destacada al evitar el impacto directo de las gotas de agua sobre el terreno, impidiendo su erosión, al mismo tiempo que permite una mayor infiltración y dificulta el avance del agua hacia los ríos, prolongando en éstos su tiempo de concentración. Además, colabora en la disminución del transporte de residuos sólidos que posteriormente afectan a los cauces.

Todos estos factores son claramente observables y por consiguiente se pueden prever, aunque no son tan fáciles de controlar. La ocupación de las llanuras de inundación por parte del ser humano en su continuo intento de beneficiarse del máximo aprovechamiento de los recursos naturales y establecerse cerca de ellos ha sido determinante y colabora en el aumento de la gravedad del peligro.
INTRODUCCIÓN

El presente Informe de Evaluación del Riesgo por inundación permite analizar el impacto potencial, del área de influencia de la inundación fluvial del río Illaura, en el Centro Poblado de Illaura en caso de presentarse un “Niño Costero” de intensidad similar o superior a lo acontecido en el verano 2017.

Los días 26 del mes de enero y 20 del mes de marzo, en distrito de San Miguel se registraron lluvias intensas calificadas, de acuerdo al índice de precipitación en el Percentil 99 (P99) como “Extremadamente lluvioso”, como parte de la presencia de “El Niño Costero 2017”, causando inundaciones fluviales y fluviales por desborde de ríos y quebradas tanto en la zona urbana como en la agrícola con un considerable porcentaje de pérdidas materiales.

En este sentido, la ocurrencia de los desastres producto de los fenómenos naturales, es uno de los factores que mayor destrucción causa debido a la ausencia de medidas y/o acciones que puedan garantizar las condiciones de estabilidad física en su hábitat.

En el primer capítulo del informe, se desarrolla los aspectos generales, entre los que se destaca los objetivos, tanto el general como los específicos, la justificación que motiva la elaboración de la Evaluación del Riesgo del centro poblado y el marco normativo.

En el segundo capítulo, se describe las características generales del área de estudio, como ubicación geográfica, características físicas, sociales, económicas, entre otros.

En el tercer capítulo, se desarrolla la determinación del peligro, en el cual se identifica su área de influencia en función a sus factores condicionantes y desencadenante para la definición de sus niveles, representándose en el mapa de peligro.

El cuarto capítulo comprende el análisis de la vulnerabilidad en sus dos dimensiones, el social y el económico. Cada dimensión de la vulnerabilidad se evalúa con sus respectivos factores: fragilidad y resiliencia, para definir los niveles de vulnerabilidad, representándose en el mapa respectivo.

En el quinto capítulo, se contempla el procedimiento para cálculo del riesgo, que permite identificar el nivel del riesgo por inundación fluvial del centro poblado de Illaura y el mapa de riesgo como resultado de la evaluación del peligro y la vulnerabilidad.

Finalmente, en el sexto capítulo, se evalúa el control del riesgo, para identificar la aceptabilidad o tolerancia del riesgo con sus respectivas conclusiones y recomendaciones.
I. ASPECTOS GENERALES

1.1 OBJETIVO GENERAL

- Evaluar los riesgos originados por fenómenos naturales en el ámbito urbano rural de la jurisdicción del distrito de San Miguel, aplicando el procedimiento técnico de Análisis de Riesgos, específicamente en el área susceptible donde se realizará el Proyecto “Instalación de los servicios de protección de las márgenes derecha e izquierda del Río Illaura en la localidad de Illaura, distrito de San Miguel, provincia de La Mar - Ayacucho”.

1.2 OBJETIVOS ESPECÍFICOS

- Identificar y determinar los niveles de peligro, y elaborar el mapa de peligro del área de influencia.
- Analizar y determinar los niveles de vulnerabilidad, y elaborar el mapa de vulnerabilidad.
- Establecer los niveles del riesgo y elaborar el mapa de riesgos, evaluando la aceptabilidad o tolerabilidad del riesgo.
- Recomendar medidas de control del riesgo.

1.3 FINALIDAD

Contribuir con un documento técnico para que la autoridad que corresponda evalúe la declaración de zona alto o muy alto riesgo no mitigable en el marco de lo estipulado según la normativa vigente, de este modo se puedan tomar las medidas preventivas necesarias (estructurales y no estructurales).

1.4 JUSTIFICACIÓN

Debido al inicio de la temporada de lluvias en la zona centro de Ayacucho, estas torrenciales precipitaciones que se han dado en el distrito de San Miguel han generado daños en la mayoría de la trayectoria de la rivera del río Illaura (en el cual a sus márgenes se encuentra asentado el centro Poblado del mismo nombre), además todavía se tiene los materiales sólidos de gran diámetro en el cauce del Río (por incrementos del caudal ocasionados por la temporada de lluvias pasadas) lo cual significa un constante peligro a la población en la temporada de lluvias y por el posible regreso del fenómeno “El Niño”.

La municipalidad tiene registro de que el Río Illaura, ya ha presentado episodios en las temporadas de lluvias en las que no pudo contener la cantidad de agua turbia, lodo y piedras. Superó su capacidad y las aguas ingresaron terrenos de cultivos, asolaron viviendas de adobe y generaron destrucción en diferentes infraestructuras que en su margen se encontraban.

En el evento de “EL NIÑO” de los primeros meses del 2017, los daños fueron casas devastadas y algunas quedaron sepultadas por las enormes piedras y gran cantidad de lodo, además de hectáreas de cultivo fueron afectadas, la infraestructura agrícola soportó el embate de la naturaleza dejando grandes daños en la población.
El distrito de San Miguel se encuentra en riesgo Muy Alto según el documento ESCENARIO DE RIESGOS ANTE LA TEMPORADA DE LLUVIA 2017 – 2018 elaborado por CENEPRED.

1.5 ANTECEDENTES

Entre los meses de febrero a marzo de 2017, a consecuencias de las intensas precipitaciones pluviales que se registraron durante el Fenómeno del Niño Costero se produjeron inundaciones y desbordes en diversas zonas del distrito de San Miguel, en diferentes puntos del casco urbano y en sectores rurales adyacentes a estos, ocasionando daños a la población, viviendas, servicios básicos, zonas agrícolas, carreteras y otros. Este evento es recurrente en esta región tal como se indica en el cuadro siguiente:

Tabla 1 - Reportes de Emergencias de INDECI del distrito de San Miguel

<table>
<thead>
<tr>
<th>FECHA</th>
<th>CÓDIGO</th>
<th>DEPARTAMENTO</th>
<th>PROVINCIA</th>
<th>DISTRITO</th>
<th>FENÓMENO</th>
</tr>
</thead>
<tbody>
<tr>
<td>14/02/2003</td>
<td>861</td>
<td>AYACUCHO</td>
<td>LA MAR</td>
<td>SAN MIGUEL</td>
<td>INUNDACION</td>
</tr>
<tr>
<td>13/02/2004</td>
<td>8662</td>
<td>AYACUCHO</td>
<td>LA MAR</td>
<td>SAN MIGUEL</td>
<td>INUNDACION</td>
</tr>
<tr>
<td>02/03/2006</td>
<td>16015</td>
<td>AYACUCHO</td>
<td>LA MAR</td>
<td>SAN MIGUEL</td>
<td>PRECIPITACIONES - LLUVIA</td>
</tr>
<tr>
<td>31/01/2008</td>
<td>25207</td>
<td>AYACUCHO</td>
<td>LA MAR</td>
<td>SAN MIGUEL</td>
<td>PRECIPITACIONES - LLUVIA</td>
</tr>
<tr>
<td>31/01/2008</td>
<td>25217</td>
<td>AYACUCHO</td>
<td>LA MAR</td>
<td>SAN MIGUEL</td>
<td>PRECIPITACIONES - LLUVIA</td>
</tr>
<tr>
<td>10/03/2009</td>
<td>32616</td>
<td>AYACUCHO</td>
<td>LA MAR</td>
<td>SAN MIGUEL</td>
<td>PRECIPITACIONES - LLUVIA</td>
</tr>
<tr>
<td>01/01/2010</td>
<td>36564</td>
<td>AYACUCHO</td>
<td>LA MAR</td>
<td>SAN MIGUEL</td>
<td>PRECIPITACIONES - LLUVIA</td>
</tr>
<tr>
<td>31/01/2011</td>
<td>42201</td>
<td>AYACUCHO</td>
<td>LA MAR</td>
<td>SAN MIGUEL</td>
<td>PRECIPITACIONES - LLUVIA</td>
</tr>
<tr>
<td>02/02/2011</td>
<td>42733</td>
<td>AYACUCHO</td>
<td>LA MAR</td>
<td>SAN MIGUEL</td>
<td>PRECIPITACIONES - LLUVIA</td>
</tr>
<tr>
<td>03/02/2011</td>
<td>42436</td>
<td>AYACUCHO</td>
<td>LA MAR</td>
<td>SAN MIGUEL</td>
<td>PRECIPITACIONES - LLUVIA</td>
</tr>
<tr>
<td>17/02/2011</td>
<td>43164</td>
<td>AYACUCHO</td>
<td>LA MAR</td>
<td>SAN MIGUEL</td>
<td>PRECIPITACIONES - LLUVIA</td>
</tr>
<tr>
<td>01/04/2011</td>
<td>44658</td>
<td>AYACUCHO</td>
<td>LA MAR</td>
<td>SAN MIGUEL</td>
<td>PRECIPITACIONES - LLUVIA</td>
</tr>
<tr>
<td>04/04/2011</td>
<td>43909</td>
<td>AYACUCHO</td>
<td>LA MAR</td>
<td>SAN MIGUEL</td>
<td>PRECIPITACIONES - LLUVIA</td>
</tr>
<tr>
<td>13/02/2012</td>
<td>49692</td>
<td>AYACUCHO</td>
<td>LA MAR</td>
<td>SAN MIGUEL</td>
<td>PRECIPITACIONES - LLUVIA</td>
</tr>
<tr>
<td>28/02/2012</td>
<td>50978</td>
<td>AYACUCHO</td>
<td>LA MAR</td>
<td>SAN MIGUEL</td>
<td>PRECIPITACIONES - LLUVIA</td>
</tr>
<tr>
<td>03/03/2012</td>
<td>50737</td>
<td>AYACUCHO</td>
<td>LA MAR</td>
<td>SAN MIGUEL</td>
<td>PRECIPITACIONES - LLUVIA</td>
</tr>
<tr>
<td>20/03/2012</td>
<td>51482</td>
<td>AYACUCHO</td>
<td>LA MAR</td>
<td>SAN MIGUEL</td>
<td>PRECIPITACIONES - LLUVIA</td>
</tr>
<tr>
<td>22/03/2012</td>
<td>51779</td>
<td>AYACUCHO</td>
<td>LA MAR</td>
<td>SAN MIGUEL</td>
<td>PRECIPITACIONES - LLUVIA</td>
</tr>
<tr>
<td>13/02/2013</td>
<td>56548</td>
<td>AYACUCHO</td>
<td>LA MAR</td>
<td>SAN MIGUEL</td>
<td>PRECIPITACIONES - LLUVIA</td>
</tr>
<tr>
<td>26/01/2017</td>
<td>81996</td>
<td>AYACUCHO</td>
<td>LA MAR</td>
<td>SAN MIGUEL</td>
<td>PRECIPITACIONES - LLUVIA</td>
</tr>
<tr>
<td>20/03/2017</td>
<td>84131</td>
<td>AYACUCHO</td>
<td>LA MAR</td>
<td>SAN MIGUEL</td>
<td>PRECIPITACIONES - LLUVIA</td>
</tr>
</tbody>
</table>

Fuente: INDECI – COEN – Reportes de Emergencias – Región Ayacucho

Según el Informe de emergencia Preliminar N° 00084131 -20/03/2017/ COEN – INDECI, señala que debido a las lluvias fuertes que se han presentado en el distrito, específicamente en los Centros Poblados de Ayapampa, Capillapampa, Ccatupata, Ccollpa, Chaca, Chujacancha, Cochbas Alta, Cusay, Illaura, Leqleqa, Misquibamba, Ninabamba, Pallapalla, Pampahuasi, Patibamba, Putaqa y Saccsamarca, se presentaron daños en vías de comunicación (carreteras, caminos rurales y caminos de herradura), viviendas y terrenos de cultivo por desborde de ríos.
Considerándose las intensas precipitaciones pluviales ocurridas en el presente año, la Presidencia de Consejo de Ministros con Decreto Supremo N° 036-2017-PCM de fecha 31 de marzo de 2017, declara en el Estado de Emergencia a 53 distritos de 11 provincias de la Región Ayacucho por desastre a consecuencia de intensas lluvias; por un plazo de cuarenta y cinco (45) días calendario, para la ejecución de acciones de excepción inmediatas y necesarias de respuesta y rehabilitación que correspondan.

1.6 MARCO NORMATIVO

- Ley N° 29664, que crea el Sistema Nacional de Gestión del Riesgo de Desastres – SINAGERD,
- Ley N° 27867, Ley Orgánica de los Gobiernos Regionales y su modificatorias dispuesta por Ley N° 27902.
- Ley N° 27972, Ley Orgánica de Municipalidades y su modificatoria aprobada por Ley N° 28268.
- Ley N° 29869, Ley de Reasentamiento Poblacional para Zonas de Muy Alto Riesgo No Mitigable.
- Decreto Supremo N° 115-2013-PCM, aprueba el Reglamento de la Ley N° 29869.
- Decreto Supremo N° 126-2013-PCM, modifica el Reglamento de la Ley N° 29869.
- Resolución Ministerial N° 334-2012-PCM, que Aprueba los Lineamientos Técnicos del Proceso de Estimación del Riesgo de Desastres.
- Resolución Ministerial N° 222-2013-PCM, que Aprueba los Lineamientos Técnicos del Proceso de Prevención del Riesgo de Desastres.
- Decreto Supremo N° 111–2012–PCM, de fecha 02 de noviembre de 2012, que aprueba la Política Nacional de Gestión del Riesgo de Desastre.
- Resolución Ministerial N°147-2016-PCM, de fecha 18 julio 2016, que aprueba los Lineamientos para la Implementación del Proceso de Reconstrucción”.
- Decreto de Urgencia N°004-2017, de fecha 17 de marzo del 2017, que aprueba medidas para estimular la economía, así como para la atención de intervenciones ante la ocurrencia de lluvias y peligros asociados.
II. CARACTERÍSTICAS GENERALES

2.1 UBICACIÓN GEOGRÁFICA

El distrito de San Miguel pertenece a la provincia de La Mar desde el 18 de marzo de 1861. San Miguel, está situada al Suroeste de la provincia de La Mar, Departamento de Ayacucho.

El Distrito de San Miguel se encuentra entre las coordenadas geográficas 13° 00’ 49 de latitud sur y entre los 73° 58’ 50″ de longitud oeste del meridiano de Greenwich y con una altitud promedio de 2661 m.s.n.m.

Extensión. San Miguel cuenta con una superficie territorial de 902.98 Km2, que constituye el 2% de la superficie total del departamento.

Fisiográficamente el territorio del Distrito de San Miguel presenta áreas espaciales bien definidas, las que se encuentran íntimamente asociadas a una compleja red Geográfica.

El distrito de San Miguel está formado por 69 centros poblados, Illaura es uno de esos centros poblados clasificado por INEI como caserío, teniendo como capital distrital San Miguel.

Hidrográficamente el centro Poblado Illaura se encuentra en la cuenca Pampas, Subcuenca del Río Torobamba, específicamente en la microcuenca del río Illaura.

Específicamente el centro poblado de Illaura, se encuentra entre las coordenadas geográficas 13° 2’ 31.5” de latitud sur y entre los 73º 57’ 50.55” de longitud oeste del meridiano de Greenwich a una altitud promedio de 2497.2 m.s.n.m.

