

AGOSTO 2023

ELABORACIÓN DEL INFORME TÉCNICO:

EVALUACIÓN DE RIESGO POR FLUJO DE DETRITOS, EN EL ÁREA DE INFLUENCIA DEL PROYECTO "MEJORAMIENTO DE LOS SERVICIOS EDUCATIVOS EN LA CORPORACION KHIPU, DISTRITO DE SAN SEBASTIAN, PROVINCIA DE CUSCO, DEPARTAMENTO DE CUSCO"

EVALUADOR DE RIESGO:

Ing. Guido Junior Huacac Castillo Ingeniero Geólogo CIP: 240282 Evaluador del Riesgos Originado por Fenómenos Naturales RJ N° 089-2022-CENEPRED-J

ASISTENCIA TECNICA:

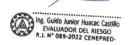
INFORMACIÓN GEOGRAFICA Y TELEDETECCIÓN

Bach. Ing. Geol. Cristian Vladimir Huamán Blanco

Bach. Ing. Geol. Alfredo Huallpa Romero

CONTENIDO

CONTENIDO	3
LISTA DE IMÁGENES	5
LISTA DE CUADROS	6
LISTA DE GRAFICOS	8
LISTA DE FOTOGRAFIAS	8
PRESENTACIÓN	9
INTRODUCCIÓN	10
CAPÍTULO I: ASPECTOS GENERALES	11
1.1. Objetivo general:	11
1.2. Objetivos específicos:	11
1.3. Finalidad	11
1.4. Justificación	11
1.5. Antecedentes	11
1.6. Marco normativo	13
CAPÍTULO II: CARACTERÍSTICAS GENERALES DEL ÁREA DE ESTUDIO	14
2.1. Ubicación geográfica	14
2.2. Base Topográfica	16
2.3. Vías de acceso	18
2.4. Características sociales	19
2.4.1. Población	19
2.4.2. Vivienda	20
2.4.3. Servicios básicos	20
2.4.4. Salud	21
2.4.5. Servicios básicos de telecomunicaciones	21
2.5. Características Económicas	21
2.5.1. Población económica activa:	21
2.6. Condiciones físicas del territorio	21
2.6.1. Hidrología	21
2.6.1.1. Parámetros Geomorfológicos de la Micro Cuenca	23
2.6.1.1.1. Área de la Micro Cuenca	23
2.6.1.1.2. Longitud del cauce principal	23
2.6.1.1.3. Perímetro de la Micro Cuenca	23
2.6.1.1.4. Forma de la Micro Cuenca	23
2.6.2. Unidades Geomorfológicas	29
2.6.3. Unidades Geológicas	33
2.6.4. Pendientes del terreno	39
2.6.5. Clasificación climática	43
2.6.5.1. Clima	45
2.6.5.2. Precipitación	46
2.6.5.2.1. Estudio Hidrometereológico	46
2 6 5 2 2 I Imbrales de precipitación	50


2.7. Identificación de peligros naturales en el área de intervención y vías de acceso	52
CAPÍTULO III : DETERMINACIÓN DEL PELIGRO	58
3.1. Metodología para la determinación del peligro	58
3.2. Identificación del área de influencia	59
3.3. Recopilación y análisis de información de la zona a evaluar	59
3.4. Identificación de probable área de influencia	60
3.5. Parámetros de evaluación	62
3.6. Susceptibilidad del territorio	64
3.6.1. Análisis de los factores condicionantes	64
3.6.2. Análisis del factor desencadenante	68
3.7. Análisis de elementos expuestos	69
3.7.1. Elementos expuestos susceptibles a nivel social	69
3.8. Definición de escenarios	71
3.9. Niveles de peligro	71
3.10. Estratificación del nivel del peligro	72
3.11. Mapa de peligro	73
CAPÍTULO IV : ANÁLISIS DE LA VULNERABILIDAD	74
4.1. Análisis de vulnerabilidad	74
4.1.1. Metodología para el análisis de la vulnerabilidad	74
4.2. Vulnerabilidad en Dimensión Social	75
4.2.1. Análisis de la exposición en la dimensión social	75
4.2.2. Análisis de la fragilidad en la dimensión social	76
4.2.3. Análisis de la resiliencia en la dimensión social	77
4.3. Vulnerabilidad en dimensión económica	79
4.3.1. Análisis de la exposición en la dimensión económica	79
4.3.2. Análisis de la fragilidad en la dimensión económica	80
4.3.3. Análisis de la resiliencia en la Dimensión Económica	82
4.4. Vulnerabilidad en Diemnsion Ambiental	83
4.4.1. Analisis en la Exposición Ambiental	83
4.5. Niveles de vulnerabilidad	86
4.6. Estratificación de la vulnerabilidad	86
4.7. Mapa de vulnerabilidad	88
CAPÍTULO V: CÁLCULO DEL RIESGO	89
5.1. Metodología para el cálculo de riesgo	89
5.2. Niveles de riesgo	90
5.2.1. Niveles de riesgo	90
5.3. Estratificación del nivel de riesgo	90
5.4. Mapa de riesgos	93
5.5. Matriz de riesgos	94
5.6. Calculo Efectos Probables (Daños y Pérdidas)	95
CAPÍTULO VI: CONTROL DE RIESGO	97
6.1. Costo efectividad	97
6.2. Control de riesgos	97

6.2.1. Evaluación de las medidas	98
6.2.1.1. Aceptabilidad / tolerabilidad	98
6.3. Medidas de prevención y reducción de riesgo de desastre	101
6.3.1. De orden estructural	101
6.3.2. De orden no estructural	101
CONCLUSIONES	102
RECOMENDACIONES	103
BIBLIOGRAFÍA	104
ANEXOS	105
CALCULOS	113
MAPAS	119
LISTA DE IMÁGENES	
Imagen 1 Ubicación del Proyecto	14
Imagen 2 Colindantes con la ubicación del proyecto	15
Imagen 3 Plano topográfico	16
Imagen 4 Plano Perimétrico para el análisis del Riesgo	17
Imagen 5 Plano Perimétrico para el análisis del Riesgo	18
Imagen 6 Delimitación de la Micro Cuenca	22
Imagen 7 Coeficiente de compacidad	24
Imagen 8 Mapa de Unidades Geomorfológicas	32
Imagen 9 Mapa de Unidades Geológicas	38
Imagen 10 Mapa de Pendientes del TerrenoFuente: Elaboración del mapa por el equipo técnico	42
Imagen 11 Clasificación climática de Warren Thornthwaite	43
Imagen 12 Mapa de la clasificación climática en el área de influencia	44
Imagen 13 Serie Histórica de precipitaciones máximas en 24 horas-Kayra	46
Imagen 15 Mapa de Precipitación	51
Imagen 16 Reporte de peligros ante inundaciones.	52
Imagen 17 Reporte de peligros ante flujo de detritos.	53
Imagen 18 Reporte de peligros ante sísmicos y tsunami	53
Imagen 19 Reporte de peligros ante fallas activas.	54
Imagen 20 Reporte de frecuencia de heladas	54
Imagen 21 Reporte de temperaturas mínimas mes de junio.	55
Imagen 22 Reporte anomalías de precipitaciones por el fenómeno del niño 1997-1998	55
Imagen 23 Metodología general para determinar los niveles del peligro	58
Imagen 24 Flujograma general del proceso de análisis de información	59
Imagen 25 Emergencias ocurridas por Fenomenos Naturales en el distrito de San Sebastian	61
Imagen 26 Viviendas y locales publicos afectados e impactados por Fenomenos Naturales	61
Imagen 27 Mapa de volúmenes de materiales inestables	63
Imagen 28 Mapa de elementos expuestos	70
Imagen 29 Mapa de peligro	73
Imagen 30 Metodología para el análisis de vulnerabilidad	74
Imagen 31 Mapa de vulnerabilidad	88

Imagen 32 Metodología para la determinación del nivel de Riesgo	89
Imagen 33 Mapa de riesgosFuente: Elaboración del equipo técnico	93
LISTA DE CUADROS	
Cuadro 1 Cronología de emergencias en el distrito de San Sebastián.	12
Cuadro 2 Coordenadas del Proyecto UTM, DATUM WGS84, Zona 19 L	15
Cuadro 3 Cuadro de vértices y coordenadas UTM PSAD56	17
Cuadro 4 Cuadro accesibilidad a la Corporación Khipu	18
Cuadro 5 Población total del distrito de San Sebastián	19
Cuadro 6 Población Según Grupo Etario	19
Cuadro 7 Factores de forma de la Micro Cuenca	25
Cuadro 8 Parámetros básicos	25
Cuadro 9 De áreas entre curvas de nivel	26
Cuadro 10 Parámetros geomorfológicos de una cuenca	27
Cuadro 11 Para el cálculo de pendiente media de la cuenca	28
Cuadro 12 Pendientes de la cuenca	28
Cuadro 13 Estación meteorológica Granja Kayra	47
Cuadro 14 Precipitación mensual 2017 al 2022	47
Cuadro 15 Umbrales de Precipitación	50
Cuadro 16 Incompatibilidad de ubicación en la Institución Educativa.	56
Cuadro 17 Matriz de comparación de pares de los parámetros de evaluación.	62
Cuadro 18 Matriz de comparación de pares del parámetro material inestable	62
Cuadro 19 Matriz de normalización de pares del parámetro material inestable	62
Cuadro 20 Índice (IC) y Relación de consistencia (RC) del parámetro material inestable	62
Cuadro 21 Parámetros a considerar en la evaluación de la susceptibilidad	64
Cuadro 22 Matriz de comparación de pares del parámetro factores condicionantes.	64
Cuadro 23 Matriz de normalización de pares del parámetro factores condicionantes	64
Cuadro 24 Índice (IC) y Relación de consistencia (RC) del parámetro factores condicionantes.	64
Cuadro 25 Matriz de comparación de pares del parámetro pendiente del terreno	65
Cuadro 26 Matriz de normalización de pares del parámetro pendiente del terreno	65
Cuadro 27 Índice (IC) y Relación de consistencia (RC) del parámetro la pendiente del terreno	65
Cuadro 28 Matriz de comparación de pares del parámetro geomorfología	66
Cuadro 29 Matriz de normalización de pares del parámetro geomorfología	66
Cuadro 30 Índice (IC) y Relación de consistencia (RC) del parámetro geomorfología	66
Cuadro 31 Matriz de comparación de pares del parámetro geología	67
Cuadro 32 Matriz de normalización de pares del parámetro geología	67
Cuadro 33 Índice (IC) y Relación de consistencia (RC) del parámetro geología	67
Cuadro 34 Matriz de comparación de pares del parámetro precipitación	68
Cuadro 35 Matriz de normalización de pares del parámetro precipitación	68
Cuadro 36 Índice (IC) y Relación de consistencia (RC) del parámetro precipitación	
Cuadro 37 Cuadro de Aforo general	69
Cuadro 38 Infraestructura de la Institución Educativa expuestas	69
Cuadro 39 Niveles de peligro	71
Cuadro 40 Cuadro de estratificación del peligro	72