2.1.1 LIMITES

El distrito de San Miguel tiene los siguientes límites:

Por el Norte : Limita con el distrito de Tambo
Por el Este : Limita con los distritos de Samuragi, Anchihuay y Anco
Por el Sur : Limita con el distrito de Chilcas
Por el Oeste : Limita con los distritos de Quinua y Ascovinchos (Provincia de Huamanga)
2.2 VIAS DE ACCESO

El acceso al centro poblado de Illaura, se realiza por la ruta: Lima-Huamanga –San Miguel –Illaura, siendo este trayecto por vía asfaltada; asimismo la ruta de Lima - huamanga es una ruta asfaltada de 560 Km. de longitud, la vía de huamanga - San Miguel es una vía asfaltada con 100 Km. De longitud - por último, la vía San Miguel –Illaura es de 5 km longitud aproximadamente de vía asfaltada.

Tabla 2 - Vías de Acceso al Centro Poblado de Illaura desde Ayacucho

<table>
<thead>
<tr>
<th>De</th>
<th>A</th>
<th>Dist (Km)</th>
<th>Tiempo (Hr)</th>
<th>Tipo de Vía</th>
<th>Frecuencia</th>
<th>Medio de transporte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ayacucho</td>
<td>Quinua</td>
<td>45</td>
<td>1</td>
<td>Asfaltado</td>
<td>Diario</td>
<td>Microbuses, Combis y Autos.</td>
</tr>
<tr>
<td>Quinua</td>
<td>San Miguel</td>
<td>55</td>
<td>1.5</td>
<td>Afirmada</td>
<td>Diario</td>
<td>Microbuses, Combis y Autos.</td>
</tr>
<tr>
<td>San Miguel</td>
<td>Illaura</td>
<td>5</td>
<td>0.25</td>
<td>Afirmada</td>
<td>Diario</td>
<td>Microbuses, Combis y Autos.</td>
</tr>
</tbody>
</table>

Fuente: Equipo Consultor

2.3 CARACTERÍSTICAS SOCIALES

2.3.1 POBLACIÓN

Según los censos de 1993 y el del 2007 el distrito de San Miguel ha tenido una tasa negativa de - 0.3% anual en cuanto a su población. Según datos proyectados de INEI, el distrito de San Miguel al 2010 presentaba una población proyectada de 18,492 Hab. Ya en el 2010 se crea el distrito de Samugari mediante la Ley Nº 29558 que representan un grupo de centros poblados que dejan de pertenecer a San Miguel. Por lo que al 2015 según los datos proyectados por INEI el Distrito de San Miguel tiene una población de 9,373 Habitantes con tendencia al descenso.

Tabla 3 - Población Proyectada 2010 - 2015, Distrito de San Miguel

<table>
<thead>
<tr>
<th>Distrito, Provincia</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Miguel, La Mar</td>
<td>9,944</td>
<td>9,835</td>
<td>9,723</td>
<td>9,612</td>
<td>9,493</td>
<td>9,373</td>
</tr>
</tbody>
</table>

Fuente: INEI, 2015
A. POBLACIÓN TOTAL DEL CENTRO POBLADO ILLAURA

La población que corresponde al centro poblado de Illaura según el levantamiento de campo realizado, determinándose que las viviendas se encuentran dispersas y solo se encuentra concentración de las mismas a ambas márgenes de la carretera; también se corroboró con trabajos que venían haciendo el INEI con el área de catastro de la Municipalidad, por lo que se determinó que la población aproximada\(^1\) en Illaura, es de 166 Habitantes, de los cuales, la mayor cantidad de población son hombres que representa el 55.42% del total de la población del Centro Poblado y el 44.58% son hombres (ver tabla 4).

| Tabla 4 - Características de la Población de Illaura, Según sexo |
|-----------------------------|-----------------|----------------|
| Sexo | Población total | % |
| Hombres | 92 | 55.42 |
| Mujeres | 74 | 44.58 |
| Total, de población | 166 | 100.00 |

Fuente: Levantamiento de campo a nivel de lotes 2017 y datos de INEI (nivel de lotes – casas dispersas)

B. POBLACIÓN SEGÚN GRUPO DE EDADES

La población del centro poblado de Illaura se caracteriza por ser una población joven de acuerdo a la información proporcionada por el INEI el 82.23% del total de la población está en el rango de 15 a 64 años.

En el siguiente cuadro, se muestra a la población del Centro Poblado de Illaura, según grupo etario.

| Tabla 5 - Población de Illaura Según Grupo de Edades |
|-----------------------------|-----------------|----------------|
| Edades | Cantidad | % |
| POBLACIÓN DE 0 A 14 AÑOS | 16 | 9.64 |
| POBLACIÓN DE 15 A 64 AÑOS | 137 | 82.53 |
| POBLACIÓN DE 65 A MÁS AÑOS | 13 | 7.83 |
| Total, de población | 166 | 100.00 |

Fuente: INEI

\(^1\) Se observó que algunas viviendas están desocupadas por periodos cortos, ya que varios pobladores se van al VRAEM en busca de trabajo, pero retornan en épocas de sembrío y cosechas de sus terrenos. Para el cálculo de Vulnerabilidad se tomó lo levantado en campo a nivel de lotes.
2.3.2 VIVIENDA

Las edificaciones en el centro poblado de Illaura tienen las variantes bien definidas en su mayoría son de material rustico de adobe, predominantemente son realizadas por un procedimiento de autoconstrucción propio.

Es preciso señalar que el adobe predomina, debido a la existencia de material disponible y que define una construcción de bajo costo al alcance de la economía de los pobladores.

La zona de estudio, muestra un desarrollo urbanístico mínimo, ya que, por la población fluctuante y migrante complementado por la poca actividad agrícola, el comercio, el transporte y otros, son menores a las localidades de la zona.

Los materiales usados en la construcción son: los cimientos de las casas de piedra y barro, las paredes de adobe o tapial (barro), el techo de teja en la mayoría de los casos soportada por tijerales de maguey, eucalipto u otro material. El piso es de tierra de la mayoría de las casas, a excepción de local comunal de ladrillo y cemento. El uso de puertas y ventanas está de acuerdo a la economía de los comuneros y depende de las características del clima.

<table>
<thead>
<tr>
<th>Tabla 6 - Tipo de Material predominante de paredes de las Viviendas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de material predominante de paredes</td>
</tr>
<tr>
<td>Adobe</td>
</tr>
<tr>
<td>Total, de viviendas</td>
</tr>
</tbody>
</table>

Fuente: INEI

<table>
<thead>
<tr>
<th>Tabla 7 - Tipo de Material predominante de pisos de las Viviendas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de material predominante de pisos</td>
</tr>
<tr>
<td>Tierra</td>
</tr>
<tr>
<td>Cemento</td>
</tr>
<tr>
<td>Total, de viviendas</td>
</tr>
</tbody>
</table>

Fuente: INEI

2.3.3 AGUA POTABLE

Más del 50% de la población de la Comunidad de Illaura, no posee el servicio de agua potable, se abastecen del líquido elemento de riachuelo, puquiales naturales sin el tratamiento adecuado de potabilización haciendo largas caminatas de ida y vuelta.

Muchos de los niños presentan enfermedades estomacales, debido a los deficientes hábitos de higiene, al consumo de aguas contaminadas y carencia de servicios de disposición final de excretas y aguas servidas.
Tabla 8 - Abastecimiento de Agua en Viviendas

<table>
<thead>
<tr>
<th>Abastecimiento de Agua en Viviendas</th>
<th>Viviendas</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red pública Dentro de la Vivienda</td>
<td>8</td>
<td>10.7</td>
</tr>
<tr>
<td>Red pública Fuera de la Vivienda</td>
<td>30</td>
<td>40.0</td>
</tr>
<tr>
<td>Pozo</td>
<td>1</td>
<td>1.3</td>
</tr>
<tr>
<td>Río, acequia, manantial o similar</td>
<td>28</td>
<td>37.3</td>
</tr>
<tr>
<td>Vecino</td>
<td>8</td>
<td>10.7</td>
</tr>
<tr>
<td>Total, de viviendas</td>
<td>75</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Fuente: INEI

2.3.4 SERVICIOS HIGIÉNICOS

La zona de estudio no cuenta con el servicio del alcantarillado (desagüe), el 52% usan pozo séptico, los cuales son mantenidos por los mismos beneficiarios. Mientras tanto las familias que no cuentan con este servicio, defecan al aire libre en las zonas periferias del área urbano especialmente los niños generando contaminación ambiental, en consecuencia, crean como focos infecciosos donde abundan moscas y mosquitos transmisores de la contaminación, por falta del servicio de saneamiento las aguas servidas mayoría vierten a las calles generando también focos infecciosos.

Tabla 9 - Disponibilidad de los servicios higiénicos

<table>
<thead>
<tr>
<th>Disponibilidad de los servicios higiénicos</th>
<th>Viviendas</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pozo séptico</td>
<td>74</td>
<td>98.7</td>
</tr>
<tr>
<td>No tiene</td>
<td>1</td>
<td>1.3</td>
</tr>
<tr>
<td>Total, de viviendas</td>
<td>75</td>
<td>98.7</td>
</tr>
</tbody>
</table>

Fuente: INEI

2.3.5 ENERGÍA ELÉCTRICA

En la actualidad la comunidad de Illaura cuenta con energía eléctrica proveniente del Pequeño Sistema Eléctrico Ayacucho, interconectado a la Central Hidroeléctrica del Mantaro que es administrado por ELECTROCENTRO S.A. solo en la parte urbana posee conexiones domiciliarias, la mayor parte de los pobladores no cuenta con este servicio.

Tabla 10 - Tipo de Alumbrado

<table>
<thead>
<tr>
<th>Tipo de Alumbrado Público</th>
<th>Viviendas</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si tiene alumbrado</td>
<td>13</td>
<td>17.3</td>
</tr>
<tr>
<td>No tiene alumbrado</td>
<td>62</td>
<td>82.7</td>
</tr>
<tr>
<td>Total, de viviendas</td>
<td>75</td>
<td>17.3</td>
</tr>
</tbody>
</table>

Fuente: INEI
2.3.6 EDUCACIÓN

En la Localidad de Illaura existen 02 Instituciones Educativas de los niveles Inicial y Primaria, las cuales se ubican en la misma Localidad de Illaura y son de gestión pública – Sector educación con competencia a la UGEL de La Mar, así como se puede apreciar en el siguiente cuadro:

Tabla 11 - Instituciones Educativas de la Comunidad de Illaura

<table>
<thead>
<tr>
<th>Institución Educativa</th>
<th>Nivel</th>
<th>Dirección</th>
<th>Gestión</th>
</tr>
</thead>
<tbody>
<tr>
<td>38366</td>
<td>Primaria de Menores</td>
<td>Borde Carretera al Valle</td>
<td>Pública - Sector Educación</td>
</tr>
<tr>
<td>425-120</td>
<td>Inicial Jardín</td>
<td>Plaza Principal Illaura</td>
<td>Pública - Sector Educación</td>
</tr>
</tbody>
</table>

Fuente: INEI

2.3.7 SALUD

En la provincia de La Mar opera una Red de Salud, que cuenta con 2 hospitales, 07 Centros de Salud y 35 Puestos de Salud (Tabla N° 11).

Tabla 12 - Establecimientos de Salud en la Provincia de La Mar

<table>
<thead>
<tr>
<th>Nombre Distritos</th>
<th>Hospital</th>
<th>Instituto</th>
<th>Centro de Salud</th>
<th>Puesto de Salud</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- ANCHIHUAY</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2- TAMBO</td>
<td></td>
<td>1</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>3- ANCO</td>
<td></td>
<td>2</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>4- LUIS CARRANZA</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5- SAMUGARI</td>
<td>1</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>6- AYNA</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>7- CHUNGUI</td>
<td></td>
<td>1</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>8- SANTA ROSA</td>
<td></td>
<td>2</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>9- SAN MIGUEL</td>
<td></td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>10- CHILCAS</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>7</td>
<td></td>
<td>35</td>
</tr>
</tbody>
</table>

Específicamente el centro poblado de Illaura no cuenta con establecimientos de Salud, por lo que la población debe movilizarse al Hospital de Apoyo de San Miguel (establecimiento de Salud con internamiento) o en su defecto al puesto de Salud Patibamba (establecimiento de Salud sin internamiento) ubicado en el centro poblado de Patibamba.
2.4 CARACTERÍSTICAS ECONÓMICAS

Del total de la población del distrito, el 75.2 % de la población económicamente activa PEA se dedica a actividades agrícolas y pecuarias con mayor concentración en la primera, además, un 6% se dedica a actividades comerciales, 7.1% se dedica a actividades de servicios (empresas comunales), y otros 11.7%. (ver detalle en el siguiente cuadro). La población de Illaura, predominantemente se dedican a labores Agrícolas.

<table>
<thead>
<tr>
<th>ACTIVIDAD ECONÓMICA</th>
<th>Población</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrícola</td>
<td>2115</td>
<td>74.3</td>
</tr>
<tr>
<td>Pecuaria</td>
<td>25</td>
<td>0.9</td>
</tr>
<tr>
<td>Forestal</td>
<td>6</td>
<td>0.2</td>
</tr>
<tr>
<td>Pesquera</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Minera</td>
<td>4</td>
<td>0.1</td>
</tr>
<tr>
<td>Artesanal</td>
<td>6</td>
<td>0.2</td>
</tr>
<tr>
<td>Comercial</td>
<td>170</td>
<td>6</td>
</tr>
<tr>
<td>Servicios</td>
<td>202</td>
<td>7.1</td>
</tr>
<tr>
<td>Otros</td>
<td>98</td>
<td>3.4</td>
</tr>
<tr>
<td>Estado (gobierno)</td>
<td>220</td>
<td>7.7</td>
</tr>
<tr>
<td>Total de Población</td>
<td>2846</td>
<td>100</td>
</tr>
</tbody>
</table>

Fuente: INEI
2.5 CONDICIONES GEOLÓGICAS

2.5.1 GEOLOGÍA LOCAL

La evaluación geológica del área de estudio, se ha realizado en base a la información del estudio de Zonificación Ecológica y Económica-ZEE de Ayacucho, y informes y estudios del INGEMMET, sus características físicas y estructurales. Geológicamente, el área se encuentra ubicada en el flanco oriental de la Cordillera Occidental, cerca de una cadena de conos volcánicos y de centros volcánicos ubicados al Noreste, de tal forma que toda la zona está muy influenciada por la intensa actividad volcánica cenozoica ocurrida en esta región, la misma que se halla cubierta exclusivamente por formaciones rocosas dejadas directamente por el vulcanismo, así como por delgadas acumulaciones recientes, aluviales, coluviales y glaciales, derivadas de la destrucción de las antiguas rocas volcánicas.

ESTRATIGRAFÍA

En la zona de estudio las rocas que afloran son de origen volcánico, tanto de rocas producidas directamente por las fases de vulcanismo, como por la acumulación de partículas o fragmentos originados por la erosión de las formaciones volcánicas superficiales. La edad de las formaciones aflorantes comprende únicamente rocas volcánicas cenozoicas o terciarias, que van desde el Paleógeno hasta el Cuaternario.

Paleógeno
Grupo Tacaza (PN-ta)
El Grupo Tacaza es una secuencia volcánica continua con orientación noroeste a suroeste, y se extiende a lo largo del flanco occidental de la Cordillera de los Andes. Las rocas volcánicas del Grupo Tacaza están conformadas por derrames lávicos y rocas volcánicas piroclásticas.

Cuaternario
En el área de estudio se encuentran depósitos recientes como son los fluvioglaciares, coluviales y aluviales.

Depósito aluvial (Q-al)

Los Depósitos Aluviales están conformados por los materiales sueltos (que alcanzan algunos metros de espesor) de gravas y arenas más o menos redondeadas, así como bancos de limos y arcilla estratificadas; que se depositaron en tiempos recientes holocénicos, y que cubren los terrenos principalmente ribereños.

2 Estudio Geológico del departamento de Ayacucho con fines de Zonificación Ecológica Económica, base técnica para el ordenamiento Territorial. (Zonificación Ecológica y Económica-ZEE a nivel meso (escala 1/ 100 000), que ha sido aprobada a través de Ordenanza Regional N°003-2013-GRA/CR, emitida el 27 de marzo del 2013).
2.6 CONDICIONES GEOMORFOLÓGICAS

2.6.1 GEOMORFOLOGÍA LOCAL

Geológicamente, el área se encuentra ubicada en el flanco oriental de la Cordillera Occidental, cerca de una cadena de conos volcánicos y de centros volcánicos ubicados al Noreste, de tal forma que toda la zona está muy influenciada por la intensa actividad volcánica cenozoica ocurrida en esta región, la misma que se halla cubierta exclusivamente por formaciones rocosas dejadas directamente por el vulcanismo, así como por delgadas acumulaciones recientes, aluviales, coluviales y glaciales, derivadas de la destrucción de las antiguas rocas volcánicas.