Cuadro 41 Parámetros a utilizar en los factores exposición, fragilidad y resiliencia de la dimensión social	75
Cuadro 42 Matriz de comparación de pares del parámetro Cantidad de personas x nivel	75
Cuadro 43 Matriz de normalización del parámetro Cantidad de personas x nivel	75
Cuadro 44 Índice (IC) y Relación de consistencia (RC) del parámetro Cantidad de personas x nivel	75
Cuadro 45 Parámetros de la fragilidad social	76
Cuadro 46 Matriz de comparación de pares del parámetro Grupo Etario	76
Cuadro 47 Matriz de normalización de pares del parámetro Grupo Etario	76
Cuadro 48 Índice (IC) y Relación de consistencia (RC) del parámetro Grupo Etario	76
Cuadro 49 Parámetros de la resiliencia social	77
Cuadro 50 Matriz de comparación de pares del parámetro actitud frente al riesgo	77
Cuadro 51 Matriz de normalización de pares del parámetro actitud frente al riesgo.	77
Cuadro 52 Índice (IC) y Relación de consistencia (RC) del parámetro actitud frente al riesgo	77
Cuadro 53 Matriz de comparación de pares del parámetro Conocimiento sobre la ruta de evacuación	78
Cuadro 54 Matriz de normalización de pares del parámetro Conocimiento sobre la ruta de evacuación	78
Cuadro 55 Índice (IC) y Relación de consistencia (RC) del parámetro Conocimiento sobre la ruta de evacuación	78
Cuadro 56 Parámetros a utilizar en los factores exposición, fragilidad y resiliencia de la dimensión social	79
Cuadro 57 Matriz de comparación de pares del parámetro localización de la infraestructura respecto al área de impacto del peligro	79
Cuadro 58 Matriz de normalización de pares del parámetro localización de la infraestructura respecto al área de impacto del peligro	79
Cuadro 59 Índice (IC) y Relación de consistencia (RC) del parámetro localización de la infraestructura respecto al area de impacto del p	
Cuadro 60 Parámetros de la fragilidad económica	80
Cuadro 61 Matriz de comparación de pares del parámetro Tipo de material predominante pared de la infraestructura	80
Cuadro 62 Matriz de normalización de pares del parámetro Tipo de material predominante pared de la infraestructura	80
Cuadro 63 Índice (IC) y Relación de consistencia (RC) del parámetro Tipo de material predominante pared de la infraestructura	80
Cuadro 64 Matriz de comparación de pares del parámetro estado de conservación de la infraestructura	81
Cuadro 65 Matriz de normalización de pares del parámetro estado de conservación de la infraestructura	81
Cuadro 66 Índice (IC) y Relación de consistencia (RC) del parámetro estado de conservación de la infraestructura	81
Cuadro 67 Parámetros de la resiliencia económica	82
Cuadro 68 Matriz de comparación de pares del parámetro Cumplimiento de la normatividad RNE en el diseño y construcción	82
Cuadro 69 Matriz de normalización de pares del parámetro Cumplimiento de la normatividad RNE en el diseño y construcción	82
Cuadro 70 Índice (IC) y Relación de consistencia (RC) del parámetro Cumplimiento de la normatividad RNE en el diseño y construcció	n . 82
Cuadro 71 Parámetros a utilizar en los factores exposición, fragilidad y resiliencia de la dimensión ambiental	83
Cuadro 72 Matriz de comparación de pares del parámetro Distancia a un botadero de residuos solidos	83
Cuadro 73 Matriz de normalización de pares del parámetro Distancia a un botadero de residuos solido	83
Cuadro 74 Índice (IC) y Relación de consistencia (RC) del parámetro Distancia a un botadero de residuos solido	83
Cuadro 75 Matriz de comparación de pares del parámetro disposicion final de residuos solidos	84
Cuadro 76 Matriz de normalización de pares del parámetro disposicion final de residuos solidos	84
Cuadro 77 Índice (IC) y Relación de consistencia (RC) del parámetro disposicion final de residuos solidos	84
Cuadro 78 Matriz de comparación de pares del parámetro Conservación y protección de áreas verdes	85
Cuadro 79 Matriz de normalización de pares del parámetro Conservación y protección de áreas verdes	85
Cuadro 80 Índice (IC) y Relación de consistencia (RC) del parámetro Conservación y protección de áreas verdes	85
Cuadro 81 Matriz de niveles de vulnerabilidad	86
Cuadro 82 - Cuadro de estratificación de la vulnerabilidad	86

Cuadro 83 Niveles de riesgos	90
Cuadro 84 Cuadro de estratificación de riesgo por Flujo de detritos	
Cuadro 85 Método simplificado para la determinación del nivel de riesgo	
Cuadro 86 Valores en soles por metro cuadrado de área techada para la sierra al 31 de octubre del 2020	
Cuadro 87 - Efectos probables en la infraestructura	95
Cuadro 88 Cálculo de los efectos probables	95
Cuadro 89 Prioridad de intervención	97
Cuadro 90 Valoración de consecuencias	98
Cuadro 91 Valoración de la frecuencia de ocurrencia	99
Cuadro 92 Nivel de consecuencia y daños	99
Cuadro 93 Nivel de aceptabilidad y/o tolerancia	100
Cuadro 94 Nivel de matriz de consecuencia y tolerancia del riesgo	100
LISTA DE GRAFICOS	
Gráfico 1 Curva de frecuencia de altitudes	27
Gráfico 2 Clima anual del proyecto	45
Gráfico 3 Precipitación mensual del año 2017- Estación Granja Kayra	47
Gráfico 4 Precipitación mensual del año 2018 - Estación Granja Kayra	48
Gráfico 5 Precipitación mensual del año 2019 - Estación Granja Kayra	48
Gráfico 6 Precipitación mensual del año 2020 - Estación Granja Kayra	48
Gráfico 7 Precipitación mensual del año 2021- Estación Granja Kayra	49
Gráfico 8 Precipitación mensual del año 2022 - Estación Granja Kayra	49
Gráfico 9 Precipitación anual 2017 – 2022 Estación Granja kayra	49
LISTA DE FOTOGRAFIAS	
Foto N°1 Vista de viviendas	20
Foto N°2 Terraza Aluvial	29
Foto N°3 Vertiente o piedemonte coluvio-deluvial	30
Foto N°4 Altiplanicie sedimentaria y Vertiente o piedemonte coluvio-deluvial	30
Foto N°5 Colina de roca sedimentaria.	31
Foto N°6 Terraza Coluvial	31
Foto N°7 Calicata 1 de arcilla de plasticidad media arenosa	33
Foto N°8 Calicata 2 de arcilla de plasticidad media arenosa	34
Foto N°9 Formación Ayabacas	34
Foto N°10 Contacto entre la formación chincheros-formación San Sebastián	35
Foto N°11 Contacto entre la formación ayabacas – formación San Sebastián	36
Foto N°12 formación Ayabacas - coluviales	36
Foto N°13 Depósitos Aluviales	37
Foto N°14 Pendientes Empinados cercanos al área de influencia	39
Foto N°15 pendiente fuertemente inclinado- Empinado	40
Foto N°16 Pendientes del terreno en el área de estudio	40
Foto N°17 Vista panorámica del área de influencia	41
Foto N°18 Exposición de las vías de acceso al proyecto frente a inundaciones.	52
Foto N°19 Ubicación del área de influencia	60

PRESENTACIÓN

La Municipalidad Provincial de Cusco, del departamento de Cusco, ha solicitado la elaboración del presente Informe de Evaluación del Riesgo, el cual constituye un procedimiento técnico que permitirá caracterizar los peligros asociados a flujo de detritos presente en el área de influencia de la Corporación Khipu, así como analizar la vulnerabilidad y determinar los niveles del riesgo existentes a fin de proponer y recomendar las medidas de prevención y reducción del riesgo de desastres que correspondan.

Ante ello, se analizó el registro de los eventos naturales relacionados a flujo de detritos producidos en la zona de estudio a fin de establecer las características físicas, sociales y económicas que nos permitan establecer niveles del riesgo que presenta en el área de influencia de corporación Khipu, dado el comportamiento natural de las precipitaciones que se presentan año a año, los fenómenos de flujo de detritos se manifiestan en mayor intensidad debido a un conjunto de actividades de la población que contribuyen a generar condiciones críticas que producen un mayor nivel de riesgo de desastres.

El presente trabajo ha sido elaborado en base a información de fuentes primarias y secundarias a través de un conjunto de actividades desarrolladas por un equipo multidisciplinario de profesionales que ha contribuido a caracterizar las condiciones físicas y socioeconómicas del lugar de estudio. Así mismo, se han realizado análisis a la infraestructura identificada como parte de la zona de estudio y que corresponden a los sectores de posible impacto o afectación por el peligro de flujo de detritos, todo esto ha contribuido a la generación de los insumos para la elaboración del presente informe de evaluación de riesgo.

En el presente informe se aplica los procedimientos basados en el Manual para la Evaluación de Riesgos Originados por Fenómenos Naturales – 2da Versión y la metodología de los Lineamientos para la elaboración del informe de Evaluación del Riesgo de Desastres en Proyectos de Infraestructura Educativa, el cual permite: analizar parámetros de evaluación y susceptibilidad (factores condicionantes y desencadenantes) del peligro; analizar la vulnerabilidad de elementos expuestos al peligro, en función a los factores exposición, fragilidad y resiliencia. Así como, la determinación y zonificación de los niveles de riesgos y finalmente, la formulación de recomendaciones vinculadas a la prevención y/o reducción de riesgos en el área de influencia.

INTRODUCCIÓN

El presente Informe técnico de Evaluación del Riesgo por flujo de detritos, permite identificar el peligro o amenaza al elemento expuesto en el área de influencia (corporación Khipu), analizar la vulnerabilidad de dicho elemento en cuanto a su exposición, fragilidad y resiliencia en los ámbitos social, económico y ambiental, para luego determinar el grado de riesgo, desencadenado por precipitaciones intensas, entre los meses de diciembre a marzo, en el distrito de San Sebastián, se registran lluvias intensas.

La ocurrencia de eventos por flujo de detritos está relacionada a los fenómenos de geodinámica externa, que puede causar daños considerables al elemento expuesto, en este sentido, la ocurrencia de los desastres producto de los fenómenos naturales, es uno de los factores que mayor destrucción causa debido a la ausencia de medidas y/o acciones que puedan garantizar las condiciones de estabilidad física.

Los desastres en áreas de riesgo pueden ser de origen natural e inducidos por alteraciones al estado natural, cada uno de éstos tiene efectos sobre la infraestructura, los cuales deben ser clasificados según su origen y evaluados los daños, para diseñar medidas de mitigación que sean económicamente factibles.

Como inicio se enmarca en la búsqueda de antecedentes, el que se incide en información existente de entidades técnicas científicas, Instituto Geológico, Minero y Metalúrgico (INGEMMET), Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres (CENEPRED) Sistema de Información para la Gestión del Riesgo de Desastres (SIGRID), Servicio Nacional de Meteorología e Hidrología SENAMHI, Instituto Nacional de Defensa Civil (INDECI).

En el primer capítulo del informe, se desarrolla los aspectos generales, entre los que se destaca los objetivos, tanto el general como los específicos, la justificación que motiva la elaboración de la Evaluación del Riesgo, antecedentes y el marco normativo.

En el segundo capítulo, se describe las características generales del área de estudio, como ubicación geográfica, características físicas, sociales, económicas, entre otros.

En el tercer capítulo, se desarrolla la identificación del peligro, su caracterización y evaluación de acuerdo al elemento expuesto, el análisis físico de susceptibilidad (factores condicionantes y desencadenantes), en el área de influencia del peligro; representados en mapas temáticos.

El cuarto capítulo comprende el análisis de la vulnerabilidad en sus tres dimensiones: social, económica y ambiental. Cada dimensión de la vulnerabilidad es evaluada con sus factores respectivos: exposición, fragilidad y resiliencia, para definir los niveles de vulnerabilidad que luego es representado en el mapa correspondiente.

En el quinto capítulo, se contempla el procedimiento para el cálculo del riesgo, que permite identificar el nivel del riesgo por flujo de detritos y el mapa de riesgo como resultado de la evaluación del peligro y la vulnerabilidad.

Finalmente, en el sexto capítulo, se evalúa el control del riesgo, para identificar la aceptabilidad o tolerancia del riesgo, considerando las medidas estructurales y no estructurales para la prevención y reducción del riesgo.

CAPÍTULO 1: ASPECTOS GENERALES

1.1. Objetivo general:

Determinar los niveles de riesgo originados por flujo de detritos, en el área de influencia del proyecto "Mejoramiento de los servicios educativos en la corporación Khipu del distrito de San Sebastián, provincia Cusco, departamento de Cusco".

1.2. Objetivos específicos:

- Determinar los niveles de peligros originados por flujo de detritos, en el área de influencia del proyecto "Mejoramiento de los servicios educativos en la corporación Khipu del distrito de San Sebastián, provincia Cusco, departamento de Cusco".
- Determinar los niveles de vulnerabilidad, en el área de influencia del proyecto "Mejoramiento de los servicios educativos en la corporación Khipu del distrito de San Sebastián, provincia Cusco, departamento de Cusco".
- Proponer medidas estructurales y/o no estructurales para la prevención y/o reducción de riesgos por flujo de detritos, en el área de influencia del proyecto "Mejoramiento de los servicios educativos en la corporación Khipu del distrito de San Sebastián, provincia Cusco, departamento de Cusco".

1.3. Finalidad

Contribuir con un instrumento técnico que permita establecer medidas de prevención y reducción del riesgo de desastres y favorezcan la adecuada toma de decisiones por parte de las autoridades competentes de la Gestión del Riesgo para prevenir y reducir los efectos negativos o desastres que se puedan generar por los peligros por flujo de detritos en el área de influencia del proyecto "Mejoramiento de los servicios educativos en la corporación Khipu del distrito de San Sebastián, provincia Cusco, departamento de Cusco"

1.4. Justificación

Sustentar la implementación de acciones de prevención y/o reducción del riesgo por flujo de detritos, en el área de influencia del proyecto "Mejoramiento de los servicios educativos en la corporación Khipu del distrito de San Sebastián, provincia Cusco, departamento de Cusco"

1.5. Antecedentes

De acuerdo a la información registrada en el Sistema de Información Nacional para la Respuesta y Rehabilitación SINPAD los fenómenos naturales más recurrente que causaron emergencias entre el 2003 al 2023 en el distrito de San Sebastián presenta antecedentes de desastres por fenómenos hidrometereológicos, geodinámica externa, etc.

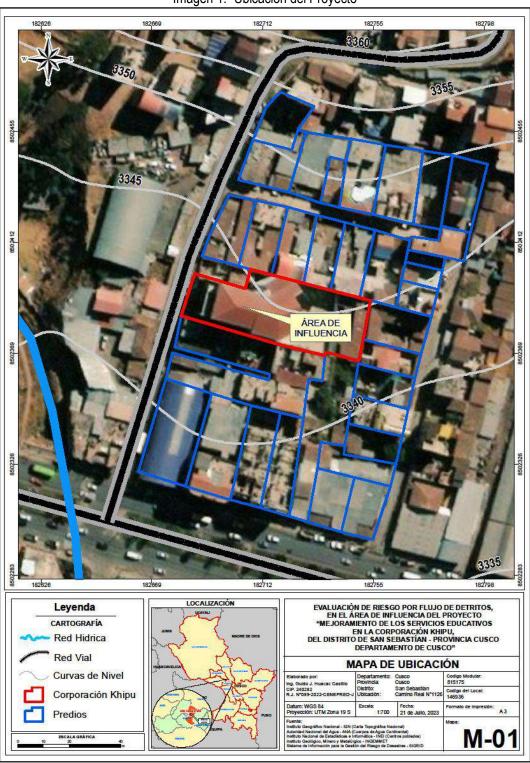
Cuadro 1.- Cronología de emergencias en el distrito de San Sebastián.

FECHA	EMERGENCIA	DISTRITO	FENOMENO	VIVIENDAS COLAPSADAS	VIVIENDAS AFECTADAS	INSTITUCIONES EDUCATIVAS COLAPSADAS	INSTITUCIONES EDUCATIVA SIN HABITABLES	INSTITUCIONES EDUCATIVAS AFECTADAS
25/02/2003	PRECIPITACIONES PLUVIALES OCASIONARON COLAPSAMIENTO DE	SAN SEBASTIAN	COLAPSO DE VIVIENDAS	5	0	0	0	0
12/03/2003	COLAPSAMIENTO DE VIVIENDA EN KIRCAJ DIST. SAN SEBASTIAN	SAN SEBASTIAN	COLAPSO DE VIVIENDAS	1	0	0	0	0
4/01/2004	PRECIPITACIONES PLUVIALES INUNDARON UNA VIVIENDA QUE DE	SAN SEBASTIAN	COLAPSO DE VIVIENDAS	1	0	0	0	0
25/02/2004	SAN SEBASTIAN - CUSCO, COLAPSO DE VIVIENDA POR LAS CONS	SAN SEBASTIAN	COLAPSO DE VIVIENDAS	1	0	0	0	0
13/06/2005	COLAPSO DE VIVIENDA POR DESLIZAMIENTO DE TALUD SAN SEBA	SAN SEBASTIAN	COLAPSO DE VIVIENDAS	2	0	0	0	0
31/03/2006	DESLIZAMIENTO EN APV NIÑO MANUELITO	SAN SEBASTIAN	DESLIZAMIENTO	4	0	0	0	0
7/04/2006	DESLIZAMIENTO DE TALUD EN LA APV NIÑO MANUELITO	SAN SEBASTIAN	DESLIZAMIENTO	0	4	0	0	0
7/04/2006	DESLIZAMIENTO EN LA APV NIÑO MANUELITO	SAN SEBASTIAN	DESLIZAMIENTO	2	0	0	0	0
7/04/2006	DESLIZAMIENTO DE TALUD UVIMA 4	SAN SEBASTIAN	DESLIZAMIENTO	1	0	0	0	0
19/04/2006	COLAPSAMIENTO DE VIVIENDA EN LOCALIDAD DE RETAMAYOC SAN	SAN SEBASTIAN	COLAPSO DE VIVIENDAS	1	0	0	0	0
23/10/2006	COLAPSO DE VIVIENDA	SAN SEBASTIAN	DERRUMBE	1	0	0	0	0
5/05/2007	DESLIZAMIENTOS CAUSAN EL COLAPSAMIENTO DE VIVIENDAS	SAN SEBASTIAN	DESLIZAMIENTO	5	0	0	0	0
17/09/2007	COLAPSO DE VIEVIENDA EN EL DISTRITO DE SAN SEBASTIAN	SAN SEBASTIAN	COLAPSO DE VIVIENDAS	1	0	0	0	0
26/12/2007	DESLIZAMIENTO EN LA URB LA PLANICIE C 1 18	SAN SEBASTIAN	DESLIZAMIENTO	2	0	0	0	0
10/05/2008	DESLIZAMIENTO DE TALUD DE SECTOR KARI GRANDE	SAN SEBASTIAN	DESLIZAMIENTO	6	0	0	0	0
21/10/2008	COLAPSO DE VIVIENDA EN APV MIGUELGRAU	SAN SEBASTIAN	COLAPSO DE VIVIENDAS	1	0	0	0	0
28/02/2010	DESLIZAMIENTO EN SAN SEBASTIAN	SAN SEBASTIAN	DESLIZAMIENTO	0	0	0	0	0
9/02/2013	DESLIZAMIENTOS Y COLMATACION EN EL DISTRITO DE SAN SEBA	SAN SEBASTIAN	DESLIZAMIENTO	0	8	0	0	0

Fuente: Elaboración del equipo técnico con la información del INDECI-SINPADv2.