Según estudios geológicos desarrollados en el ámbito de la evaluación, ésta tiene origen en la etapa terciaria de la formación de la tierra como resultado de una actividad volcánica, donde resalta la formación de Terrazas aluviales de valle, planicies inclinadas de valle, altiplanicies onduladas, colinas ligeramente empinadas, colinas medianamente empinadas y colinas empinadas.

En la zona de estudio las rocas que afloran son de origen volcánico, tanto de rocas producidas directamente por las fases de vulcanismo, como por la acumulación de partículas o fragmentos originados por la erosión de las formaciones volcánicas superficiales. La edad de las formaciones aflorantes comprende únicamente rocas volcánicas cenozoicas o terciarias, que van desde el Paleógeno hasta el Cuaternario.

3 Información en base al estudio de Zonificación Ecológica y Económica-ZEE a nivel meso del departamento de Ayacucho (escala 1/100 000), que ha sido aprobada a través de Ordenanza Regional N°003-2013-GRA/CR, emitida el 27 de marzo del 2013).
2.7 CLIMA

El clima predominante en el área de estudio es templado y cálido con presencia de vientos constantes, los mismos que varían de acuerdo a las estaciones del año. En las partes altas es frígido y seco, así como también de fuertes heladas entre la época del invierno.

El área de estudio se extiende sobre una diferencia de altitud de aproximadamente 2500 a 3700 msnm, presentando dos pisos climáticos bien diferenciados; el más bajo, denominado Piso Andino Medio (entre 2500 a 3 700 msnm) y el Piso Alto andino (por encima de 3700 msnm), esta diferenciación está condicionada básicamente por la forma del relieve y la diferencia de altitud entre cada una de ellas.

El primer piso presenta una topografía más agreste característico de los valles interandinos, por lo tanto, los vientos siguen la dirección general de esta, pudiendo formarse incluso microclimas producto justamente de la influencia del relieve, mientras que el piso alto andino presenta una topografía constituida por las altiplanicies andinas, donde los vientos circulan de manera más abierta y las pérdidas por radiación terrestre son más acentuadas.

Las heladas son frecuentes en el área de estudio, pero en las partes altas en donde se origina el inicio Del Rio Illaura, que se caracteriza por presentar una situación de estabilidad atmosférica, debido a determinadas condiciones ambientales tales como la ausencia de vientos, cielo despejado, sequedad atmosférica e inversión de la temperatura en el aire próximo al suelo ocasionando de este modo que la temperatura descienda en algunos casos hasta casi –10°C (noches y madrugadas).

En base al Mapa de Clasificación Climática del Perú (SENAMHI, 1988), desarrollado a través del Sistema de Clasificación de Climas de Warren Thornthwaite, el centro poblado Illaura, se caracteriza por presentar un clima simiseco, templado, con deficiencia de lluvias en otoño e invierno, con humedad relativa calificada como húmeda. C(o,i) B'2 H3.
2.8 TEMPERATURA

Se puede establecer que el área de evaluación y su influencia directa, presenta una temperatura promedio alrededor de 14 º C, debido a que este parámetro disminuye conforme aumenta la altitud aproximadamente de 0 a 5º C por cada 100 m de ascenso. El área de estudio configura un clima de altitud donde las temperaturas tienen una fuerte variabilidad expresada principalmente en las diferencias que hay a nivel diario, en momentos de sol a sombra y entre el día y la noche.

Sin embargo, estos valores medios ocultan valores extremos que se producen con cierta frecuencia; así, las máximas extremas sobrepasan los 15º C en tanto que el promedio se ubica en torno a 13º C, los valores máximos se presentan sobre todo en verano, y las mínimas están con facilidad por debajo de 0º C, los que se muestran prolongados sobre todo durante el invierno.

2.9 PRECIPITACIONES

Las más frecuentes se dan entre los meses de noviembre hasta abril. En las partes altas se manifiestan lluvias intensas y granizadas acompañados de truenos y relámpagos. Los datos meteorológicos utilizados proceden de las estaciones; Chontaca, Tambillo; Huamanga Y Chiara sin embargo sus datos sirven como referencia para la representación de los caracteres climáticos. En general las precipitaciones están por encima de los 500 mm a 800 mm anuales, 80% de las cuales precipitan en los cuatro meses veraniegos de diciembre a marzo.

Gráfico 3 - Precipitación Multianual

Fuente: Sistema de Información geográfica SAYHUITE - PCM
2.10 HIDROLOGÍA

Ubicación Hidrográfica:

De acuerdo a la clasificación de la ANA (Autoridad Nacional del Agua – ex INRENA), hidrográficamente la cuenca se encuentra ubicada:

- Región hidrográfica : Amazonas
- Unidad Hidrográfica : Cuenca Mantaro
- Cuenca : Rio Cachi
- Subcuenca : Illaura

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>LONGITUD DEL CURSO PRINCIPAL (M)</th>
<th>COTA</th>
<th>TIEMPO DE CONCENTRACIÓN (MIN)</th>
<th>TIEMPO DE RETRASO (MIN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC Illaura</td>
<td>10,706.1</td>
<td>4200</td>
<td>2500</td>
<td>50.18</td>
</tr>
</tbody>
</table>

Fuente: Estudio Hidrológico Illaura – Municipalidad de San Miguel

En el área de estudio la precipitación es principalmente de tipo orográfico, por la presencia de la cordillera de los andes, sin embargo, en la naturaleza, los efectos de estos varios tipos de enfriamiento a menudo están interrelacionados, y la precipitación resultante no puede identificarse como de un solo tipo. La precipitación, incluye todas las formas que el agua cae a la superficie terrestre, ya sea en forma líquida o sólida. La precipitación ocurre principalmente en la forma de llovizna, lluvia, nieve, o granizo.

En la cuenca en estudio se pudo identificar que la precipitación es principalmente en forma de lluvia, ocasionalmente, en la parte alta de la cuenca, en forma de granizo, por lo que, en el presente estudio la lluvia es referida como la precipitación.

PRECIPITACIONES – ESTACIONES DE MONITOREO

Para efectos de obtención de la ecuación regionalizar de precipitación anual y mensual, se ha obtenido registros de lluvias mensuales:

- La estación Huamanga, ubicada en la ciudad de Ayacucho, sobre una cota de 2,761msnm, tiene una longitud de 45 años, del año 1962 al 2006.
- La estación Quinua, ubicada en la cota 3,250msnm, tiene una longitud de 43 años, del año 1964 al 2006.
La estación Tunsulla, ubicada en la cota 3,900msnm, tiene una longitud de 21 años, del año 1990 al 2010.

La estación Cuchoquesera, ubicada en la cota 3,750msnm, tiene una longitud de 19 años, del año 1992 al 2010.

Tabla N° 15 – Estaciones de monitoreo cercanos a Illaura

<table>
<thead>
<tr>
<th>ESTACIÓN</th>
<th>ALTURA (msnm)</th>
<th>PROVINCIA</th>
<th>REGION</th>
<th>PP MENSUAL (mm)</th>
<th>P24H (mm)</th>
<th>OPERADORA</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUAMANGA</td>
<td>2,761</td>
<td>HUAMANGA</td>
<td>AYACUCHO</td>
<td>1962 - 2006</td>
<td></td>
<td>SENAMHI</td>
</tr>
<tr>
<td>CUCHOQUESERA</td>
<td>3,750</td>
<td>CANGALLO</td>
<td>AYACUCHO</td>
<td>1992 - 2010</td>
<td></td>
<td>SENAMHI</td>
</tr>
<tr>
<td>CHOCCORO</td>
<td>4,061</td>
<td>CANGALLO</td>
<td>AYACUCHO</td>
<td></td>
<td>1998 - 2010</td>
<td>SENAMHI-GRA</td>
</tr>
</tbody>
</table>

Fuente: Estudio Hidrológico Illaura – Municipalidad de San Miguel

Para calcular los caudales máximos se ha utilizado registros de lluvias máximas diarias de las siguientes estaciones:

- La estación Tunsulla, ubicada en la cota 3,900msnm, tiene una longitud de 21 años, del año 1990 al 2008.
- La estación Choccoro, sobre una cota de 4,061msnm, tiene una longitud de 13 años, del año 1998 al 2010.

En resumen, la información obtenida corresponde al ámbito de la provincia de Huamanga y Cangallo, escogidos por su rango de altitud y la cercanía.

En el presente estudio se están tomando los resultados obtenidos en el Estudio Hidrológico realizado para el proyecto de “INSTALACIÓN DE LOS SERVICIOS DE PROTECCIÓN DEL MARGEN DERECHO E IZQUIERDO
Los resultados del presente estudio muestran lo siguiente:

Tabla N° 16 - RESUMEN CAUDALES MÁXIMOS (m3/s) - MICROCUENCA DE ILLAURA

<table>
<thead>
<tr>
<th>Tr (Años)</th>
<th>Método Racional</th>
<th>Método de Mac Math</th>
<th>Método de Bürkli-Ziegler</th>
<th>Método del H.U Triangular - Ppmax 24h</th>
<th>Método del H.U Triangular - Ppmax 6h</th>
<th>Método del Numero de Curva</th>
<th>Método Regional</th>
<th>Método de Temez</th>
<th>Caudal de diseño (m3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>73.26</td>
<td>25.74</td>
<td>23.04</td>
<td>1.63</td>
<td>16.67</td>
<td>16.29</td>
<td>26.58</td>
<td>5.70</td>
<td>14.11</td>
</tr>
<tr>
<td>50</td>
<td>90.86</td>
<td>30.49</td>
<td>28.57</td>
<td>3.58</td>
<td>8.41</td>
<td>8.23</td>
<td>45.17</td>
<td>12.60</td>
<td>24.37</td>
</tr>
<tr>
<td>100</td>
<td>97.60</td>
<td>32.07</td>
<td>30.69</td>
<td>4.34</td>
<td>5.74</td>
<td>5.61</td>
<td>53.17</td>
<td>15.22</td>
<td>28.75</td>
</tr>
<tr>
<td>300</td>
<td>108.01</td>
<td>34.42</td>
<td>33.96</td>
<td>5.54</td>
<td>3.18</td>
<td>3.11</td>
<td>65.85</td>
<td>19.40</td>
<td>35.70</td>
</tr>
<tr>
<td>500</td>
<td>111.48</td>
<td>34.76</td>
<td>35.04</td>
<td>5.71</td>
<td>2.59</td>
<td>2.53</td>
<td>71.75</td>
<td>20.03</td>
<td>38.73</td>
</tr>
</tbody>
</table>

Fuente: Estudio hidrológico del Proyecto “instalación de los servicios de protección del margen derecho e izquierdo del rio Illaura en la localidad de Illaura, distrito de San Miguel, provincia de La Mar - Ayacucho”

En el presente proyecto se utilizó estaciones base para obtener las informaciones meteorológicas, ya que no se encuentra estaciones en la zona del proyecto, por lo cual se recomienda implementar e incorporar nuevas estaciones meteorológicas para poder tener datos climatológicos a mayor precisión.

Al hacer uso del método racional para determinar caudales máximos se debe tener en cuenta que el parámetro menos preciso, es determinar el coeficiente de escorrentía, por esto esta metodología no es confiable, y se estará tomando valores más altos por seguridad.

En el presente estudio se utilizó estaciones base aledañas a la zona del proyecto para luego regionalizar y obtener registros sintéticos, debido a la carencia de estaciones en la zona del proyecto, por lo cual se recomienda implementar e incorporar nuevas estaciones meteorológicas para poder tener datos climatológicos a mayor precisión.
2.11 PENDIENTES

La pendiente es variada, es característica propia de la zona andina de suave a alta en caso de la zona urbana es un promedio de 2 a 10 % con elevación de este a oeste. En el mapa de pendientes se expresan mediante el valor del ángulo (medido en grados) que se determinó entre la horizontal con el terreno, y oscila entre los 2° y los 17°.
III. DETERMINACIÓN DEL PELIGRO

Para el presente Informe de Evaluación de Riesgo, se ha determinado un peligro Natural de origen Hidrometeorológico, de tipo Inundación Fluvial, acotando que en la zona existen otros peligros tanto de geodinámica interna, externa, hidrometeorológico, biológicos e inducidos por el hombre, es decir solo se trata el Peligro de Inundación Fluvial.

3.1 METODOLOGÍA

Para determinar el nivel de peligrosidad por el fenómeno de Inundación Fluvial, se utilizó la siguiente metodología descrita en el gráfico 04.

Gráfico 4 - Metodología general para determinar el nivel de peligro

Fuente: Consultor

3.2 RECOGIDA Y ANÁLISIS DE INFORMACIÓN

Se ha realizado la recopilación de información disponible: Estudios publicados por entidades técnico científicas competentes (INGEMMET, INEI, SENAMHI, ANA), información histórica, estudio de peligros, cartografía, topografía, hidrografía, climatología, geología y geomorfología del área de influencia del fenómeno por Inundación Fluvial y desborde de ríos. Así también, se ha realizado el análisis de la información proporcionada de entidades técnicas-científicas y estudios publicados acerca de las zonas evaluadas.

Para el presente estudio se ha tomado como referencia el estudio hidrológico para el proyecto “INSTALACIÓN DE LOS SERVICIOS DE PROTECCIÓN DE LAS MARGENES DERECHO E IZQUIERDO DEL RÍO ILLAURA EN LA LOCALIDAD DE ILLAURA, DISTRITO DE SAN MIGUEL, PROVINCIA DE LA MAR - AYACUCHO”, realizado por la Gobierno Regional de Ayacucho a cargo de la Municipalidad provincial de La Mar, distrito de San Miguel. (Ver descripción de Hidrología en el Item 2.10.)
3.3 IDENTIFICACIÓN DEL ÁREA DE INFLUENCIA

Para identificar y caracterizar el peligro, se ha considerado la información generada por las entidades técnico-científicas, la configuración actual del ámbito de estudio, post emergencia, que abarca el área de estudio.