1.6. Marco normativo

- Ley N° 29664, que crea el Sistema Nacional de Gestión del Riesgo de Desastres SINAGERD,
- Decreto Supremo N° 048-2011-PCM, Reglamento de la Ley del Sistema Nacional de Gestión del Riesgo de Desastres.
- Ley N° 27867, Ley Orgánica de los Gobiernos Regionales y su modificatorias dispuesta por Ley N° 27902.
- Ley N° 27972, Ley Orgánica de Municipalidades y su modificatoria aprobada por Ley N° 28268.
- Ley N° 29869, Ley de Reasentamiento Poblacional para Zonas de Muy Alto Riesgo No Mitigable.
- Ley N° 30556, Ley que aprueba disposiciones de carácter extraordinario para las intervenciones del Gobierno Nacional frente a desastres y que dispone la creación de la Autoridad para la Reconstrucción con Cambios.
- Decreto Supremo que aprueba el Plan Nacional de Gestión del Riesgo de Desastres PLANAGERD 2022-2030
- Decreto Supremo N° 115-2022-PCM, aprueba el Reglamento de la Ley N° 29869.
- Decreto Supremo N° 126-2013-PCM, modifica el Reglamento de la Ley N° 29869.
- Resolución Jefatural N° 112 2014 CENEPRED/J, que aprueba el "Manual para la Evaluación de Riesgos originados por Fenómenos Naturales", 2da Versión.
- Resolución Ministerial N° 334-2012-PCM, que Aprueba los Lineamientos Técnicos del Proceso de Estimación del Riesgo de Desastres.
- Resolución Ministerial N° 222-2013-PCM, que Aprueba los Lineamientos Técnicos del Proceso de Prevención del Riesgo de Desastres.
- Resolución Ministerial N° 220-2013-PCM, Aprueba los Lineamientos Técnicos para el Proceso de Reducción del Riesgo de Desastres.
- Resolución Ministerial N°147-2016-PCM, de fecha 18 de julio del 2016, que aprueba los Lineamientos para la Implementación del Proceso de Reconstrucción".
- Resolución Jefatural N° 058-2020-CENEPRED/J, que "Lineamientos para la elaboración del Informe de Evaluación del Riesgo de Desastres en Proyectos de Infraestructura Educativa"
- Decreto Supremo N° 034-2014-PCM, que aprueba el Plan Nacional de Gestión del Riesgo de Desastres -PLANAGERD.
- Resolución Ministerial N° 046-2013-PCM, que aprueba la Directiva N° 001-2013-PCM/SINAGERD –
 "Lineamientos que definen el Marco de Responsabilidades en Gestión de Riesgo de Desastres en las
 entidades del Estado en los tres niveles de Gobierno".
- Directiva N°001-2018-CENEPRED/J "Procedimientos para la Formación y la Acreditación de Evaluadores del Riesgo Originados por Fenómenos Naturales"


CAPÍTULO II: CARACTERÍSTICAS GENERALES DEL ÁREA DE ESTUDIO

2.1. Ubicación geográfica

El proyecto "Mejoramiento de los servicios educativos en la corporación Khipu del distrito de San Sebastián provincia Cusco, departamento de Cusco"

Departamento: Cusco
Provincia: Cusco
Distrito: San Sebastián

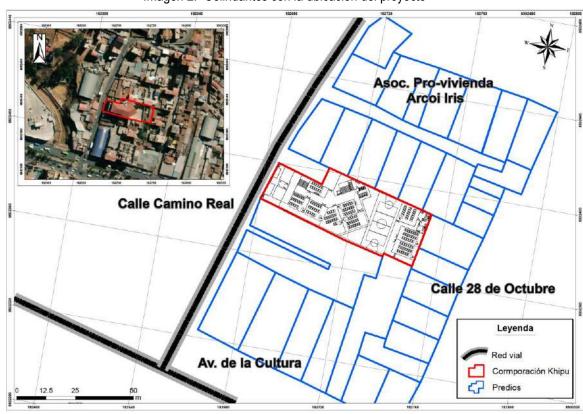
Imagen 1.- Ubicación del Proyecto

Fuente: Elaboración del equipo técnico.

2.1.1 Área de estudio

El proyecto "Mejoramiento de los servicios educativos en la corporación Khipu del distrito de San Sebastián provincia Cusco, departamento de Cusco", se encuentra aproximadamente a 5.8 Kilómetros al Sur de la ciudad de Cusco, el cual tiene las siguientes coordenadas:

Cuadro 2.- Coordenadas del Proyecto UTM, DATUM WGS84, Zona 19 L


Nombre	Coord. Ge	eográficas	Coord. UTM (Wg	s 84 Zona 19 L)
CORPORACION	RPORACION Latitud		Este	Norte
KHIPU	13°31'47.14"S	71°55'52.37"O	182679.98 m O	8502380.14 m S

Fuente: Google Earth

Nuestra unidad productora tiene los siguientes límites:

- POR EL (OESTE): Colinda con la calle Camino Real.
- POR EL (SUR): Colinda con Avenida de la Cultura.
- ♣ POR EL (NORTE): Colinda con la Asociación Pro-vivienda Arcoíris
- POR EL (ESTE): Colinda con la calle de 28 de octubre

Imagen 2.- Colindantes con la ubicación del proyecto

2.2. Base Topográfica

El levantamiento topográfico del terreno considera 1546.48 metros cuadrados y un perímetro de 187.68 metros lineales, en lo cual se realizará el planteamiento y el replanteo de los planos desarrollados en gabinete del proyecto denominado "Mejoramiento de los servicios educativos en la corporación Khipu del distrito de San Sebastián provincia Cusco, departamento de Cusco",

La topografía que presenta una pendiente variable de 13° a 8°(grados), del punto más alto hasta la parte más baja del predio de la institución educativa.

Espaciamiento de curvas de nivel: Las curvas de nivel tienen un intervalo cada 2 metros.

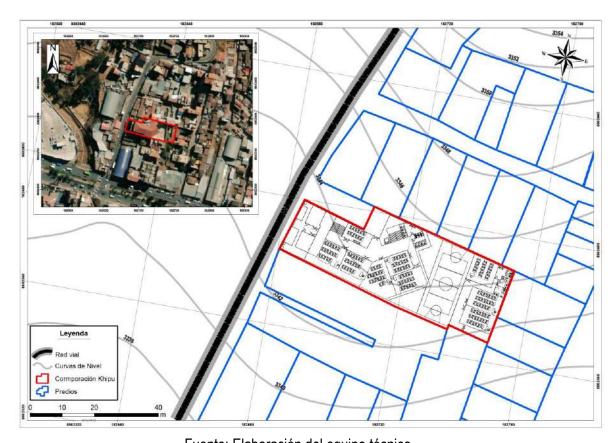
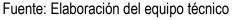
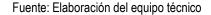



Imagen 3.- Plano topográfico

Cuadro 3.- Cuadro de vértices y coordenadas UTM PSAD56:


VERTICE	LADO	DISTANCIA	ANG. INTERNO	ESTE (X)	NORTE (Y)
1	1 - 2	16.20	86°43′32"	182679.98	8502380.14
2	2 - 3	20.50	94°40′59"	182685.22	8502395.46
3	3 - 4	8.00	267°31′16"	182705.09	8502390.44
4	4 - 5	34.00	91°45′3"	182707.39	8502398.11
5	5 - 6	9.59	178°39′56"	182740.25	8502389.35
6	6 - 7	4.05	180°0′0"	182749.45	8502386.67
7	7 - 8	13.50	94°37′2"	182753.34	8502385.53
8	8 - 9	10.50	180°0′0"	182750.61	8502372.31
9	9 - 10	12.92	88°32′13"	182748.50	8502362.03
10	10 - 11	4.20	273°2′30"	182735.92	8502364.95
11	11 - 1	58.00	84°27′28"	182735.85	8502364.54

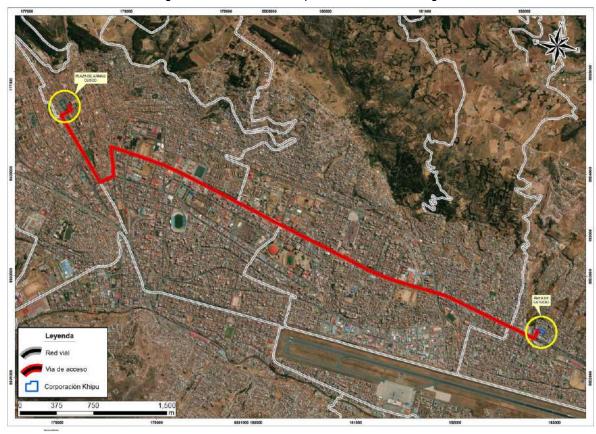
Fuente: Elaboración del equipo técnico

Esta base sirve para la cartografía de los peligros y riegos del área donde se han ubicado las obras de ingeniería del proyecto.

and and and 1988 2889 SARRES AN REFERE SEE EEEE AS SEEFE HHHHH O SHEED SEEE. HAHHAH DY RESERVE O ARREAR DISTANCIA 16.20 LADO SERREE 20.50 BRREE 8.00 ESHERE Sanarana Sanarana Sanarana Sanarana Sanarana 9.59 13.50 10.50 EHERERE 12.92 4.20 58.00 9 - 10 10 - 11 Sanaas (Leyenda Predios

Imagen 4.- Plano Perimétrico para el análisis del Riesgo

2.3. Vías de acceso


El proyecto "Mejoramiento de los servicios educativos en la corporación Khipu del distrito de San Sebastián provincia Cusco, departamento de Cusco", al que se accede de forma directa y por vía vehicular desde la Plaza de Armas de Cusco hasta el mismo terreno de la Corporación Khipu.

Cuadro 4.- Cuadro accesibilidad a la Corporación Khipu

LOCALIDAD DE PARTIDA	LOCALIDAD DE LLEGADA	ESTADO DE VIA	TIPO DE VIA	DISTANCIA KM	TIEMPO (HR)
Plaza de Armas de Cusco	Corporación Khipu	Regular	Asfaltado	5.8	30 min

Fuente: Elaboración del equipo técnico

Imagen 5.- Plano Perimétrico para el análisis del Riesgo

2.4. Características sociales

Se describe a continuación las características sociales del proyecto "Mejoramiento de los servicios educativos en la corporación Khipu del distrito de San Sebastián provincia Cusco, departamento de Cusco", donde servirá para atender la demanda de la población estudiantil que se encuentra en su mayoría en el distrito de San Sebastián.

2.4.1. Población

Población total: el distrito de san Sebastián, cuentan con una población de 55215 habitantes, de los cuales el 52 % son mujeres y 48 % son varones, quienes representan la mayor cantidad de la población.

Cuadro 5.- Población total del distrito de San Sebastián

SEXO	POBLACION	PORCENTAJE
Hombres	53991	47.98%
Mujeres	58545	52.02%
TOTAL	112536	100%

Fuente: INEI 2017

Población según grupo de edades: el distrito de san Sebastián se caracteriza por tener una población joven, dentro de las edades de 15 a 29 años que representan 29.6 % de la población y solo el 6.7% son menores de 1 años y > 65 años.

Asimismo, el 22 % representa la población adulta entre 30 a 44 años, el 24.7 % representa a la población de mayores de 1 a 14 años y el 17 % representa a la población de 45 a 64 años de edad como se puede percibir en el siguiente cuadro.

Cuadro 6.- Población Según Grupo Etario.

GRUPO DE EDADES	CANTIDAD	PORCENTAJES
<1 y > 65 años	5764	5.12%
1- 14 años	28325	25.17%
15 -29 años	33874	30.10%
30 - 44 años	25923	23.04%
45 - 64 años	18650	16.57%
TOTAL	112536	100%

Fuente: INEI 2017

Con información del censo del año 2017, así mismo se ha utilizado la información de la INEI de la población censada por edades.

2.4.2. Vivienda

En el Distrito de San Sebastián, existen 15020 viviendas, siendo el material predominante de las paredes el adobe que representa al 66.4 % del total de viviendas, el 0.7 % de viviendas cuenta con material predominantes de madera, piedra o sillar con cal o cemento, y el 32.9 % de viviendas cuentan con paredes predominantes de ladrillo o bloque de cemento.

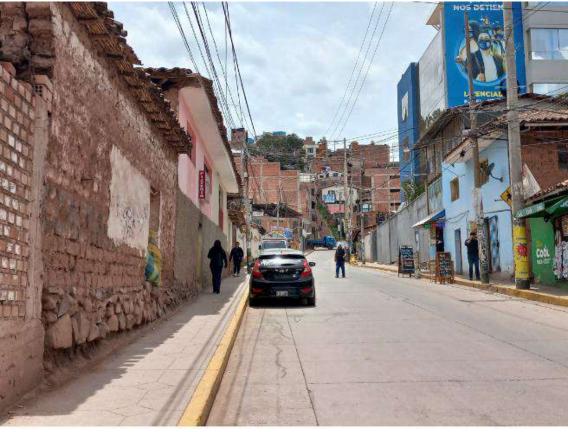


Foto N°1 Vista de viviendas

Fuente: Equipo técnico

2.4.3. Servicios básicos

De acuerdo con el Instituto Nacional de Estadística e informática (INEI) 2017 y la plataforma del SIGRID, señala que en el área de influencia del proyecto "Mejoramiento de los servicios educativos en la corporación Khipu del distrito de San Sebastián provincia Cusco, departamento de Cusco", presenta los siguientes servicios básicos:

a) Tipo abastecimiento de agua

Se puede apreciar que el 72.6% de las viviendas del distrito de San Sebastián cuentan con el abastecimiento de agua a través de la red pública dentro de la vivienda, el 17.5% cuenta con red pública de agua fuera de la vivienda, el 0.2% se abastece de agua desde pozo, el 3.2% cuenta con el servicio de agua desde un pilón de uso público y cisterna de agua.

b) Servicios higiénicos

Se puede observar que, en el distrito de San Sebastián, el 70.5% de viviendas cuenta con red pública de desagüe dentro de la vivienda, en cambio el 3.6% cuenta con un pozo séptico, el 17.6% posee red pública de desagüe fuera de la vivienda y el 0.5% usa como servicios básicos el rio, acequia o canal de agua.

c) Tipo de alumbrado público

En el Distrito de San Sebastián el 86.1% de las viviendas posee energía eléctrica, en cambio el 0.1% usa kerosene, mecheros, lamparín y el 2.6% usan velas como energía eléctrica.

2.4.4. Salud

Con relación al seguro de salud que tiene la población, se puede apreciar que el 51.8% de la población no tiene ningún seguro, mientras que un 24.6% de la población cuenta con el Seguro Integral Social – SIS, el 19.7% cuenta con el seguro de ESSALUD, el 1.7% cuenta con seguros privados y el 1.9% está asegurada en la FFAA-PNP.

2.4.5. Servicios básicos de telecomunicaciones

En el área de influencia del presente Proyecto se cuenta con todos los servicios de telecomunicaciones.

2.5. Características Económicas

2.5.1. Población económica activa:

En el distrito de San Sebastián las poblaciones mayores de 14 años representan al 47.6% de la población económica activa, en cambio el 32.8% son trabajadores independientes, el 13.5% se dedican a las actividades quehaceres del hogar, el 22.2% son trabajadores dependientes y el 1% son población desempleada.

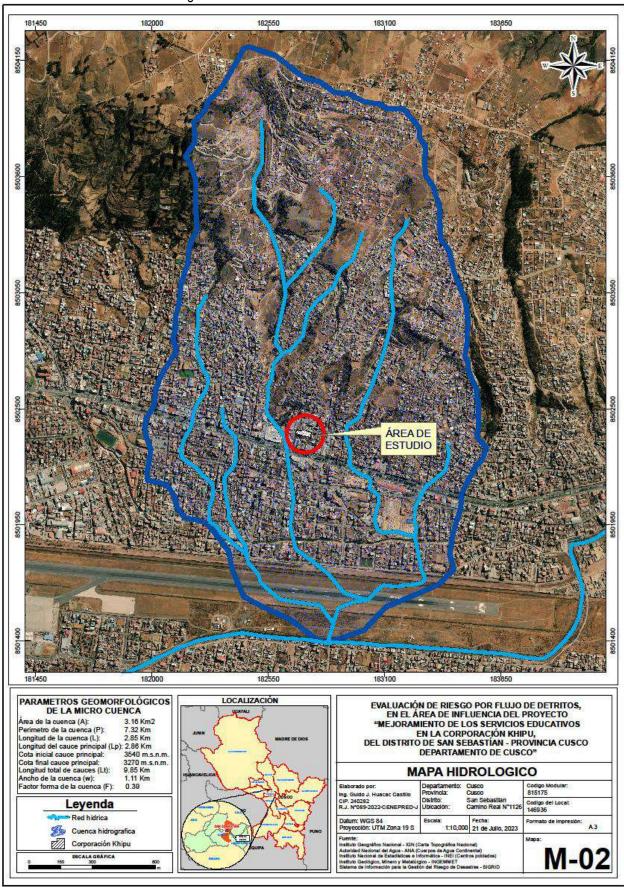
2.6. Condiciones físicas del territorio

2.6.1. Hidrología

La hidrología puede definirse como la disciplina que trata de las propiedades, existencia, distribución y movimiento del agua sobre la superficie de la tierra, sus conocimientos se aplican al uso y control de los recursos hídricos. Para el análisis de la hidrología se realizó la delimitación de la microcuenca:

Cuenca Mayor: Amazonas.

Cuenca: Vilcanota.


Sub cuenca: Huatanay.

Micro cuenca.

Imagen 6.- Delimitación de la Micro Cuenca

2.6.1.1. Parámetros Geomorfológicos de la Micro Cuenca

El ciclo hidrológico, en la que una cuenca hidrográfica es parte fundamental en el estudio de la respuesta a la precipitación de entrada, ocurre diversos procesos que alteran el escurrimiento en su salida. En estos procesos intervienen la geomorfología de la cuenca en la que la climatología es el factor más importante, el tipo y uso del suelo, la cobertura vegetal o nivel de urbanización.

Existen parámetros calculables que consideran la importancia de estos procesos para establecer comparaciones y establecer cuencas afines de una forma preliminar

La cuenca presenta los siguientes parámetros, las cuales se obtuvieron a través del modelado en el software ArcGIS.

2.6.1.1.1. Área de la Micro Cuenca

Es la superficie del terreno en que las aguas de las precipitaciones concurren a un mismo punto de evacuación a través de cauces secundarios o quebradas que se unen a un cauce principal. Las aguas de las precipitaciones, lagunas o glaciares que no han sido infiltradas por el suelo se denominan escorrentía superficial y se desplazan desde los puntos de mayor elevación hacia los puntos de menor elevación por efecto de la gravedad. Mientras que, las aguas que han sido infiltradas por el suelo se denominan escorrentía subterránea y discurren por su interior similarmente.

2.6.1.1.2. Longitud del cauce principal

Este parámetro suele coincidir con la longitud del cauce más largo, y es un criterio muy representativo de la longitud de una cuenca. Puede medirse considerando toda la sinuosidad del cauce o la longitud del eje del mismo

2.6.1.1.3. Perímetro de la Micro Cuenca

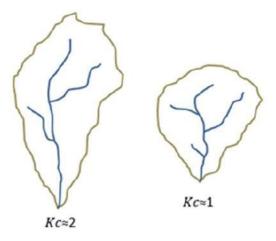
Es la longitud de la línea divisoria de aguas y conforma el contorno del área de la cuenca. Cuando se compara cuencas de la misma área, este parámetro es útil para diferenciar la forma de la cuenca. Es decir, si es alargada o redondeada.

2.6.1.1.4. Forma de la Micro Cuenca

Para identificar las características de forma se emplean varios parámetros asociados con la relación área, perímetro o la longitud del cauce de agua más largo que se define como la distancia desde el punto de la salida de desembocadura de la cuenca hasta el punto agua arriba más alejada. Los índices más usuales son:

a) Coeficiente de compacidad o índice de Gravelius

Establece la relación entre el perímetro de la cuenca y el perímetro de una circunferencia de área equivalente a la superficie de la cuenca correspondiente. Este índice representa la forma de la superficie de la cuenca, según su delimitación, y su influencia sobre los escurrimientos y el hidrograma resultante de una precipitación (López Cadenas de Llano & Mintegui Aguirre, 1987).