3.4 SUSCEPTIBILIDAD DEL TERRITORIO

Para la evaluación de la susceptibilidad del área de influencia por inundación fluvial del Río Illaura en el centro poblado de Illaura (terrenos de cultivo y viviendas), se consideraron los siguientes factores:

Tabla 14 - Factores de la Susceptibilidad

<table>
<thead>
<tr>
<th>Factor Desencadenante</th>
<th>Geomorfología</th>
<th>Pendiente</th>
<th>Geología</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitación</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Consultor

3.4.1 ANÁLISIS FACTOR DESENCADENANTE

El factor desencadenante se tomó en base a una interpolación de precipitaciones máximas obtenidas en estaciones meteorológicas con similar altitud y cercanas en el departamento de Ayacucho, luego se interpoló y se elaboró el siguiente cuadro:

Tabla N° 18 – Precipitación Mensual Generada (mm)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>91.96</td>
<td>74.06</td>
<td>69.76</td>
<td>26.80</td>
<td>8.18</td>
<td>7.46</td>
<td>13.19</td>
<td>14.62</td>
<td>21.07</td>
<td>18.20</td>
<td>56.15</td>
<td>85.51</td>
<td>487.0</td>
</tr>
<tr>
<td>1993</td>
<td>85.51</td>
<td>102.70</td>
<td>75.49</td>
<td>23.93</td>
<td>4.60</td>
<td>2.45</td>
<td>6.75</td>
<td>9.61</td>
<td>16.05</td>
<td>37.54</td>
<td>64.03</td>
<td>85.51</td>
<td>436.1</td>
</tr>
<tr>
<td>1994</td>
<td>114.87</td>
<td>94.82</td>
<td>90.53</td>
<td>11.04</td>
<td>14.62</td>
<td>3.88</td>
<td>6.75</td>
<td>9.61</td>
<td>26.80</td>
<td>59.02</td>
<td>37.54</td>
<td>471.9</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>56.15</td>
<td>93.39</td>
<td>73.34</td>
<td>33.96</td>
<td>3.16</td>
<td>2.45</td>
<td>14.62</td>
<td>21.07</td>
<td>17.49</td>
<td>18.20</td>
<td>43.27</td>
<td>379.5</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>108.43</td>
<td>89.81</td>
<td>58.30</td>
<td>20.35</td>
<td>4.60</td>
<td>2.45</td>
<td>3.88</td>
<td>16.77</td>
<td>30.38</td>
<td>51.86</td>
<td>71.91</td>
<td>478.4</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>86.23</td>
<td>76.92</td>
<td>69.76</td>
<td>7.46</td>
<td>2.45</td>
<td>6.75</td>
<td>2.45</td>
<td>5.31</td>
<td>16.77</td>
<td>42.55</td>
<td>25.36</td>
<td>33.24</td>
<td>375.2</td>
</tr>
<tr>
<td>1998</td>
<td>79.07</td>
<td>104.13</td>
<td>67.61</td>
<td>23.21</td>
<td>4.60</td>
<td>3.16</td>
<td>6.03</td>
<td>2.45</td>
<td>44.70</td>
<td>11.76</td>
<td>67.61</td>
<td>44.70</td>
<td>459.0</td>
</tr>
<tr>
<td>1999</td>
<td>92.67</td>
<td>175.02</td>
<td>67.61</td>
<td>8.89</td>
<td>16.77</td>
<td>10.33</td>
<td>42.55</td>
<td>11.76</td>
<td>6.75</td>
<td>49.71</td>
<td>18.20</td>
<td>44.70</td>
<td>545.0</td>
</tr>
<tr>
<td>2000</td>
<td>118.45</td>
<td>74.77</td>
<td>64.03</td>
<td>18.92</td>
<td>18.92</td>
<td>5.31</td>
<td>19.63</td>
<td>11.76</td>
<td>8.18</td>
<td>25.36</td>
<td>60.45</td>
<td>47.56</td>
<td>473.4</td>
</tr>
<tr>
<td>2001</td>
<td>98.40</td>
<td>103.42</td>
<td>66.90</td>
<td>21.07</td>
<td>13.19</td>
<td>8.89</td>
<td>21.07</td>
<td>16.05</td>
<td>55.44</td>
<td>16.05</td>
<td>38.25</td>
<td>9.61</td>
<td>468.3</td>
</tr>
<tr>
<td>2002</td>
<td>56.15</td>
<td>120.60</td>
<td>69.81</td>
<td>58.30</td>
<td>100.55</td>
<td>2.45</td>
<td>2.45</td>
<td>25.36</td>
<td>21.78</td>
<td>11.04</td>
<td>18.92</td>
<td>51.14</td>
<td>558.6</td>
</tr>
<tr>
<td>2003</td>
<td>96.95</td>
<td>96.95</td>
<td>78.94</td>
<td>27.46</td>
<td>10.30</td>
<td>6.01</td>
<td>6.01</td>
<td>10.30</td>
<td>11.15</td>
<td>19.73</td>
<td>45.47</td>
<td>43.76</td>
<td>453.0</td>
</tr>
<tr>
<td>2004</td>
<td>95.24</td>
<td>94.38</td>
<td>77.22</td>
<td>26.60</td>
<td>8.58</td>
<td>6.01</td>
<td>5.15</td>
<td>7.72</td>
<td>8.58</td>
<td>15.44</td>
<td>44.62</td>
<td>42.04</td>
<td>431.6</td>
</tr>
</tbody>
</table>
Para la obtención de los pesos ponderados del parámetro del factor desencadenante, se utilizó el proceso de análisis jerárquico. Los resultados obtenidos son los siguientes:

a) Parámetro: Precipitación

Tabla 15 - Matriz de comparación de pares del parámetro Precipitación

<table>
<thead>
<tr>
<th>PERCENTILES</th>
<th>Mayor P99-P90 (Extremadamente lluvioso)</th>
<th>P90-P95 (Muy lluvioso)</th>
<th>P75-P90 (Lluvioso)</th>
<th>Menor a P75 (Moderadamente lluvioso)</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mayor P99-P90 (Extremadamente lluvioso)</td>
<td>1.00</td>
<td>2.00</td>
<td>4.00</td>
<td>5.00</td>
<td>9.00</td>
</tr>
<tr>
<td>P90-P95 (Muy lluvioso)</td>
<td>0.50</td>
<td>1.00</td>
<td>3.00</td>
<td>5.00</td>
<td>7.00</td>
</tr>
<tr>
<td>P75-P90 (Lluvioso)</td>
<td>0.25</td>
<td>0.33</td>
<td>1.00</td>
<td>5.00</td>
<td>7.00</td>
</tr>
<tr>
<td>Menor a P75 (Moderadamente lluvioso)</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>1.00</td>
<td>3.00</td>
</tr>
<tr>
<td>Normal</td>
<td>0.11</td>
<td>0.14</td>
<td>0.14</td>
<td>0.33</td>
<td>1.00</td>
</tr>
<tr>
<td>SUMA</td>
<td>2.06</td>
<td>3.68</td>
<td>8.34</td>
<td>16.33</td>
<td>27.00</td>
</tr>
<tr>
<td>1/SUMA</td>
<td>0.49</td>
<td>0.27</td>
<td>0.12</td>
<td>0.06</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Fuente: Consultor

Se proceden a realizar los cálculos para generar la matriz de normalización de pares que nos mostrará el vector priorización (peso ponderado) que nos indica la importancia de cada parámetro en el análisis del fenómeno natural objeto del análisis de riesgo.
Tabla 20 - Matriz de normalización de pares del parámetro Precipitación

<table>
<thead>
<tr>
<th>PERCENTILES</th>
<th>Mayor P99-P90 (Extremadamente lluvioso)</th>
<th>P90-P95 (Muy lluvioso)</th>
<th>P75-P90 (Lluvioso)</th>
<th>Menor a P75 (Moderadamente lluvioso)</th>
<th>Normal</th>
<th>Vector Priorización</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mayor P99-P90 (Extremadamente lluvioso)</td>
<td>0.485</td>
<td>0.544</td>
<td>0.479</td>
<td>0.306</td>
<td>0.333</td>
<td>0.430</td>
</tr>
<tr>
<td>P90-P95 (Muy lluvioso)</td>
<td>0.243</td>
<td>0.272</td>
<td>0.360</td>
<td>0.306</td>
<td>0.259</td>
<td>0.288</td>
</tr>
<tr>
<td>P75-P90 (Lluvioso)</td>
<td>0.121</td>
<td>0.091</td>
<td>0.120</td>
<td>0.306</td>
<td>0.259</td>
<td>0.179</td>
</tr>
<tr>
<td>Menor a P75 (Moderadamente lluvioso)</td>
<td>0.097</td>
<td>0.054</td>
<td>0.024</td>
<td>0.061</td>
<td>0.111</td>
<td>0.070</td>
</tr>
<tr>
<td>Normal</td>
<td>0.054</td>
<td>0.039</td>
<td>0.017</td>
<td>0.020</td>
<td>0.037</td>
<td>0.033</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

CÁLCULO DE RELACIÓN DE CONSISTENCIA (RC)

Este coeficiente debe ser menor al 10% (RC<0.1), lo que nos indica que los criterios utilizados para la comparación de pares es la más adecuada.

| INDICE DE CONSISTENCIA | 0.084 |
| RELACION DE CONSISTENCIA | < 0.1 (*) |

(*) Para determinar el índice aleatorio que ayuda a determinar la relación de consistencia se utilizó la tabla obtenida por Aguaron y Moreno, 2001. Donde “n” es el número de parámetros en la matriz, en este caso son 5 parámetros por lo que se utiliza el IA: 1.115

<table>
<thead>
<tr>
<th>n</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>0.525</td>
<td>0.882</td>
<td>1.115</td>
<td>1.252</td>
<td>1.341</td>
<td>1.404</td>
<td>1.452</td>
<td>1.484</td>
<td>1.513</td>
<td>1.535</td>
<td>1.555</td>
<td>1.570</td>
<td>1.583</td>
<td>1.595</td>
</tr>
</tbody>
</table>

3.4.2 ANÁLISIS FACTORES CONDICIONANTES

Para la obtención de los pesos ponderados de los parámetros de los factores condicionantes, se utilizó el proceso de análisis jerárquico. Los resultados obtenidos son los siguientes:

a) Parámetro: Geomorfología

Tabla 16 - Matriz de comparación de pares del parámetro Geomorfología

<table>
<thead>
<tr>
<th>GEOMORFOLOGÍA</th>
<th>P-at, Vertiente o piedemonte aluvio-torrencial</th>
<th>RM-rs, Montaña en roca sedimentaria</th>
<th>V-dd, Vertiente con depósito de deslizamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-at, Vertiente o piedemonte aluvio-torrencial</td>
<td>1.00</td>
<td>2.00</td>
<td>5.00</td>
</tr>
<tr>
<td>RM-rs, Montaña en roca sedimentaria</td>
<td>0.50</td>
<td>1.00</td>
<td>3.00</td>
</tr>
<tr>
<td>V-dd, Vertiente con depósito de deslizamiento</td>
<td>0.20</td>
<td>0.33</td>
<td>1.00</td>
</tr>
<tr>
<td>SUMA</td>
<td>1.70</td>
<td>3.33</td>
<td>9.00</td>
</tr>
<tr>
<td>/SUMA</td>
<td>0.59</td>
<td>0.30</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico
Tabla 22 - Matriz de normalización de pares del parámetro Geomorfología

<table>
<thead>
<tr>
<th>GEOMORFOLOGÍA</th>
<th>P-at, Vertiente o piedemonte aluvio-torrencial</th>
<th>RM-rs, Montaña en roca sedimentaria</th>
<th>V-dd, Vertiente con depósito de deslizamiento</th>
<th>Vector Priorización</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-at, Vertiente o piedemonte aluvio-torrencial</td>
<td>0.588</td>
<td>0.600</td>
<td>0.556</td>
<td>0.581</td>
</tr>
<tr>
<td>RM-rs, Montaña en roca sedimentaria</td>
<td>0.294</td>
<td>0.300</td>
<td>0.333</td>
<td>0.309</td>
</tr>
<tr>
<td>V-dd, Vertiente con depósito de deslizamiento</td>
<td>0.118</td>
<td>0.100</td>
<td>0.111</td>
<td>0.110</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

Índice (IC) y Relación de Consistencia (RC) obtenido del Proceso de Análisis Jerárquico para el parámetro Geomorfología

<table>
<thead>
<tr>
<th></th>
<th>IC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.002</td>
<td>0.004</td>
</tr>
</tbody>
</table>

b) Parámetro: Pendiente

Tabla 23 - Matriz de comparación de pares del parámetro Pendiente

<table>
<thead>
<tr>
<th>PENDIENTE</th>
<th>Menor a 3°</th>
<th>Entre 3° a 6°</th>
<th>Entre 6° a 10°</th>
<th>Entre 10° a 17°</th>
<th>Mayor a 17°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor a 3°</td>
<td>1.00</td>
<td>3.00</td>
<td>5.00</td>
<td>7.00</td>
<td>9.00</td>
</tr>
<tr>
<td>Entre 3° a 6°</td>
<td>0.33</td>
<td>1.00</td>
<td>3.00</td>
<td>5.00</td>
<td>7.00</td>
</tr>
<tr>
<td>Entre 6° a 10°</td>
<td>0.20</td>
<td>0.33</td>
<td>1.00</td>
<td>3.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Entre 10° a 17°</td>
<td>0.14</td>
<td>0.20</td>
<td>0.33</td>
<td>1.00</td>
<td>3.00</td>
</tr>
<tr>
<td>Mayor a 17°</td>
<td>0.11</td>
<td>0.14</td>
<td>0.20</td>
<td>0.33</td>
<td>1.00</td>
</tr>
<tr>
<td>SUMA</td>
<td>1.79</td>
<td>4.68</td>
<td>9.53</td>
<td>16.33</td>
<td>25.00</td>
</tr>
<tr>
<td>1/SUMA</td>
<td>0.56</td>
<td>0.21</td>
<td>0.10</td>
<td>0.06</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

Tabla 17 - Matriz de normalización de pares del parámetro Pendiente

<table>
<thead>
<tr>
<th>PENDIENTE</th>
<th>Menor a 5°</th>
<th>Entre 5° a 15°</th>
<th>Entre 15° a 25°</th>
<th>Entre 25° a 45°</th>
<th>Mayor a 45°</th>
<th>Vector Priorización</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor a 3°</td>
<td>0.560</td>
<td>0.642</td>
<td>0.524</td>
<td>0.429</td>
<td>0.360</td>
<td>0.503</td>
</tr>
<tr>
<td>Entre 3° a 6°</td>
<td>0.187</td>
<td>0.214</td>
<td>0.315</td>
<td>0.306</td>
<td>0.280</td>
<td>0.260</td>
</tr>
<tr>
<td>Entre 6° a 10°</td>
<td>0.112</td>
<td>0.071</td>
<td>0.105</td>
<td>0.184</td>
<td>0.200</td>
<td>0.134</td>
</tr>
<tr>
<td>Entre 10° a 17°</td>
<td>0.080</td>
<td>0.043</td>
<td>0.035</td>
<td>0.061</td>
<td>0.120</td>
<td>0.068</td>
</tr>
<tr>
<td>Mayor a 17°</td>
<td>0.062</td>
<td>0.031</td>
<td>0.021</td>
<td>0.020</td>
<td>0.040</td>
<td>0.035</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

Índice (IC) y Relación de Consistencia (RC) obtenido del Proceso de Análisis Jerárquico para el parámetro Pendiente

<table>
<thead>
<tr>
<th></th>
<th>IC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.061</td>
<td>0.054</td>
</tr>
</tbody>
</table>
c) Parámetro: Geología

Tabla 18 - Matriz de comparación de pares del parámetro Geología

<table>
<thead>
<tr>
<th>GEOLOGÍA</th>
<th>Q-al, Depósitos aluviales</th>
<th>PsTi-mi/v, igninbritas</th>
<th>Peo-so, conglomerados con clastos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-al, Depósitos aluviales</td>
<td>1.00</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>PsTi-mi/v, igninbritas</td>
<td>0.50</td>
<td>1.00</td>
<td>2.00</td>
</tr>
<tr>
<td>Peo-so, conglomerados con clastos</td>
<td>0.33</td>
<td>0.50</td>
<td>1.00</td>
</tr>
<tr>
<td>SUMA</td>
<td>1.83</td>
<td>3.50</td>
<td>6.00</td>
</tr>
<tr>
<td>1/SUMA</td>
<td>0.55</td>
<td>0.29</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

Tabla 19 - Matriz de normalización de pares del parámetro Tipo de Geología

<table>
<thead>
<tr>
<th>GEOLOGÍA</th>
<th>Q-al, Depósitos aluviales</th>
<th>PsTi-mi/v, igninbritas</th>
<th>Peo-so, conglomerados con clastos</th>
<th>Vector Priorización</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-al, Depósitos aluviales</td>
<td>0.545</td>
<td>0.571</td>
<td>0.500</td>
<td>0.539</td>
</tr>
<tr>
<td>PsTi-mi/v, igninbritas</td>
<td>0.273</td>
<td>0.286</td>
<td>0.333</td>
<td>0.297</td>
</tr>
<tr>
<td>Peo-so, conglomerados con clastos</td>
<td>0.182</td>
<td>0.143</td>
<td>0.167</td>
<td>0.164</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

Índice (IC) y Relación de Consistencia (RC) obtenido del Proceso de Análisis Jerárquico para el parámetro Geología

<table>
<thead>
<tr>
<th></th>
<th>IC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.005</td>
<td>0.009</td>
</tr>
</tbody>
</table>

d) Análisis de los parámetros de los factores condicionantes:

Tabla 20 - Matriz de comparación de pares de los factores condicionantes

<table>
<thead>
<tr>
<th>PARÁMETRO</th>
<th>Geomorfología</th>
<th>Pendientes</th>
<th>Geología</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geomorfología</td>
<td>1.00</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>Pendientes</td>
<td>0.50</td>
<td>1.00</td>
<td>2.00</td>
</tr>
<tr>
<td>Geología</td>
<td>0.33</td>
<td>0.50</td>
<td>1.00</td>
</tr>
<tr>
<td>SUMA</td>
<td>1.83</td>
<td>3.50</td>
<td>6.00</td>
</tr>
<tr>
<td>1/SUMA</td>
<td>0.55</td>
<td>0.29</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