Cuando el valor de Kc tienda a uno, la cuenca tendrá una forma casi circular. Esto significa que las crecientes tendrán mayor coincidencia debido a que los tiempos de concentración de los diferentes puntos de la cuenca serán iguales. El tiempo de concentración consiste en la duración necesaria para que una

gota de agua que cae en el punto más alejado de la cuenca llegue al punto de salida o desembocadura. En cuencas muy alargadas, el valor de Kc sobrepasa a 2.

Imagen 7.- Coeficiente de compacidad

Para determinar el Coeficiente de compacidad o índice de Gravelius se utiliza la siguiente ecuación:

$$Kc = \frac{p}{2\pi (\frac{A_{cuenca}}{\pi})_2^1}$$

Donde:

- P: Perímetro de la cuenca (Km)
- A: Área de la cuenca (Km²)

El valor del coeficiente de compacidad de la microcuenca es de 1.15 lo que indica que su forma es oval o casi redondeada.

b) Factor de forma

Es uno de los parámetros que explica la elongación de una cuenca. Se expresa como la relación entre el área de la cuenca y la longitud de la misma. Es un parámetro adimensional y la longitud de la cuenca puede considerarse según tres criterios diferentes: la longitud del cauce principal considerando su sinuosidad, la longitud del cauce principal considerando el eje del mismo, o la distancia en línea recta entre el punto de control de la cuenca y el punto más alejado de este. En este informe, se considera esta última distancia. Por otra parte, en la siguiente tabla se muestra la forma que puede adoptar una cuenca según rangos aproximados del Factor de Forma.

Para determinar el Factor de forma se utiliza la siguiente ecuación:

$$K_f = \frac{A}{L^2}$$

Donde:

- L: Longitud de la cuenca (Km)
- A: Área de la cuenca (Km²)

Cuadro 7.- Factores de forma de la Micro Cuenca

Factor de forma (valores aproximados)	Forma de la cuenca
< 0.22	Muy alargada
0.22 a 0.30	Alargada
0.30 a 0.37	Ligeramente alargada
0.37 a 0.45	Ni alargada ni ensanchada
0.45 a 0.60	Ligeramente ensanchada
0.60 a 0.80	Ensanchada
0.8 a 1.20	Muy ensanchada
>1.20	Rodeando el desagüe

Fuente: (López Cadenas de Llano & Mintegui Aguirre, 1987)

El valor del factor de forma de la microcuenca es de 0.39 lo que nos indica que la forma de la cuenca es ni alargada ni ensanchada.

Cuadro 8.- Parámetros básicos

PARAMETROS BASICOS			
Área de una cuenca(A):	3.16	km²	
Perímetro de la cuenca (P):	7.32	km	
Longitud de la cuenca (L):	2.85	km	
Longitud del Cauce Principal (Lp)	2.86	km	
Cota Inicial Cauce Principal	3540.00	m.s.n.m.	
Cota Final Cauce Principal	3270.00	m.s.n.m.	
Longitud Total de Cauces Lt	9.85	km	

CURVAS CARACTERÍSTICAS DE LA MICRO CUENCA

Cuadro 9.- De áreas entre curvas de nivel

Nº ORDEN	COTA MIN	COTA MAX	Área Parcial (km²)	Área Acumulada (km²)	Área que queda sobre la superficie (km²)	Porcentaje de área entre C.N.	Porcentaje de área sobre C.N.
1	3306	3335	0.80	0.80	3.16	25.37%	100.00%
2	3336	3371	0.60	1.40	2.36	19.08%	74.63%
3	3372	3413	0.38	1.78	1.75	11.98%	55.55%
4	3414	3457	0.32	2.10	1.38	10.00%	43.57%
5	3458	3500	0.33	2.43	1.06	10.54%	33.57%
6	3501	3544	0.26	2.69	0.73	8.32%	23.02%
7	3545	3589	0.25	2.94	0.46	7.81%	14.70%
8	3590	3639	0.22	3.16	0.22	6.89%	6.89%
			3.16			100%	

Fuente: Elaboración equipo técnico

CURVA HIPSOMÉTRICA:

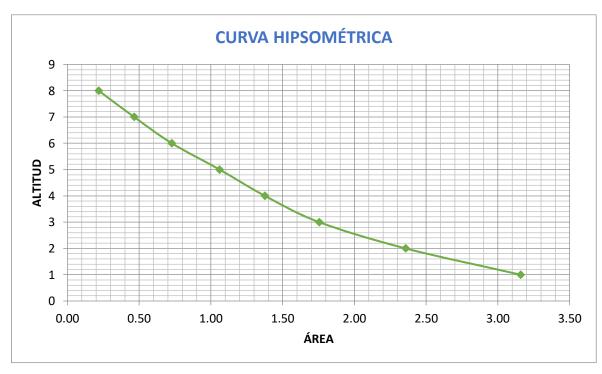
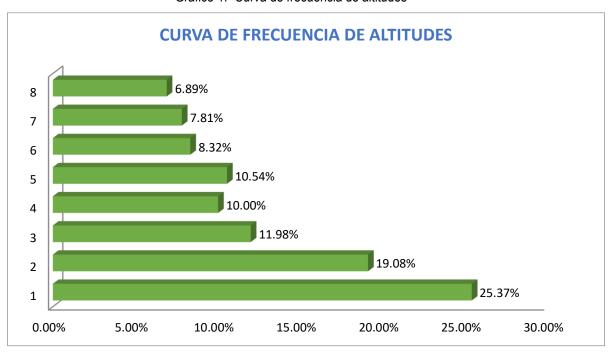



Gráfico 1.- Curva de frecuencia de altitudes

Fuente: Elaboración equipo técnico

ALTITUDES CARACTERÍSTICAS

Altitud Media de la Micro cuenca: 3472.50 m.s.n.m.

o Altitud más frecuente: 3535.50 m.s.n.m.

O Altitud de frecuencia media (Fm): 3419.96 m.s.n.m.

Cuadro 10.- Parámetros geomorfológicos de una cuenca

PARÁMETROS GEOMORFOLICOS DE UNA CUENCA		
Ancho de cuenca (w): $w = \frac{A}{L}$	1.11 km	
Factor de forma de una Cuenca (F): $F = \frac{A}{L^2}$	0.39	
Relación de elongación (R): $R = 1,128 \frac{\sqrt{A}}{L}$	0.70	
Relación de circularidad (Rc): $Rc = \frac{4A\pi}{P^2}$	0.74	
Índice de Compacidad o Índice de Gravelious (K): $K = 0, 28 \frac{P}{\sqrt{A}}$	1.15	

PARÁMETROS DE RELIEVE

Cuadro 11.- Para el cálculo de pendiente media de la cuenca

NIO	RANGO PENDIENTE		DDOMEDIO	NÚMERO DE	PROMEDIO x
Nº	INFERIOR	SUPERIOR	PROMEDIO	OCURRENCIA	OCURRENCIA
1	0	5	2.5	4349	10872.5
2	5	12	8.5	4134	35139
3	12	18	15.0	3106	46590
4	18	24	21.0	3140	65940
5	24	32	28.0	2650	74200
6	32	44	38.0	1976	75088
7	44	100	72.0	856	61632
				20211	369461.5

Fuente: Elaboración equipo técnico

Pendiente media de la Cuenca:

Pendiente media del cauce principal:

18.28 %
9.44 %

CLASIFICACIÓN SEGÚN LA PENDIENTE

Cuadro 12.- Pendientes de la cuenca

Porcentaje %	Tipo
<5	Plano
5 – 12	Ligeramente ondulado
12 – 18	Ondulado
18 -24	Fuertemente ondulado
24 - 32	Escarpado
32 - 44	Fuertemente escarpado
>44	Montañoso

Fuente: (López Cadenas de Llano & Mintegui Aguirre, 1987)

PARAMETROS DE LA RED HIDRICA

O Densidad de Drenaje (Dd): 3.12

Lt: Longitud total de Cauces

A: Área de la cuenca

o Constantes de estabilidad del Río (C): 0.32

$$C = \frac{A}{L_t}$$

o Densidad de corriente (Dc) o Densidad hidrográfica (Dh): 2.16

δ: Coeficiente Adimensional = 0,694

$$D_h = \delta D_d^2$$

2.6.2. Unidades Geomorfológicas

El reconocimiento de las unidades geomorfológicas en el área de estudio es reconocido y mapeado en campo, donde se reconoció las siguientes unidades:

a. Terraza aluvial (T-al)

Se denomina terrazas aluviales a las pequeñas zonas de suelo con componentes sedimentarios o elevaciones, también con componentes sedimentarios, que se formaron en valles con características fluviales a causa del depósito de sedimentos en los laterales del cauce del río en zonas donde las pendientes del terreno disminuyen, disminuyendo así la habilidad del terreno para arrastrar los sedimentos.

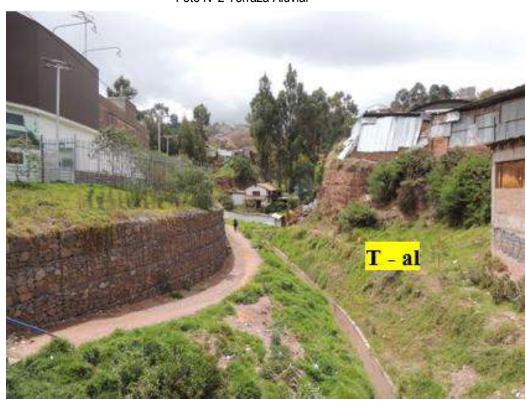


Foto N°2 Terraza Aluvial

Fuente: Elaboración equipo técnico

b. Vertiente o piedemonte coluvio-deluvial (V-cd)

Acumulación de material fino y detrítico, caído o lavados por escorrentía superficial, que se acumulan sucesivamente al pie de laderas

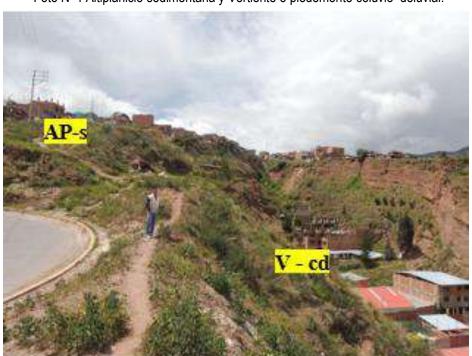
Foto N°3 Vertiente o piedemonte coluvio-deluvial

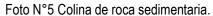
Fuente: Elaboración equipo técnico

V -cd

c. Altiplanicie sedimentaria (AP-s)

Es una superficie casi plana con pendiente entre 0° y 5°; se presenta en las alturas tomando el nombre de altiplanicie; en el área de estudio es poco extenso (0.18 % de ocupación de área); presenta material sedimentario semiconsolidado, que fue depositado por el arrastre de las aguas fluviales.




Foto N°4 Altiplanicie sedimentaria y Vertiente o piedemonte coluvio-deluvial.

d. Colina en roca sedimentaria (RC-rs)

Relieve de colinas modeladas en rocas sedimentarias con diferentes grados de disección; son de menor altura que una montaña (menos de 300 metros desde el nivel de base local). Está unidad se ubica próxima a la unidad de montañas

Fuente: Elaboración equipo técnico

e. **Terraza coluvial (T-cl)** Son producto de la alteración y desprendimiento in situ de los macizos rocosos a lo largo de las laderas. Por lo general, están conformados por masas inestables de gravas (guijarros, cantos y bloques) angulosas transportadas por gravedad y agua bajo la forma de derrubios

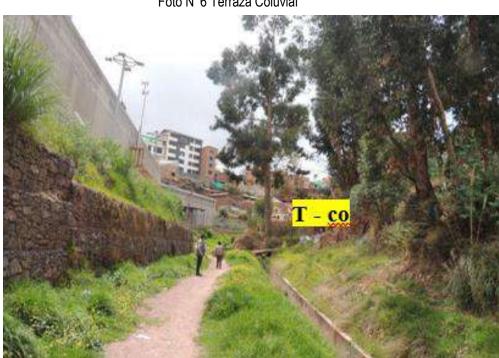


Foto N°6 Terraza Coluvial

Fuente: Elaboración equipo técnico

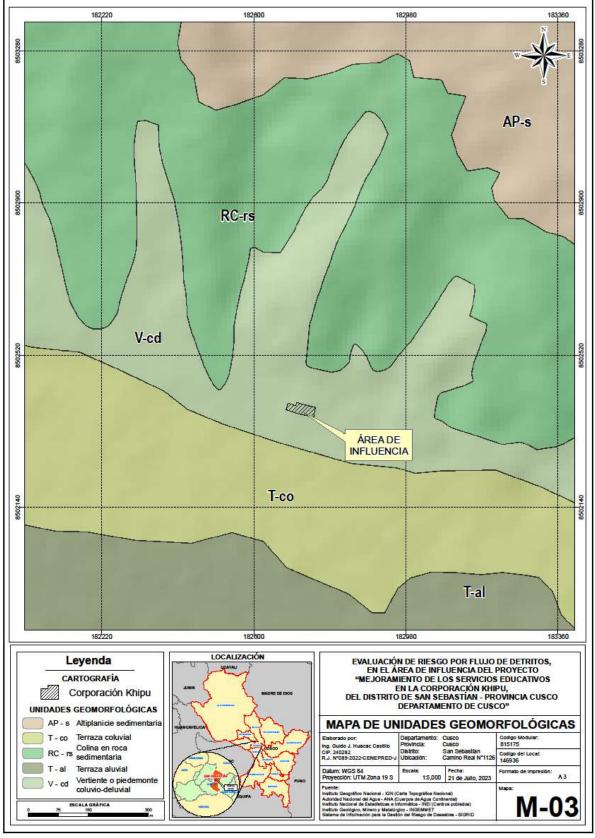
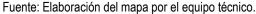
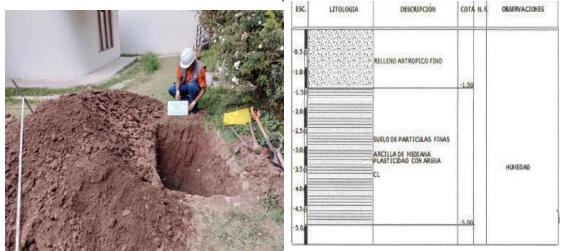



Imagen 8.- Mapa de Unidades Geomorfológicas

2.6.3. Unidades Geológicas

En el estudio de unidades Geológicas se ha realzado la verificación y reajuste en campo de las unidades Geológicas regionales de superficie, para ello se ha tomado como referencia lo publicado por el INGEMMET, cuadrángulo 28s a escala 1:50,000 y el estudio de suelos:


Según el Estudio Geotécnico con Fines de Cimentación del Proyecto: nuevo edificio en local de San Sebastián – Cusco, se tienen los siguientes perfiles en las calicatas desarrolladas en el área de estudio:

Calicata 1

- Primer Estrato de 0.00 a -1,50 m. corresponde a un relleno antrópico constituido por gravas, arenas, limos y piedras en matriz arcillosa.
- Segundo Estrato de -1,50 m. a -5,00 m. corresponde a un suelo fino identificado como una ARCILLA DE PLASTICIDAD MEDIA ARENOSA CL, que presenta u.na consistencia media y color marrón claro.
- No se ha evidenciado nivel freático superficial.

 Fata Nº7 O alfanta de la carilla de la contracta de la carilla de la cari

Foto N°7 Calicata 1 de arcilla de plasticidad media arenosa

Fuente: Estudio Geotécnico con Fines de Cimentación del Proyecto: nuevo edificio en local de San Sebastián – Cusco

Calicata 2

- Primer estrato de 0.00 m a 1.50 m corresponde a un relleno antrópico construido por gravas, arenas, limos y piedras en matriz arcillosa.
- Segundo estrato de -1.50 m a -5.00 m corresponde a un suelo fino identificado como una ARCILLA DE PLASTICIDAD MEDIA ARENOSA CL, que presenta una consistencia media y color marrón claro.
- No se ha evidenciado nivel freático superficial.

ESC. LITOLOGIA DESCRIPCIÓN COTA II. F. OBSERVACIONES -0.50 -1.50

Foto N°8 Calicata 2 de arcilla de plasticidad media arenosa

Fuente: estudio geotécnico con fines de cimentación del proyecto: nuevo edificio en local de San Sebastián - Cusco

El reconocimiento de las unidades geológicas en el área de estudio es reconocido y mapeado en campo, donde se reconoció las siguientes unidades:

a) Formación Ayabaca (kis-ayb)

Aflora al noroeste de la zona de estudio, principalmente en la quebrada Bosque, está constituido por calizas grises muy fracturadas a causa del empleo de explosivos. Asociado a procesos denudativos como caída de rocas.

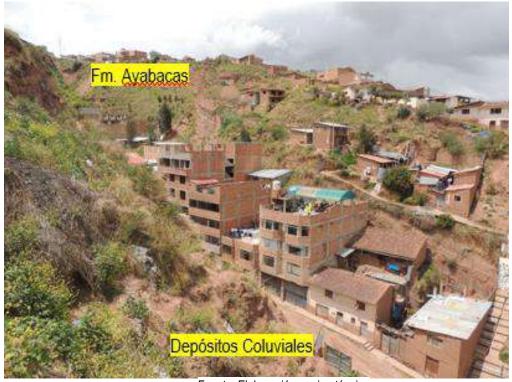


Foto N°9 Formación Ayabacas

b) Formación chincheros (Np-chin)

Aflora en la zona media-alta, está constituido por una mezcla de fragmentos de calizas, lutitas y areniscas en matriz arcillosa, bastante alterada. En la zona media se observa el contacto entre las arenas sedimentarias de la Formación San Sebastián.

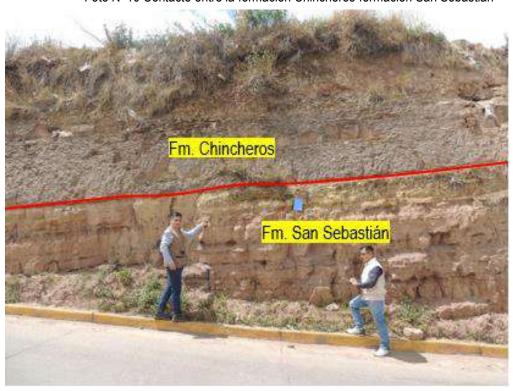


Foto N°10 Contacto entre la formación Chincheros-formación San Sebastián

Fuente: Elaboración equipo técnico

c) Formación San Sebastián (Qp-ss)

Aflora en el piso y en los bordes del valle. Esta unidad se divide en dos secuencias: la primera está constituida por areniscas fluviales de canales entrelazados, lutitas lacustres o palustres, niveles diatomíticos y calcáreos. La segunda está compuesta por conglomerados y arenas de conos-terrazas fluvio-torrenciales, que indican el cierre de la cuenca Cusco. La mayoría de las infraestructuras de la ciudad del Cusco han sido construidas sobre los depósitos de esta Formación.

Los sedimentos muestran estructuras compresivas sin-sedimentarias como flexuras y sismitas, lo que demuestra una actividad sísmica durante el depósito de las mismas. Los sedimentos lacustres de la Formación San Sebastián definen el antiguo Lago Morkill. Desde el punto de vista geotécnico, los sedimentos lacustres y palustres tienen un comportamiento pésimo, tanto en las cimentaciones, como su comportamiento en las laderas. En efecto, en la ladera norte las capas de diatomitas, turbas e incluso arcillas de la Formación San Sebastián se inclinan a favor de la pendiente favoreciendo a la formación de derrumbes y deslizamientos.

El comportamiento mecánico de las gravas es relativamente bueno para la cimentación de infraestructuras; sin embargo, si existe saturación de agua, la cimentación de la edificación podría dañarse por la presencia de esta.

Foto N°11 contacto entre la formación ayabacas – formación San Sebastián

Fuente: Elaboración equipo técnico

d) Depósitos Coluviales (Q-co)

Localizados al pie de las laderas, por efecto de erosión e intemperismo. Están conformados por una mezcla de limos y gravas.

Estos depósitos están asociados a la existencia de deslizamientos y caídas (derrumbes y caída de rocas) por lo que estas zonas son consideradas de alto riesgo para las construcciones en general.

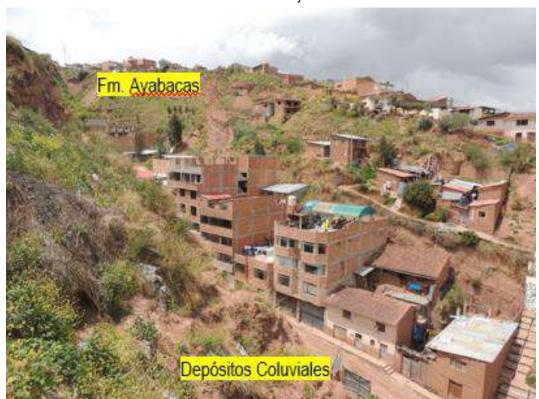


Foto N°12 formación Ayabacas - coluviales

e) Depósitos Aluviales (Q-al)

Se ubican en márgenes del río Huatanay, formando terrazas a diferentes niveles. Están conformados por bancos de gravas, arenas y por secuencias de areniscas aluviales.