Tabla 21 - Matriz de normalización de pares de los factores condicionantes

<table>
<thead>
<tr>
<th>PARÁMETRO</th>
<th>Geomorfología</th>
<th>Pendientes</th>
<th>Geología</th>
<th>Vector Priorización</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geomorfología</td>
<td>0.545</td>
<td>0.571</td>
<td>0.500</td>
<td>0.539</td>
</tr>
<tr>
<td>Pendientes</td>
<td>0.273</td>
<td>0.286</td>
<td>0.333</td>
<td>0.297</td>
</tr>
<tr>
<td>Geología</td>
<td>0.182</td>
<td>0.143</td>
<td>0.167</td>
<td>0.164</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico
Índice (IC) y Relación de Consistencia (RC) obtenido del Proceso de Análisis Jerárquico para los factores condicionantes

<table>
<thead>
<tr>
<th></th>
<th>IC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>0.009</td>
<td></td>
</tr>
</tbody>
</table>

3.5 PARÁMETRO DE EVALUACIÓN

Para el presente caso, se ha considerado como único parámetro de evaluación a la “Frecuencia” considerando como descriptores el periodo de retorno con máximas precipitaciones expresado en años. Para la obtención de los pesos ponderados de los descriptores de este parámetro de evaluación, se utilizó el proceso de análisis jerárquico. Los resultados obtenidos son los siguientes:

Tabla 22 - Matriz de comparación de pares del parámetro Frecuencia

<table>
<thead>
<tr>
<th>FRECUENCIA</th>
<th>CADA 100 AÑOS</th>
<th>CADA 50 AÑOS</th>
<th>CADA 25 AÑOS</th>
<th>CADA 20 AÑOS</th>
<th>CADA 10 AÑOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CADA 100 AÑOS</td>
<td>1.00</td>
<td>3.00</td>
<td>4.00</td>
<td>5.00</td>
<td>7.00</td>
</tr>
<tr>
<td>CADA 50 AÑOS</td>
<td>0.33</td>
<td>1.00</td>
<td>3.00</td>
<td>4.00</td>
<td>5.00</td>
</tr>
<tr>
<td>CADA 25 AÑOS</td>
<td>0.25</td>
<td>0.33</td>
<td>1.00</td>
<td>3.00</td>
<td>4.00</td>
</tr>
<tr>
<td>CADA 20 AÑOS</td>
<td>0.20</td>
<td>0.25</td>
<td>0.33</td>
<td>1.00</td>
<td>3.00</td>
</tr>
<tr>
<td>CADA 10 AÑOS</td>
<td>0.14</td>
<td>0.20</td>
<td>0.25</td>
<td>0.33</td>
<td>1.00</td>
</tr>
<tr>
<td>SUMA</td>
<td>1.93</td>
<td>4.78</td>
<td>8.58</td>
<td>13.33</td>
<td>20.00</td>
</tr>
<tr>
<td>1/SUMA</td>
<td>0.52</td>
<td>0.21</td>
<td>0.12</td>
<td>0.08</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

Tabla 30 - Matriz de normalización de pares del parámetro Frecuencia

<table>
<thead>
<tr>
<th>FRECUENCIA</th>
<th>CADA 100 AÑOS</th>
<th>CADA 50 AÑOS</th>
<th>CADA 25 AÑOS</th>
<th>CADA 20 AÑOS</th>
<th>CADA 10 AÑOS</th>
<th>Vector Priorización</th>
</tr>
</thead>
<tbody>
<tr>
<td>CADA 100 AÑOS</td>
<td>0.519</td>
<td>0.627</td>
<td>0.466</td>
<td>0.375</td>
<td>0.350</td>
<td>0.467</td>
</tr>
<tr>
<td>CADA 50 AÑOS</td>
<td>0.173</td>
<td>0.209</td>
<td>0.350</td>
<td>0.300</td>
<td>0.250</td>
<td>0.256</td>
</tr>
<tr>
<td>CADA 25 AÑOS</td>
<td>0.130</td>
<td>0.070</td>
<td>0.117</td>
<td>0.225</td>
<td>0.200</td>
<td>0.148</td>
</tr>
<tr>
<td>CADA 20 AÑOS</td>
<td>0.104</td>
<td>0.052</td>
<td>0.039</td>
<td>0.075</td>
<td>0.150</td>
<td>0.084</td>
</tr>
<tr>
<td>CADA 10 AÑOS</td>
<td>0.074</td>
<td>0.042</td>
<td>0.029</td>
<td>0.025</td>
<td>0.050</td>
<td>0.044</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

Índice (IC) y Relación de Consistencia (RC) obtenido del Proceso de Análisis Jerárquico para el parámetro Frecuencia

<table>
<thead>
<tr>
<th></th>
<th>IC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC</td>
<td>0.072</td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>0.064</td>
<td></td>
</tr>
</tbody>
</table>
3.6 DEFINICIÓN DE ESCENARIOS

Se está considerando el escenario más crítico, con presencia de un Mega Niño de gran intensidad superior a los producidos en los años 1982 y 1997, ha considerado el escenario más alto: con precipitaciones extraordinarias que superan el percentil 99 en varios meses consecutivos (enero-febrero y marzo); lo cual originaría un incremento exponencial del caudal del río Illaura originándose desbordes en ambas márgenes afectando a los terrenos de cultivo, viviendas e infraestructura del centro poblado de Illaura.

3.7 NIVELES DE PELIGRO

En el siguiente cuadro, se muestran los niveles de peligro y sus respectivos rangos obtenidos a través de utilizar el Proceso de Análisis Jerárquico.

<table>
<thead>
<tr>
<th>NIVEL</th>
<th>RANGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUY ALTO</td>
<td>0.273 \leq P \leq 0.479</td>
</tr>
<tr>
<td>ALTO</td>
<td>0.150 \leq P < 0.273</td>
</tr>
<tr>
<td>MEDIO</td>
<td>0.064 \leq P < 0.150</td>
</tr>
<tr>
<td>BAJO</td>
<td>0.033 \leq P < 0.064</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico
Tabla 32 - Matriz de Peligro

<table>
<thead>
<tr>
<th>Nivel de Peligro</th>
<th>Descripción</th>
<th>Rangos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peligro Muy Alto</td>
<td>Precipitación Acumulada/día > Percentil 99 y/o Percentil 95 < Precipitación Acumulada/día <= Percentil 99, emplazado sobre una terraza fluvial (Ti), con pendientes menores a 5° y/o Entre 5° a 15°, con geología de depósitos aluviales, con un periodo de retorno de máximas precipitaciones de 100 años.</td>
<td>0.273 ≤ P ≤ 0.479</td>
</tr>
<tr>
<td>Peligro Alto</td>
<td>Precipitación Acumulada/día > Percentil 99 y/o Percentil 95 < Precipitación Acumulada/día <= Percentil 99, emplazado sobre una terraza fluvial (Ti) o piedemonte coluvio-deluvial, con pendientes menores a 5° y/o Entre 5° a 15°, con geología de depósitos aluviales o terrazas aluviales, con un periodo de retorno de máximas precipitaciones de 50 a 100 años.</td>
<td>0.150 ≤ P < 0.273</td>
</tr>
<tr>
<td>Peligro Medio</td>
<td>Precipitación Percentil 90 < Precipitación Acumulada/día <= Percentil 95 y/o Percentil 75 < Precipitación Acumulada/día <= Percentil 90, presenta geomorfología de vertiente con depósitos de deslizamientos, mayores a 15° - 25° y/o Entre 25° a 45°, con geología de coluviales, con un periodo de retorno de máximas precipitaciones de 50 a 100 o 25 años.</td>
<td>0.064 ≤ P < 0.150</td>
</tr>
<tr>
<td>Peligro Bajo</td>
<td>Precipitación Percentil 75 < Precipitación Acumulada/día <= Percentil 90 y/o Precipitación Acumulada/día< < Percentil 75, presenta geomorfología de montaña en roca sedimentaria o roca intrusiva, con pendientes Entre 25° a 45° y/o Mayor a 45°, con geología del tipo granito San Miguel o ignimbritas, con un periodo de retorno de máximas precipitaciones de 10 a 25 años.</td>
<td>0.033 ≤ P < 0.064</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico
MAPA 7 - MAPA DE PELIGRO
3.8 ANÁLISIS DE ELEMENTOS EXPUESTOS

Los elementos expuestos del centro poblado de Illaura comprende a los elementos expuestos susceptibles (Población, viviendas, institución educativa, centro de salud, caminos rurales, servicios públicos básicos, entre otros) que se encuentren en la zona potencial del impacto al peligro por Inundación fluvial por desborde del río Illaura y que podrían sufrir los efectos ante la ocurrencia o manifestación del peligro.

3.8.1 ELEMENTOS EXPUESTOS SUSCEPTIBLES A NIVEL SOCIAL

a) Vivienda

Se han identificado un total de 27 viviendas ubicadas en zonas de peligro muy alto, y 11 viviendas ubicadas en zonas de peligro alto.

b) Educación

Se ha identificado una institución educativa “I.E.I. N425 -120/ MX-U” y 1 centro comunal “Centro de promoción y vigilancia comunal del cuidado integral de la madre y el niño” ubicados en el área de peligro alto y muy alto de acuerdo a los resultados obtenidos.

c) Equipamiento

Se ha identificado un cementerio expuesto, en un mal estado de conservación.
IV. ANÁLISIS DE LA VULNERABILIDAD

4.1 ANÁLISIS DE VULNERABILIDAD

Para analizar la vulnerabilidad de los elementos expuesto al respecto a la localidad de Illaura se ha trabajado de manera semicuantitativa, como se muestra en la siguiente metodología en el Gráfico 5.

Gráfico 5 - Metodología del análisis de la vulnerabilidad.

Para determinar los niveles de vulnerabilidad en el área de influencia de la inundación fluvial en la localidad de Illaura por desborde del río Illaura en ambas márgenes, se ha considerado realizar el análisis de los factores de la vulnerabilidad en la dimensión social y económica, utilizando los parámetros para ambos casos, según detalle.

En la metodología del cálculo de la vulnerabilidad se ha considerado una ponderación simple de los parámetros de la dimensión social y económica, utilizando el método de Saaty, debido a que la información obtenida del INEI es a nivel de lotes, corroborándose y actualizándose con el levantamiento de campo efectuado durante la visita a la zona de estudio en octubre del 2017.

4.2 ANÁLISIS DE LOS FACTORES DE LA VULNERABILIDAD

4.2.1 EXPOSICIÓN

La Exposición, está referida a las decisiones y prácticas que ubican al ser humano y sus medios de vida en la zona de impacto de un peligro. La exposición se genera por una relación no apropiada con el ambiente, que se puede deber a procesos no planificados de crecimiento demográfico, a un proceso migratorio desordenado, al proceso de urbanización sin un adecuado manejo del territorio y/o a políticas de desarrollo económico no sostenibles. A mayor exposición, mayor vulnerabilidad.
Con este componente factor se analizan las unidades sociales expuestas (población, unidades productivas, líneas vitales, infraestructura u otros elementos) a los peligros identificados.

4.2.2 FRAGILIDAD

La Fragilidad, está referida a las condiciones de desventaja o debilidad relativa del ser humano y sus medios de vida frente a un peligro. En general, está centrada en las condiciones físicas de una comunidad o sociedad y es de origen interno, por ejemplo: formas de construcción, no seguimiento de normativa vigente sobre construcción y/o materiales, entre otros. A mayor fragilidad, mayor vulnerabilidad.

4.2.3 RESILIENCIA

Esta referida al ser humano y sus medios de vida frente a la ocurrencia de un peligro. Esta asociada a condiciones sociales y de organización de la población. A mayor resiliencia, menor vulnerabilidad.

4.3 ANÁLISIS DE ELEMENTOS EXPUESTOS

La Exposición, está referida a las decisiones y prácticas que ubican al ser humano y sus medios de vida en la zona de impacto de un peligro. La exposición se genera por una relación no apropiada con el ambiente, que se puede deber a procesos no planificados de crecimiento demográfico, a un proceso migratorio desordenado, al proceso de urbanización sin un adecuado manejo del territorio y/o a políticas de desarrollo económico no sostenibles. A mayor exposición, mayor vulnerabilidad.

4.3.1 ANÁLISIS DE LA DIMENSIÓN SOCIAL

Se determina la población expuesta dentro del área de influencia del fenómeno de origen natural, identificando la población vulnerable y no vulnerable, para posteriormente incorporar el análisis de la fragilidad social y resiliencia social en la población vulnerable. Esto ayuda a identificar los niveles de vulnerabilidad social.

Fuente: Manual para la Evaluación de Riesgos originados por Fenómenos Naturales. 2da Versión.
4.3.1.1 **EXPOSICIÓN SOCIAL**

Para el análisis de la vulnerabilidad en su dimensión social, se evaluaron los siguientes parámetros:

Tabla 33 - Parámetro de Dimensión Social

<table>
<thead>
<tr>
<th>Dimensión Social</th>
<th>Fragilidad</th>
<th>Resiliencia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grupo Etario</td>
<td>Nivel Educativo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tipo de Seguro</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

4.3.1.2 **Análisis de la Fragilidad en la Dimensión Social**

Para el análisis de la fragilidad en la dimensión social se ha considerado como parámetro el Grupo Etario predominante de las viviendas expuestas. A continuación, se muestra el proceso para la obtención de los pesos de cada descriptor.

Tabla 34 – Peso del Parámetro de la Fragilidad para la dimensión social

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Peso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grupo Etario</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

A. Parámetro: Grupo Etario

Tabla 35 - Matriz de comparación de pares del parámetro Grupo Etario

<table>
<thead>
<tr>
<th>GRUPO ETARIO</th>
<th>De 0 a 5 años y mayores de 65 años</th>
<th>De 5 a 12 años y de 60 a 65 años</th>
<th>De 12 a 15 años y de 50 a 60 años</th>
<th>De 15 a 30 años</th>
<th>De 30 a 50 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>De 0 a 5 años y mayores de 65 años</td>
<td>1.00</td>
<td>2.00</td>
<td>3.00</td>
<td>5.00</td>
<td>7.00</td>
</tr>
<tr>
<td>De 5 a 12 años y de 60 a 65 años</td>
<td>0.50</td>
<td>1.00</td>
<td>2.00</td>
<td>5.00</td>
<td>7.00</td>
</tr>
<tr>
<td>De 12 a 15 años y de 50 a 60 años</td>
<td>0.33</td>
<td>0.50</td>
<td>1.00</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>De 15 a 30 años</td>
<td>0.20</td>
<td>0.20</td>
<td>0.50</td>
<td>1.00</td>
<td>3.00</td>
</tr>
<tr>
<td>De 30 a 50 años</td>
<td>0.14</td>
<td>0.14</td>
<td>0.33</td>
<td>0.33</td>
<td>1.00</td>
</tr>
<tr>
<td>SUMA</td>
<td>2.18</td>
<td>3.84</td>
<td>6.83</td>
<td>13.33</td>
<td>21.00</td>
</tr>
<tr>
<td>1/SUMA</td>
<td>0.46</td>
<td>0.26</td>
<td>0.15</td>
<td>0.08</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico
Tabla 36 - Matriz de normalización de pares del parámetro Grupo Etario

<table>
<thead>
<tr>
<th>GRUPO ETARIO</th>
<th>De 0 a 5 años y mayores de 65 años</th>
<th>De 5 a 12 años y de 60 a 65 años</th>
<th>De 12 a 15 años y de 50 a 60 años</th>
<th>De 15 a 30 años</th>
<th>De 30 a 50 años</th>
<th>Vector Priorización</th>
</tr>
</thead>
<tbody>
<tr>
<td>De 0 a 5 años y mayores de 65 años</td>
<td>0.46</td>
<td>0.52</td>
<td>0.439</td>
<td>0.375</td>
<td>0.333</td>
<td>0.425</td>
</tr>
<tr>
<td>De 5 a 12 años y de 60 a 65 años</td>
<td>0.23</td>
<td>0.26</td>
<td>0.293</td>
<td>0.375</td>
<td>0.333</td>
<td>0.298</td>
</tr>
<tr>
<td>De 12 a 15 años y de 50 a 60 años</td>
<td>0.153</td>
<td>0.13</td>
<td>0.146</td>
<td>0.15</td>
<td>0.143</td>
<td>0.144</td>
</tr>
<tr>
<td>De 15 a 30 años</td>
<td>0.092</td>
<td>0.052</td>
<td>0.073</td>
<td>0.075</td>
<td>0.143</td>
<td>0.087</td>
</tr>
<tr>
<td>De 30 a 50 años</td>
<td>0.066</td>
<td>0.037</td>
<td>0.049</td>
<td>0.025</td>
<td>0.048</td>
<td>0.045</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

Índice (IC) y Relación de Consistencia (RC) obtenido del Proceso de Análisis Jerárquico para el parámetro Grupo Etario

<table>
<thead>
<tr>
<th></th>
<th>IC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.029</td>
<td>0.026</td>
</tr>
</tbody>
</table>

4.3.1.3 Análisis de la Resiliencia en la Dimensión Social

Para el análisis de la resiliencia en la dimensión social se ha considerado como parámetros el Nivel Educativo y el tipo de seguro predominante de las viviendas expuestas. A continuación, se muestra el proceso para la obtención de los pesos de cada descriptor de cada parámetro.

Tabla 37 – Peso de los parámetros para resiliencia de la dimensión social

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Peso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel Educativo</td>
<td>0.5</td>
</tr>
<tr>
<td>Tipo de Seguro</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

A. Parámetro: Nivel Educativo
Tabla 38 - Matriz de comparación de pares del parámetro Nivel Educativo

<table>
<thead>
<tr>
<th>NIVEL EDUCATIVO</th>
<th>Inicial</th>
<th>Primaria</th>
<th>Secundaria</th>
<th>Superior no universitaria</th>
<th>Superior universitario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicial</td>
<td>1.00</td>
<td>2.00</td>
<td>4.00</td>
<td>5.00</td>
<td>7.00</td>
</tr>
<tr>
<td>Primaria</td>
<td>0.50</td>
<td>1.00</td>
<td>2.00</td>
<td>4.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Secundaria</td>
<td>0.25</td>
<td>0.50</td>
<td>1.00</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>Superior no universitaria</td>
<td>0.20</td>
<td>0.25</td>
<td>0.50</td>
<td>1.00</td>
<td>2.00</td>
</tr>
<tr>
<td>Superior universitario</td>
<td>0.14</td>
<td>0.20</td>
<td>0.33</td>
<td>0.50</td>
<td>1.00</td>
</tr>
<tr>
<td>SUMA</td>
<td>2.09</td>
<td>3.95</td>
<td>7.83</td>
<td>12.50</td>
<td>18.00</td>
</tr>
<tr>
<td>1/SUMA</td>
<td>0.48</td>
<td>0.25</td>
<td>0.13</td>
<td>0.08</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

Tabla 39 - Matriz de normalización de pares del parámetro Nivel Educativo

<table>
<thead>
<tr>
<th>NIVEL EDUCATIVO</th>
<th>Inicial</th>
<th>Primaria</th>
<th>Secundaria</th>
<th>Superior no universitaria</th>
<th>Superior universitario</th>
<th>Vector Priorización</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicial</td>
<td>0.478</td>
<td>0.506</td>
<td>0.511</td>
<td>0.4</td>
<td>0.389</td>
<td>0.457</td>
</tr>
<tr>
<td>Primaria</td>
<td>0.239</td>
<td>0.253</td>
<td>0.255</td>
<td>0.32</td>
<td>0.278</td>
<td>0.269</td>
</tr>
<tr>
<td>Secundaria</td>
<td>0.119</td>
<td>0.127</td>
<td>0.128</td>
<td>0.16</td>
<td>0.167</td>
<td>0.14</td>
</tr>
<tr>
<td>Superior no universitaria</td>
<td>0.096</td>
<td>0.063</td>
<td>0.064</td>
<td>0.08</td>
<td>0.111</td>
<td>0.083</td>
</tr>
<tr>
<td>Superior universitario</td>
<td>0.068</td>
<td>0.051</td>
<td>0.043</td>
<td>0.04</td>
<td>0.056</td>
<td>0.051</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

Índice (IC) y Relación de Consistencia (RC) obtenido del Proceso de Análisis Jerárquico para el parámetro Grupo Etario

<table>
<thead>
<tr>
<th>IC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.013</td>
<td>0.012</td>
</tr>
</tbody>
</table>

B. Parámetro: Tipo de Seguro

Tabla 40 - Matriz de comparación de pares del parámetro Tipo de Seguro

<table>
<thead>
<tr>
<th>TIPO DE SEGURO</th>
<th>No tiene</th>
<th>SIS</th>
<th>Essalud</th>
<th>FFAA -PNP</th>
<th>Seguro privado y/u otro</th>
</tr>
</thead>
<tbody>
<tr>
<td>No tiene</td>
<td>1.00</td>
<td>3.00</td>
<td>5.00</td>
<td>6.00</td>
<td>7.00</td>
</tr>
<tr>
<td>SIS</td>
<td>0.33</td>
<td>1.00</td>
<td>3.00</td>
<td>5.00</td>
<td>6.00</td>
</tr>
<tr>
<td>Essalud</td>
<td>0.20</td>
<td>0.33</td>
<td>1.00</td>
<td>3.00</td>
<td>5.00</td>
</tr>
<tr>
<td>FFAA -PNP</td>
<td>0.17</td>
<td>0.20</td>
<td>0.33</td>
<td>1.00</td>
<td>3.00</td>
</tr>
<tr>
<td>Seguro privado y/u otro</td>
<td>0.14</td>
<td>0.17</td>
<td>0.20</td>
<td>0.33</td>
<td>1.00</td>
</tr>
<tr>
<td>SUMA</td>
<td>1.84</td>
<td>4.70</td>
<td>9.53</td>
<td>15.33</td>
<td>22.00</td>
</tr>
<tr>
<td>1/SUMA</td>
<td>0.54</td>
<td>0.21</td>
<td>0.10</td>
<td>0.07</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico
Tabla 41 - Matriz de normalización de pares del parámetro Tipo de Seguro

<table>
<thead>
<tr>
<th>TIPO DE SEGURO</th>
<th>No tiene</th>
<th>SIS</th>
<th>Essalud</th>
<th>FFAA - PNP</th>
<th>Seguro privado y/u otro</th>
<th>Vector Priorización</th>
</tr>
</thead>
<tbody>
<tr>
<td>No tiene</td>
<td>0.543</td>
<td>0.638</td>
<td>0.524</td>
<td>0.391</td>
<td>0.318</td>
<td>0.483</td>
</tr>
<tr>
<td>SIS</td>
<td>0.181</td>
<td>0.213</td>
<td>0.315</td>
<td>0.326</td>
<td>0.273</td>
<td>0.261</td>
</tr>
<tr>
<td>Essalud</td>
<td>0.109</td>
<td>0.071</td>
<td>0.105</td>
<td>0.196</td>
<td>0.227</td>
<td>0.141</td>
</tr>
<tr>
<td>FFAA - PNP</td>
<td>0.090</td>
<td>0.043</td>
<td>0.035</td>
<td>0.065</td>
<td>0.136</td>
<td>0.074</td>
</tr>
<tr>
<td>Seguro privado y/u otro</td>
<td>0.078</td>
<td>0.035</td>
<td>0.021</td>
<td>0.022</td>
<td>0.045</td>
<td>0.040</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

Índice (IC) y Relación de Consistencia (RC) obtenido del Proceso de Análisis Jerárquico para el parámetro Grupo Etario

<table>
<thead>
<tr>
<th></th>
<th>IC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC</td>
<td>0.082</td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>0.073</td>
<td></td>
</tr>
</tbody>
</table>

4.3.2 ANÁLISIS DE LA DIMENSIÓN ECONÓMICA

Para el análisis de la vulnerabilidad en su dimensión económica, se evaluaron los siguientes parámetros:

Tabla 42 - Parámetros de Dimensión Económica

<table>
<thead>
<tr>
<th>Dimensión Económica</th>
<th>Fragilidad</th>
<th>Resiliencia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Material Predominante de las paredes</td>
<td>Tipo de Vivienda</td>
</tr>
<tr>
<td></td>
<td>Material Predominante de techos</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

4.3.2.1 Análisis de la Fragilidad en la Dimensión Económica

Para la obtención de los pesos ponderados de los parámetros del factor fragilidad de la dimensión económica, se utilizó el proceso de análisis jerárquico. Los resultados obtenidos son los siguientes:

Tabla 43 - Peso de los parámetros para resiliencia de la dimensión social

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Peso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Predominante de las paredes</td>
<td>0.5</td>
</tr>
<tr>
<td>Material Predominante de techos</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

a) Parámetro: Material Predominante de las Paredes
Tabla 44 - Matriz de comparación de pares del parámetro Material Predominante de las Paredes

<table>
<thead>
<tr>
<th>MATERIAL DE PAREDES</th>
<th>Adobe o tapia y/o Piedra con Barro</th>
<th>Estera y/u Otro material</th>
<th>Quincha (caña con barro)</th>
<th>Madera</th>
<th>Ladrillo o bloque de cemento y/o Piedra o sillar con cal o cemento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adobe o tapia y/o Piedra con Barro</td>
<td>1.00</td>
<td>3.00</td>
<td>4.00</td>
<td>6.00</td>
<td>9.00</td>
</tr>
<tr>
<td>Estera y/u Otro material</td>
<td>0.33</td>
<td>1.00</td>
<td>3.00</td>
<td>4.00</td>
<td>6.00</td>
</tr>
<tr>
<td>Quincha (caña con barro)</td>
<td>0.25</td>
<td>0.33</td>
<td>1.00</td>
<td>3.00</td>
<td>4.00</td>
</tr>
<tr>
<td>Madera</td>
<td>0.17</td>
<td>0.25</td>
<td>0.33</td>
<td>1.00</td>
<td>3.00</td>
</tr>
<tr>
<td>Ladrillo o bloque de cemento y/o Piedra o sillar con cal o cemento</td>
<td>0.11</td>
<td>0.17</td>
<td>0.25</td>
<td>0.33</td>
<td>1.00</td>
</tr>
<tr>
<td>SUMA</td>
<td>1.86</td>
<td>4.75</td>
<td>8.58</td>
<td>14.33</td>
<td>23.00</td>
</tr>
<tr>
<td>1/SUMA</td>
<td>0.54</td>
<td>0.21</td>
<td>0.12</td>
<td>0.07</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

Tabla 45 - Matriz de normalización de pares del parámetro Material Predominante de las Paredes

<table>
<thead>
<tr>
<th>MATERIAL DE PAREDES</th>
<th>Adobe o tapia y/o Piedra con Barro</th>
<th>Estera y/u Otro material</th>
<th>Quincha (caña con barro)</th>
<th>Madera</th>
<th>Ladrillo o bloque de cemento y/o Piedra o sillar con cal o cemento</th>
<th>Vector Priorización</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adobe o tapia y/o Piedra con Barro</td>
<td>0.537</td>
<td>0.632</td>
<td>0.466</td>
<td>0.419</td>
<td>0.391</td>
<td>0.489</td>
</tr>
<tr>
<td>Estera y/u Otro material</td>
<td>0.179</td>
<td>0.211</td>
<td>0.35</td>
<td>0.279</td>
<td>0.261</td>
<td>0.256</td>
</tr>
<tr>
<td>Quincha (caña con barro)</td>
<td>0.134</td>
<td>0.07</td>
<td>0.117</td>
<td>0.209</td>
<td>0.174</td>
<td>0.141</td>
</tr>
<tr>
<td>Madera</td>
<td>0.09</td>
<td>0.053</td>
<td>0.039</td>
<td>0.07</td>
<td>0.13</td>
<td>0.076</td>
</tr>
<tr>
<td>Ladrillo o bloque de cemento y/o Piedra o sillar con cal o cemento</td>
<td>0.06</td>
<td>0.035</td>
<td>0.029</td>
<td>0.023</td>
<td>0.043</td>
<td>0.038</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

Índice (IC) y Relación de Consistencia (RC) obtenido del Proceso de Análisis Jerárquico para el parámetro Material Predominante de las Paredes

<table>
<thead>
<tr>
<th></th>
<th>IC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.054</td>
<td>0.048</td>
</tr>
</tbody>
</table>

b) Parámetro: Material Predominante de techos
Tabla 46 - Matriz de comparación de pares del parámetro Material Predominante de Techos

<table>
<thead>
<tr>
<th>MATERIAL PREDOMINANTE DE TECHOS</th>
<th>Otro material</th>
<th>Estera</th>
<th>Madera</th>
<th>Plancha de calamina</th>
<th>Concreto armado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otro material</td>
<td>1.00</td>
<td>2.00</td>
<td>3.00</td>
<td>5.00</td>
<td>7.00</td>
</tr>
<tr>
<td>Estera</td>
<td>0.50</td>
<td>1.00</td>
<td>2.00</td>
<td>3.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Madera</td>
<td>0.33</td>
<td>0.50</td>
<td>1.00</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>Plancha de calamina</td>
<td>0.20</td>
<td>0.33</td>
<td>0.50</td>
<td>1.00</td>
<td>2.00</td>
</tr>
<tr>
<td>Concreto armado</td>
<td>0.14</td>
<td>0.20</td>
<td>0.33</td>
<td>0.50</td>
<td>1.00</td>
</tr>
<tr>
<td>SUMA</td>
<td>2.18</td>
<td>4.03</td>
<td>6.83</td>
<td>11.50</td>
<td>18.00</td>
</tr>
<tr>
<td>1/SUMA</td>
<td>0.46</td>
<td>0.25</td>
<td>0.15</td>
<td>0.09</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

Tabla 47 - Matriz de normalización de pares del parámetro Material Predominante de Techos

<table>
<thead>
<tr>
<th>MATERIAL PREDOMINANTE DE TECHOS</th>
<th>Otro material</th>
<th>Estera</th>
<th>Madera</th>
<th>Plancha de calamina</th>
<th>Concreto armado</th>
<th>Vector Priorización</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otro material</td>
<td>0.460</td>
<td>0.496</td>
<td>0.439</td>
<td>0.435</td>
<td>0.389</td>
<td>0.444</td>
</tr>
<tr>
<td>Estera</td>
<td>0.230</td>
<td>0.248</td>
<td>0.293</td>
<td>0.261</td>
<td>0.278</td>
<td>0.262</td>
</tr>
<tr>
<td>Madera</td>
<td>0.153</td>
<td>0.124</td>
<td>0.146</td>
<td>0.174</td>
<td>0.167</td>
<td>0.153</td>
</tr>
<tr>
<td>Plancha de calamina</td>
<td>0.092</td>
<td>0.083</td>
<td>0.073</td>
<td>0.087</td>
<td>0.111</td>
<td>0.089</td>
</tr>
<tr>
<td>Concreto armado</td>
<td>0.066</td>
<td>0.050</td>
<td>0.049</td>
<td>0.043</td>
<td>0.056</td>
<td>0.053</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

Índice (IC) y Relación de Consistencia (RC) obtenido del Proceso de Análisis Jerárquico para el parámetro Material Predominante de Techos

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IC</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>0.006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.3.2.2 Análisis de la Resiliencia en la Dimensión Económica

Para la obtención de los pesos ponderados de los parámetros del factor resiliencia de la dimensión económica, se utilizó el proceso de análisis jerárquico. Los resultados obtenidos son los siguientes:

a) Parámetro: Tipo de Vivienda
Tabla 48 - Matriz de comparación de pares del parámetro Tipo de Vivienda

<table>
<thead>
<tr>
<th>TIPO DE VIVIENDA</th>
<th>No destinado para habitación, otro tipo</th>
<th>Choca o Cabaña y/o Vivienda Improvisada</th>
<th>Vivienda en quinta y/o Vivienda en casa vecindad</th>
<th>Departamento en edificio</th>
<th>Casa independiente</th>
</tr>
</thead>
<tbody>
<tr>
<td>No destinado para habitación, otro tipo</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Choca o Cabaña y/o Vivienda Improvisada</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Vivienda en quinta y/o Vivienda en casa vecindad</td>
<td>0.33</td>
<td>0.5</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Departamento en edificio</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Casa independiente</td>
<td>0.14</td>
<td>0.14</td>
<td>0.2</td>
<td>0.33</td>
<td>1</td>
</tr>
<tr>
<td>SUMA</td>
<td>2.18</td>
<td>3.84</td>
<td>6.4</td>
<td>16.33</td>
<td>23</td>
</tr>
<tr>
<td>1/SUMA</td>
<td>0.46</td>
<td>0.26</td>
<td>0.16</td>
<td>0.06</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

Tabla 49 - Matriz de normalización de pares del parámetro Tipo de Vivienda

<table>
<thead>
<tr>
<th>TIPO DE VIVIENDA</th>
<th>No destinado para habitación, otro tipo</th>
<th>Choca o Cabaña y/o Vivienda Improvisada</th>
<th>Vivienda en quinta y/o Vivienda en casa vecindad</th>
<th>Departamento en edificio</th>
<th>Casa independiente</th>
<th>Vector Priorización</th>
</tr>
</thead>
<tbody>
<tr>
<td>No destinado para habitación, otro tipo</td>
<td>0.460</td>
<td>0.520</td>
<td>0.469</td>
<td>0.306</td>
<td>0.304</td>
<td>0.412</td>
</tr>
<tr>
<td>Choca o Cabaña y/o Vivienda Improvisada</td>
<td>0.230</td>
<td>0.260</td>
<td>0.313</td>
<td>0.306</td>
<td>0.304</td>
<td>0.283</td>
</tr>
<tr>
<td>Vivienda en quinta y/o Vivienda en casa vecindad</td>
<td>0.153</td>
<td>0.130</td>
<td>0.156</td>
<td>0.306</td>
<td>0.217</td>
<td>0.193</td>
</tr>
<tr>
<td>Departamento en edificio</td>
<td>0.092</td>
<td>0.052</td>
<td>0.031</td>
<td>0.061</td>
<td>0.130</td>
<td>0.073</td>
</tr>
<tr>
<td>Casa independiente</td>
<td>0.066</td>
<td>0.037</td>
<td>0.031</td>
<td>0.020</td>
<td>0.043</td>
<td>0.040</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

Índice (IC) y Relación de Consistencia (RC) obtenido del Proceso de Análisis Jerárquico para el parámetro Tipo de Vivienda

<table>
<thead>
<tr>
<th></th>
<th>IC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.061</td>
<td>0.055</td>
</tr>
</tbody>
</table>

4.3.3 ANÁLISIS DE LA DIMENSIÓN AMBIENTAL

Se determina los recursos naturales renovables y no renovables expuestos dentro del área de influencia del fenómeno de origen natural, identificando los recursos naturales vulnerables y no vulnerables, para posteriormente incorporar el análisis de la fragilidad ambiental y resiliencia ambiental. Esto ayuda a identificar los niveles de vulnerabilidad ambiental.
4.3.3.1 EXPOSICIÓN AMBIENTAL

Gráfico 7 - Exposición Ambiental

Fuente: Manual para la Evaluación de Riesgos originados por Fenómenos Naturales. 2da Versión.

4.3.3.2 FRAGILIDAD AMBIENTAL

En el presente estudio no se está considerando la parte ambiental, debido a que la totalidad del área evaluada está siendo ocupada por la parte urbana e infraestructura urbana.

4.4 NIVELES DE VULNERABILIDAD

En el siguiente cuadro, se muestran los niveles de vulnerabilidad y sus respectivos rangos obtenidos a través de utilizar el Proceso de Análisis Jerárquico.

<table>
<thead>
<tr>
<th>NIVEL</th>
<th>RANGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUY ALTO</td>
<td>0.276 ≤ V ≤ 0.443</td>
</tr>
<tr>
<td>ALTO</td>
<td>0.156 ≤ V < 0.276</td>
</tr>
<tr>
<td>MEDIO</td>
<td>0.081 ≤ V < 0.156</td>
</tr>
<tr>
<td>BAJO</td>
<td>0.044 ≤ V < 0.081</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico
4.5 ESTRATIFICACIÓN DE LA VULNERABILIDAD

Tabla 51 - Estratificación de la vulnerabilidad

<table>
<thead>
<tr>
<th>NIVEL DE VULNERABILIDAD</th>
<th>DESCRIPCIÓN</th>
<th>RANGOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vulnerabilidad Muy Alta</td>
<td>Grupo Etario predominantemente de 0 a 11 años y Mayores de 60 años; con nivel educativo de primaria y/o inicial y/o ningún nivel; Cuenta con seguro del SIS y/o no tiene seguro. El material predominante de las paredes es estera y/u otro material y/o Adobe o tapia y/o Piedra con Barro, con techo de estera y/o paja y/u hojas de palmera y/u otro material (cartón, plástico, entre otros similares); cuenta con choza o cabaña y/o vivienda improvisada y/o no destinado para habitación u otro tipo.</td>
<td>0.276 ≤ V ≤ 0.443</td>
</tr>
<tr>
<td>Vulnerabilidad Alta</td>
<td>Grupo Etario predominantemente de 6 a 17 años y de 45 a 64 años; con nivel educativo de secundaria y/o primaria; Cuenta con seguro de EsSalud y/o SIS. El material predominante de las paredes es quincha (caña con barro) y/o estera y/u otro material, con techo de madera y/o caña o estera con torta de barro y/o estera y/o paja y/u hojas de palmera; cuenta con vivienda en quinta y/o vivienda en casa vecindad y/o choza o cabaña y/o vivienda improvisada.</td>
<td>0.156 ≤ V < 0.276</td>
</tr>
<tr>
<td>Vulnerabilidad Media</td>
<td>Grupo Etario predominantemente de 12 a 29 años y de 45 a 59 años; con nivel educativo superior no universitario y/o secundaria. El material predominante de las paredes es de madera y/o quincha (caña con barro), con techo de plancha de calamina y/o tejas y/o madera y/o caña o estera con torta de barro; cuenta con departamento en edificio y/o vivienda en quinta y/o vivienda en casa vecindad.</td>
<td>0.081 ≤ V < 0.156</td>
</tr>
<tr>
<td>Vulnerabilidad Baja</td>
<td>Grupo Etario predominantemente de 18 a 44 años con nivel educativo superior Universitario y/o posgrado y otro similar y/o no universitario; cuenta con seguro privado y/u otro y/o seguro de las Fuerzas Armadas y/o de la Policía Nacional del Perú. El material predominante de las paredes es de ladrillo o bloque de cemento y/o piedra o sillar con cal o cemento y/o Madera, con techo de concreto armado y/o plancha de calamina y/o tejas.</td>
<td>0.044 ≤ V < 0.081</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico
MAPA 9 - MAPA DE VULNERABILIDAD

<table>
<thead>
<tr>
<th>NIVEL</th>
<th>RANGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUY ALTO</td>
<td>0.376 ≤ V < 3.443</td>
</tr>
<tr>
<td>ALTO</td>
<td>0.156 ≤ V < 0.276</td>
</tr>
<tr>
<td>MEDIO</td>
<td>0.081 ≤ V < 0.156</td>
</tr>
<tr>
<td>BAJO</td>
<td>0.044 ≤ V < 0.081</td>
</tr>
</tbody>
</table>

SIMBOLOGIA

- Rio
- Red vial vecinal
- Red vial departamental

Página 54 de 70
V. CÁLCULO DEL RIESGO

5.1 METODOLOGÍA

Para determinar el cálculo del riesgo de la zona de influencia, se utiliza el siguiente procedimiento:

Gráfico 8 - Flujograma para estimar los niveles del riesgo

Fuente: Elaboración propia

5.2 CÁLCULO DEL RIESGO

Una vez identificados y analizados los peligros a los que está expuesta el ámbito geográfico de estudio mediante la evaluación de la frecuencia expresando en años, y el nivel de susceptibilidad ante el peligro de inundación fluvial, y realizado el respectivo análisis de los componentes que inciden en la vulnerabilidad explicada por la exposición, fragilidad y resiliencia, la identificación de los elementos potencialmente vulnerables, el tipo y nivel de daños que se puedan presentar, se procede a la conjunción de éstos para calcular el nivel de riesgo del área en estudio.

Siendo el riesgo el resultado de relacionar el peligro con la vulnerabilidad de los elementos expuestos, con el fin de determinar los posibles efectos y consecuencias sociales, económicas y ambientales asociadas al fenómeno de inundación fluvial. Cambios en uno o más de estos parámetros modifican el riesgo en sí mismo, es decir, el total de pérdidas esperadas y las consecuencias en un área determinada. (Carreño et. al. 2005).

El expresar los conceptos de peligro (amenaza), vulnerabilidad y riesgo, ampliamente aceptada en el campo técnico científico Cardona (1985), Fournier d’Albe (1985), Milutinovic y Petrovsky (1985b) y Coburn y Spence (1992), está fundamentada en la ecuación adaptada a la Ley N°29664 Ley que crea el Sistema Nacional de...
Gestión del Riesgo de Desastres, mediante la cual se expresa que el riesgo es una función \(f() \) del peligro y la vulnerabilidad.

\[R(t) = f(P_i, V_e) \]

Dónde:
- \(R \) = Riesgo.
- \(f \) = En función
- \(P_i \) = Peligro con la intensidad mayor o igual a \(i \) durante un período de exposición \(t \)
- \(V_e \) = Vulnerabilidad de un elemento expuesto

Para el análisis de peligros se identifican y caracterizan los fenómenos de origen natural mediante el análisis de la intensidad, la magnitud, la frecuencia o periodo de recurrencia (para el presente estudio se ha utilizado un único parámetro), y el nivel de susceptibilidad. Asimismo, deberán analizar los componentes que inciden en la vulnerabilidad explicada por tres componentes: exposición, fragilidad y resiliencia, la identificación de los elementos potencialmente vulnerables, el tipo y nivel de daños que se puedan presentar.

Para estratificar el nivel del riesgo se hará uso de una matriz de doble entrada: matriz del grado de peligro y matriz del grado de vulnerabilidad. Para tal efecto, se requiere que previamente se ha determinado los niveles de intensidad y posibilidad de ocurrencia de un determinado peligro y del análisis de vulnerabilidad, respectivamente.

5.3 NIVELES DE RIESGO

Los niveles de riesgo por inundación se detallan a continuación:

<table>
<thead>
<tr>
<th>NIVEL</th>
<th>RANGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUY ALTO</td>
<td>[0.076 \leq R \leq 0.212]</td>
</tr>
<tr>
<td>ALTO</td>
<td>[0.023 \leq R < 0.076]</td>
</tr>
<tr>
<td>MEDIO</td>
<td>[0.005 \leq R < 0.023]</td>
</tr>
<tr>
<td>BAJO</td>
<td>[0.001 \leq R < 0.005]</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico
5.4 ESTRATIFICACIÓN DEL NIVEL DE RIESGO

Tabla 53 - Estratificación del Riesgo

<table>
<thead>
<tr>
<th>Nivel de Riesgo</th>
<th>Descripción</th>
<th>Rangos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riesgo Muy Alto</td>
<td>Precipitación Acumulada/día > Percentil 99 y/o Percentil 95 < Precipitación Acumulada/día <= Percentil 99, emplazado sobre una terraza fluvial (Ti), con pendientes menores a 5° y/o Entre 5° a 15°, con geología de depósitos aluviales, con un periodo de retorno de máximas precipitaciones de 100 años. Grupo Etario predominantemente de 0 a 11 años y Mayores de 60 años; con nivel educativo de primaria y/o Inicial y/o ningún nivel; cuenta con seguro del SIS y/o no tiene seguro. El material predominante de las paredes es estera y/u otro material y/o Adobe o tapia y/o Piedra con Barro, con techo de estera y/o paja y/u hojas de palmera y/u otro material (cartón, plástico, entre otros similares); cuenta con choza o cabaña y/o vivienda improvisada y/o no destinado para habitación u otro tipo.</td>
<td>0.076 ≤ R ≤ 0.212</td>
</tr>
<tr>
<td>Riesgo Alto</td>
<td>Precipitación Acumulada/día > Percentil 99 y/o Percentil 95 < Precipitación Acumulada/día <= Percentil 99, emplazado sobre una terraza fluvial (Ti) o piedemonte coluvio-deluvial, con pendientes menores a 5° y/o Entre 5° a 15°, con geología de depósitos aluviales o terrazas aluviales, con un periodo de retorno de máximas precipitaciones de 50 a 100 años. Grupo Etario predominantemente de 6 a 17 años y de 45 a 64 años; con nivel educativo de secundaria y/o primaria; Cuenta con seguro de EsSalud y/o SIS. El material predominante de las paredes es quincha (caña con barro) y/o estera y/u otro material, con techo de madera y/o caña o estera con torta de barro y/o estera y/o paja y/u hojas de palmera; cuenta con vivienda en quinta y/o vivienda en casa vecindad y/o choza o cabaña y/o vivienda improvisada.</td>
<td>0.023 ≤ R < 0.076</td>
</tr>
<tr>
<td>Riesgo Medio</td>
<td>Precipitación Percentil 90 < Precipitación Acumulada/día <= Percentil 95 y/o Percentil 75 < Precipitación Acumulada/día <= Percentil 90, presenta geomorfología de vertiente con depósitos de deslizamientos, mayores a 15° - 25° y/o Entre 25° a 45°, con geología de coluviales, con un periodo de retorno de máximas precipitaciones de 50 a 100 o 25 años. Grupo Etario predominantemente de 12 a 29 años y de 45 a 59 años; con nivel educativo superior no universitario y/o secundaria. El material predominante de las paredes es de madera y/o quincha (caña con barro), con techo de plancha de calamina y/o tejas y/o madera y/o caña o estera con torta de barro; cuenta con departamento en edificio y/o vivienda en quinta y/o vivienda en casa vecindad.</td>
<td>0.005 ≤ R < 0.023</td>
</tr>
<tr>
<td>Riesgo Bajo</td>
<td>Precipitación Percentil 75 < Precipitación Acumulada/día <= Percentil 90 y/o Precipitación Acumulada/día< < Percentil 75, presenta geomorfología de montaña en roca sedimentaria o roca intrusiva, con pendientes Entre 25° a 45° y/o Mayor a 45°, con geología del tipo granito San Miguel o ignimbritas, con un periodo de retorno de máximas precipitaciones de 10 a 25 años. Grupo Etario predominantemente de 18 a 44 años con nivel educativo superior Universitario y/o posgrado y otro similar y/o no universitario; cuenta con seguro privado y/o otro y/o seguro de las Fuerzas Armadas y/o de la Policía Nacional del Perú. El material predominante de las paredes es de ladrillo o bloque de cemento y/o piedra o sillar con cal o cemento y/o Madera, con techo de concreto armado y/o plancha de calamina y/o tejas.</td>
<td>0.001 ≤ R < 0.005</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico
5.5 MATRIZ DE RIESGOS

Tabla 54 - Matriz de riesgo

<table>
<thead>
<tr>
<th></th>
<th>PMA</th>
<th>0.479</th>
<th>0.039</th>
<th>0.075</th>
<th>0.132</th>
<th>0.212</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA</td>
<td>0.273</td>
<td>0.022</td>
<td>0.043</td>
<td>0.076</td>
<td>0.121</td>
<td></td>
</tr>
<tr>
<td>PM</td>
<td>0.150</td>
<td>0.012</td>
<td>0.023</td>
<td>0.042</td>
<td>0.067</td>
<td></td>
</tr>
<tr>
<td>PB</td>
<td>0.064</td>
<td>0.005</td>
<td>0.010</td>
<td>0.018</td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td>VB</td>
<td>0.081</td>
<td>0.156</td>
<td>0.276</td>
<td>0.443</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

5.6 CÁLCULO DE LOS EFECTOS PROBALES

En esta parte de la evaluación, se estiman los efectos probables que podrían generarse en el centro Poblado Illaura, a consecuencia del impacto del peligro por Inundación fluvial.

Se muestra a continuación los efectos probables en el área de influencia del centro poblado de San Miguel, siendo estos de carácter netamente referencial. El monto probable asciende a S/ 1,084,000.00, de los S/ 458,000.00 corresponde a los daños probables y S/ 526,000.00 corresponde a las pérdidas probables.

Tabla 55 - Efectos probables

<table>
<thead>
<tr>
<th>Efectos probables</th>
<th>Total</th>
<th>Daños probables</th>
<th>Pérdidas probables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daños probables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36 viviendas construidas con material precario</td>
<td>288,000</td>
<td>288,000</td>
<td></td>
</tr>
<tr>
<td>01 institución educativa y Centro Promoción y vigilancia</td>
<td>170,000</td>
<td>170,000</td>
<td></td>
</tr>
<tr>
<td>Perdidas probables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costos de adquisición de carpas</td>
<td>26,000</td>
<td>26,000</td>
<td></td>
</tr>
<tr>
<td>Costos de adquisición de módulos de viviendas</td>
<td>500,000</td>
<td>500,000</td>
<td></td>
</tr>
<tr>
<td>Gastos de Atención de Emergencia</td>
<td>100,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1,084,000</td>
<td>458,000</td>
<td>526,000</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico, sobre información proporcionada por el SIGRID y levantamiento de campo.
VI. CONTROL DE RIESGO

6.1 ACEPTABILIDAD O TOLERANCIA DEL RIESGO

A. Valoración de consecuencias

Tabla 56 - Valoración de consecuencias

<table>
<thead>
<tr>
<th>Valor</th>
<th>Nivel</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Muy Alta</td>
<td>Las consecuencias debido al impacto de un fenómeno natural son catastróficas.</td>
</tr>
<tr>
<td>3</td>
<td>Alta</td>
<td>Las consecuencias debido al impacto de un fenómeno natural pueden ser gestionadas con apoyo externo.</td>
</tr>
<tr>
<td>2</td>
<td>Medio</td>
<td>Las consecuencias debido al impacto de un fenómeno natural pueden ser gestionadas con los recursos disponibles.</td>
</tr>
<tr>
<td>1</td>
<td>Baja</td>
<td>Las consecuencias debido al impacto de un fenómeno natural pueden ser gestionadas sin dificultad.</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

Del cuadro anterior, obtenemos que las consecuencias debido al impacto de un fenómeno natural pueden ser gestionadas con apoyo externo, es decir, posee el nivel 3 - Alto.

B. Valoración de frecuencia

Tabla 57 - Valoración de la frecuencia de ocurrencia

<table>
<thead>
<tr>
<th>Valor</th>
<th>Nivel</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Muy Alta</td>
<td>Puede ocurrir en la mayoría de las circunstancias.</td>
</tr>
<tr>
<td>3</td>
<td>Alta</td>
<td>Puede ocurrir en periodos de tiempo medianamente largos según las circunstancias.</td>
</tr>
<tr>
<td>2</td>
<td>Medio</td>
<td>Puede ocurrir en periodos de tiempo largos según las circunstancias.</td>
</tr>
<tr>
<td>1</td>
<td>Baja</td>
<td>Puede ocurrir en circunstancias excepcionales.</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

Del cuadro anterior, se obtiene que el evento de inundación fluvial puede ocurrir en periodos de tiempo medianamente largos según las circunstancias, es decir, posee el nivel 3 – Alta.
C. Nivel de consecuencia y daños

Tabla 58 - Nivel de consecuencia y daños

<table>
<thead>
<tr>
<th>Consecuencias</th>
<th>Nivel</th>
<th>Zona de Consecuencias y daños</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy Alta</td>
<td>4</td>
<td>Alta</td>
</tr>
<tr>
<td>Alta</td>
<td>3</td>
<td>Alta</td>
</tr>
<tr>
<td>Media</td>
<td>2</td>
<td>Media</td>
</tr>
<tr>
<td>Baja</td>
<td>1</td>
<td>Baja</td>
</tr>
<tr>
<td>Nivel</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Frecuencia</td>
<td>Baja</td>
<td>Media</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

De lo anterior se obtiene que el nivel de consecuencia y daño es de nivel 3 – Alta.

D. Aceptabilidad y/o Tolerancia

Tabla 59 - Nivel de consecuencia y daños

<table>
<thead>
<tr>
<th>Valor</th>
<th>Descriptor</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Inadmisible</td>
<td>Se debe aplicar inmediatamente medida de control físico y de ser posible transferir inmediatamente los riesgos.</td>
</tr>
<tr>
<td>3</td>
<td>Inaceptable</td>
<td>Se deben desarrollar actividades INMEDIATAS y PRIORITARIAS para el manejo de riesgos</td>
</tr>
<tr>
<td>2</td>
<td>Tolerable</td>
<td>Se deben desarrollar actividades para el manejo de riesgos</td>
</tr>
<tr>
<td>1</td>
<td>Aceptable</td>
<td>El riesgo no presenta un peligro significativo</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

Tabla 60 - Nivel de aceptabilidad y/o Tolerancia

Fuente: Equipo técnico
De lo anterior se obtiene que la aceptabilidad y/o Tolerancia del Riesgo por inundación en el centro poblado de Illaura es de nivel 3 – Inaceptable. La matriz se Aceptabilidad y/o Tolerancia del Riesgo se indica a continuación:

E. Prioridad de Intervención

Tabla 61 - Prioridad de Intervención

<table>
<thead>
<tr>
<th>Valor</th>
<th>Descriptor</th>
<th>Nivel de priorización</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Inadmisible</td>
<td>I</td>
</tr>
<tr>
<td>3</td>
<td>Inaceptable</td>
<td>II</td>
</tr>
<tr>
<td>2</td>
<td>Tolerable</td>
<td>III</td>
</tr>
<tr>
<td>1</td>
<td>Aceptable</td>
<td>IV</td>
</tr>
</tbody>
</table>

Fuente: Equipo técnico

Del cuadro anterior y por el nivel de aceptabilidad obtenido en el punto “D” el nivel de priorización es “II”.

CAPITULO VII: CONCLUSIONES Y RECOMENDACIONES

7.2 CONCLUSIÓN GENERAL

El Nivel de Riesgo actual sin el proyecto es de RIESGO MUY ALTO, en el que podemos apreciar zonas de Muy Alto Riesgo, Riesgo Alto, Riesgo Medio y Riesgo Bajo que comprometen áreas urbanas.

Con el Proyecto que se realizará el Nivel de Riesgo Baja significativamente, encontrándonos solo con el Riesgo Medio y Bajo. Con lo cual se determina la gran importancia de realizar este proyecto.

El nivel de aceptabilidad y Tolerancia del riesgo identificado es de Inaceptable, el cual indica que se deben desarrollar actividades inmediatas y prioritarias para el manejo de los riesgos.

Las inundaciones fluviales tienen un efecto muy crítico para la población aledaña al río Illaura, ya que su Infraestructura predominantemente es muy precaria, construidas a base de quincha y barro, del mismo modo sus áreas de cultivo se verían seriamente afectadas.

El cálculo de los efectos probables asciende a S/. 1,084,000.00 Soles.

7.3 RECOMENDACIONES

Se recomienda la evaluación de las siguientes medidas estructurales y no estructurales, entre otras, a la autoridad que corresponda:

a) Medidas Estructurales:

- Se deberán de realizar medidas de mitigación a fin de evitar el desbordamiento del Río Illaura en el sector evaluado, estas medidas podrán ser muros de contención y/o otros similares de acuerdo a las
técnicas y metodologías que garanticen la protección de inundación a ambas márgenes del Rio Illaura (para la zona evaluada).

- Deberá de plantearse y delimitar el área correspondiente a la Faja Marginal con el asesoramiento y participación del ANA.

- Evaluar la Construcción de un sistema de drenaje pluvial integral en las zonas periurbanas de la ciudad con el objeto de evacuar las aguas de lluvia y sobre todo en caso de desborde de los canales de regadío.

b) Medidas No Estructurales:

Las medidas no estructurales que se muestran a continuación tienen carácter complementario y se sugiere realizarlas a la brevedad posible.

- Capacitar a la población en el cumplimiento de las normas técnicas de construcción como medida de seguridad.

- Desarrollo del plan de Prevención del riesgo de desastre.

- Plantear mecanismos financieros para implementar estrategias en reducción de riesgo de desastres.

- Plantear procesos de fortalecimiento de capacidades organizativas.

- Fortalecer las capacidades de la población en materia de inundación, contemplando aspectos relacionados con el sistema de alerta temprana, rutas de evacuación y zonas seguras ante inundaciones.

BIBLIOGRAFÍA

2. Guía general para identificación, formulación y evaluación social de proyectos de inversión pública, a nivel de perfil / Incorporando la gestión del riesgo en un contexto de cambio climático. Dirección General de Inversión Pública-DGIP / 2012

4. Estudio de Zonificación Ecológica y Económica-ZEE a nivel meso (escala 1/ 100 000), que ha sido aprobada a través de Ordenanza Regional N°003-2013-GRA/CR, emitida el 27 de marzo del 2013.

9. Informe Estudio Identificación de condiciones de riesgos de desastres y vulnerabilidad al cambio climático en la región Ayacucho / 02.06.2017.

10. Identificación de zonas vulnerables ante inundaciones en ríos y quebradas de la Región Ayacucho. /25.11.2016

12. MEMORIA SOBRE LA GEOLOGÍA ECONÓMICA DE LA REGIÓN AYACUCHO Preparado por: Jorge ACOSTA, Italo RODRIGUEZ, Alexander FLORES & Dina HUANACUNI Lima - Perú 2011

15. Manual de Estimación del Riesgo ante Inundaciones Fluviales. (Cuaderno técnico N° 2) Publicado por el Instituto Nacional de Defensa Civil (INDECI) - Dirección Nacional de Prevención (DNP) / Unidad de Estudios y Evaluación de Riesgos (UEER) INDECI, 2011.

16. SIGRID – Sistema de Información para la Gestión del Riesgo de Desastres / CENEPRED.

GALERIA FOTOGRAFICA
FOTOGRAFÍA Nro. 01: QUEBRADA ILLAURA

FOTOGRAFÍA Nro. 02: COLEGIO ADYACENTE QUEBRADA ILLAURA
FOTOGRAFÍA Nro. 05: ZONA DAÑADA DE CEMENTERIO ILLAURA.

FOTOGRAFÍA Nro. 06: CEMENTERIO ILLAURA.
FOTOGRAFÍA Nro. 07: CARRETERA Y VIVIENDAS EN ILLAURA, SE PRESENCIA LA EXISTENCIA DE VIVIENDAS RUSTICAS.

FOTOGRAFÍA Nro. 08: TCOLEGIO ADYACENTE AL CEMENTERIO.
FOTOGRAFÍA Nro. 09: VISTA CEMENTERIO Y CENTRO EDUCATIVO TRAMO DEL RÍO ILLAURA

FOTOGRAFÍA Nro. 10: PUENTE DEL RÍO ILLAURA AL RÍO TOROBAMBA.
ACUERDO DE CONCEJO MUNICIPAL N° 038-2018-MPLM-SM/CM

San Miguel, 09 de marzo del 2018.

El Concejo de la Municipalidad Provincial de La Mar;

VISTO:

En Sesión Ordinaria Extraordinaria de Concejo Municipal N° 022-2018, de fecha 09 de marzo del 2018, la Aprobación de los Informes de Evaluación del Riesgo por Inundación Fluvial en Ambas Márgeus del Río Torobamba, Ambas Márgeus del Río Huarmayuyo y del Centro Poblado de Illara, y;

CONSIDERANDO:

Que, los Gobiernos Locales son Órganos de Gobierno promotores del desarrollo local, con personalidad jurídica pública y plena capacidad para el cumplimiento de sus fines, gozan de autonomía política, económica y administrativa en los límites de su competencia, conforme a los artículos I y II del Título Prólogo de la Ley N° 27972, Ley Orgánica de Municipalidades;

Vistos los Informes n° 022-2018-MPLM-SM/SMGCGYRDM/SM, n° 022-2018-MPLM-SM/SMGCGYRDM/SM, n° 022-2018-MPLM-SM/SMGCGYRDM/SM de fecha 09 marzo del 2018, el Responsable de la Subgerencia de Defensa Civil y Gestión de Riesgo de Desastres de la Municipalidad Provincial de La Mar, comunicó que el Centro Nacional de Estimación Prevención y Reducción del Riesgo de Desastres - CENEPRED, realizó la revisión del Informe EVAIR titulado “Informe de Evaluación del Riesgo por Inundación Fluvial en Ambas Márgeus del Río Torobamba en el Distrito de San Miguel, Provincia de La Mar, Región Ayacucho”, “Informe de Evaluación del Riesgo por Inundación Fluvial en Ambas Márgeus del Río Huarmayuyo entre las localidades de Ninilumbap y Acobamba del Distrito de San Miguel, Provincia de La Mar, Región Ayacucho” y “Informe de Evaluación del Riesgo por Inundación Fluvial en el Centro Poblado de Illara en el Distrito de San Miguel, Provincia de La Mar, Región Ayacucho”, indicando que cumple con los procedimientos establecidos en el manual para la elaboración de riesgo originado por fenómenos EVAIR, saliendo a la luz que la Subgerencia de Defensa Civil y Gestión de Riesgo de Desastres realizó la revisión del informe, concluyendo que de acuerdo a la Directiva n° 009-2014 CENEPREDI, cumple con los procedimientos establecidos en el manual para la evaluación de riesgos, por lo que, sugiere se apruebe los referidos informes en Sesión de Concejo mediante Acuerdo de Concejo Municipal a fin de ser ingresados como pieza del Sistema de Información para la Gestión del Riesgo de Desastres - SIGRID.

Que, el Art. 41° de la Ley Orgánica de Municipalidades dispone que los acuerdos son decisiones, que toma el Concejo, referidas a asuntos específicos de interés público, vecinal o institucional, que expresan la voluntad del órgano de gobierno para practicar un determinado acto o sujeterse a una conducta, o norma institucional;

Que, estando el Acta de Sesión Ordinaria y en uso de las atribuciones conferidas en la Ley N° 27972, Ley Orgánica de Municipalidades, hechas las deliberaciones respectivas, con la dispensa del trámite de lectura y aprobación del Acta por unanimidad de los Miembros del Concejo Municipal, emitiendo el siguiente:

ACUERDO:

ARTÍCULO PRIMERO. - APROBAR, el “Informe de Evaluación del Riesgo por Inundación Fluvial en Ambas Márgeus del Río Torobamba en el Distrito de San Miguel, Provincia de La Mar, Región Ayacucho”.

ARTÍCULO SEGUNDO. - APROBAR, el “Informe de Evaluación del Riesgo por Inundación Fluvial en Ambas Márgeus del Río Huarmayuyo entre las localidades de Ninilumbap y Acobamba del Distrito de San Miguel, Provincia de La Mar, Región Ayacucho”.

ARTÍCULO TERCERHO. - APROBAR, el “Informe de Evaluación del Riesgo por Inundación Fluvial en el Centro Poblado de Illara en el Distrito de San Miguel, Provincia de La Mar, Región Ayacucho”.

ARTÍCULO CUARTO. - DISPONER, la remisión del presente Acuerdo al Centro Nacional de Estimación Prevención y Reducción del Riesgo de Desastres - CENEPRED a fin de ser ingresado los Informes de riesgo como parte del Sistema de Información para la Gestión del Riesgo de Desastres - SIGRID.

ARTÍCULO QUINTO. - ENCARGAR, a la Gerencia Municipal, Gerencia de Gestión Ambiental y Servicios Municipales, Subgerencia de Defensa Civil y Gestión de Riesgo de Desastres, Dirección de Administración y Finanzas y Planeamiento y Presupuesto el cumplimiento del presente acuerdo.

REGISTRESE, COMUNIQUESE, CÚMPLASE Y ARCHÍVESSE

Taza Principal N° 012
San Miguel - La Mar - Ayacucho
Telefax: (066) - 324114

www.munilamar.gob.pe
munilamar@hotmail.com
omarxlamar@hotmail.com