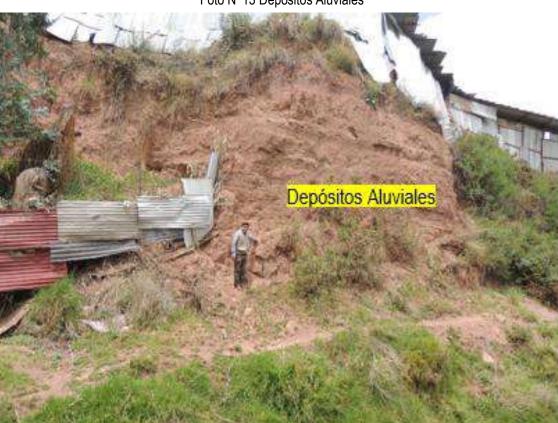


Foto N°13 Depósitos Aluviales

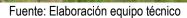
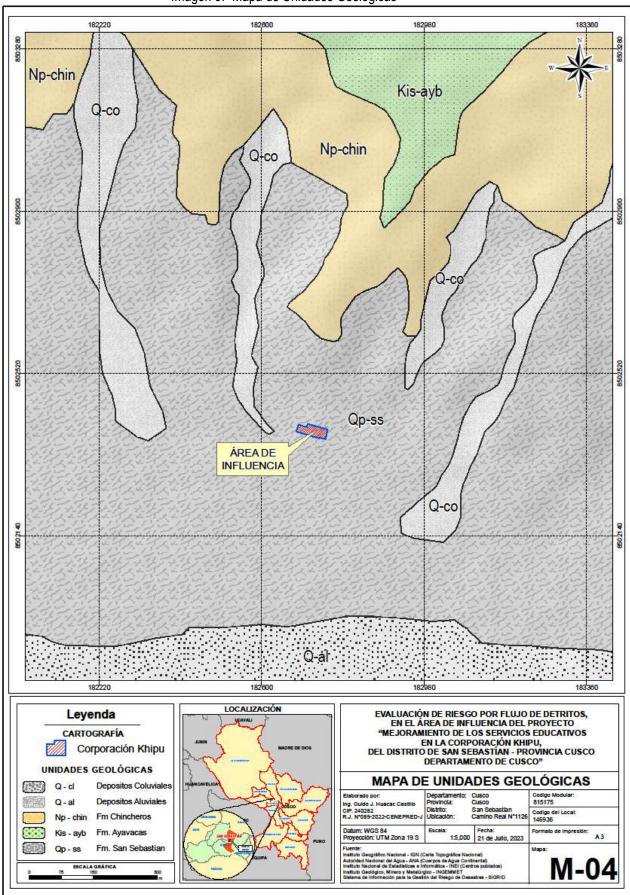



Imagen 9.- Mapa de Unidades Geológicas

Fuente: Elaboración del mapa por el equipo técnico.

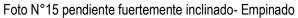
2.6.4. Pendientes del terreno

Las pendientes en el proyecto, se han identificado en 5 descriptores, es importante señalar que las pendientes fueron utilizadas como factor condicionante para la identificación del peligro; fueron obtenidas a una escala más pequeña con curvas de nivel que tienen una amplitud de 5m.

a) Pendiente muy empinado (mayor a 30°):

Se encuentran mayormente identificados hacia las partes altas de la montaña, y hacia las laderas de estas. Este tipo de pendientes favorece a que el terreno sea susceptible a deslizarse y otros fenómenos de geodinámica externa.

Foto N°14 Pendientes Empinados cercanos al área de influencia


Fuente: Equipo técnico

b) Pendiente empinado (de 16° a 30°):

Se puede observar este tipo de pendiente en laderas de montañas conformado por depósitos coluviales, como resultado eminentemente de la actividad de los agentes erosivos. Este tipo de pendientes favorece la ocurrencia de flujo de detritos como deslizamientos, derrumbes, reptaciones, etc.

Fuente: Equipo técnico c) Pendiente fuertemente inclinado (de 8° a 16°):

Se encuentran mayormente concentrados en zonas moderadamente elevadas como es el caso de nuestra zona de estudio. Este rango de pendiente corresponde a vertiente coluvio-deluvial donde se encuentra la formación San Sebastián.

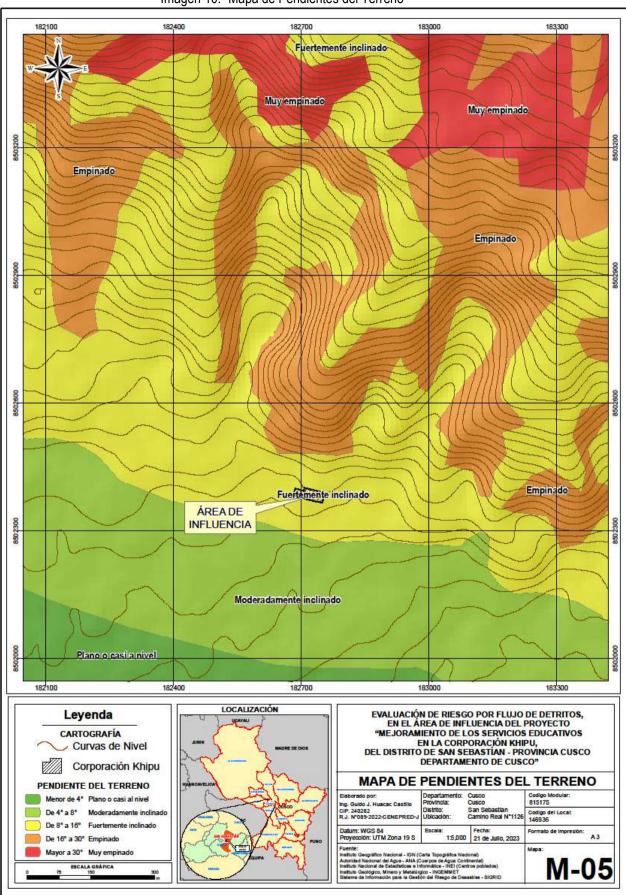
Foto N°16 Pendientes del terreno en el área de estudio

Fuente: Equipo técnico

d) Pendiente moderadamente inclinado (de 4° a 8°):

Son topografías estables a aspectos geodinámicos, excelentes para temas constructivos, considerando las precipitaciones de las lluvias, estas superficies se prestan al fácil discurrir de las aguas pluviales.

Fuente: Equipo técnico


e) Pendiente plano o casi nivel (menor a 4°)

En el área de estudio son pendientes bajas, principalmente formando llanuras o terrazas bajas y medias, áreas destinadas al asentamiento de la población.

Imagen 10.- Mapa de Pendientes del Terreno

Fuente: Elaboración del mapa por el equipo técnico.

Condiciones climatológicas

2.6.5. Clasificación climática

En base al Mapa de Clasificación Climática del Perú (SENAMHI, noviembre 2010), desarrollado a través del Sistema de Clasificación de Climas de Warren Thornthwaite, el proyecto "Mejoramiento de los servicios educativos en la corporación Khipu del distrito de San Sebastián provincia Cusco, departamento de Cusco", se caracteriza por presentar un clima: **C(o,i,p) A' H3**: Zona de clima semiseco, frío, con deficiencias de lluvias en otoño e invierno, con humedad relativa calificada como seca.

Corresponde este tipo climático a los lugares siguientes: Anta, **Cusco**, Paruro, Sicuani, Huancané y Acomayo.

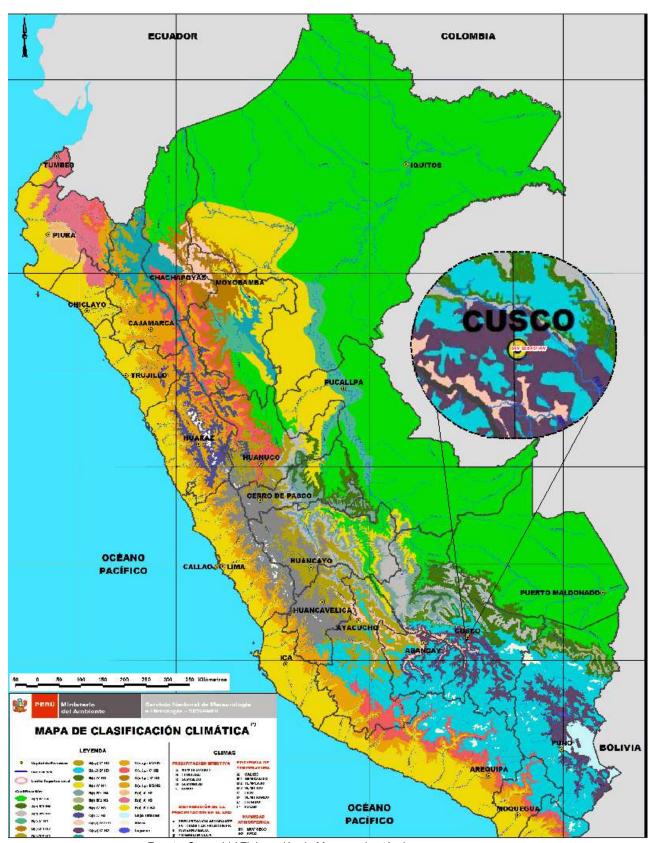

Imagen 11.- Clasificación climática de Warren Thornthwaite

	Imagen 11 Clasificación climática de Warren Thornthwaite							
	CLIMAS	COLOR	CLASIFICACIÓN					
	PRECIPITACIÓN EFECTIVA		A(r) A' H4					
Α	MUY LLUVIOSO		A(r) B'1 H4					
В	LLUVIOSO		A(r) B2 H3					
С	SEMISECO		B(i) A' H3					
D	SEMIÁRIDO		B(i) B'1 H3					
E	ÁRIDO		B(i) B'2 H3					
	DISTRIBUCIÓN DE LA PRECIPITACIÓN EN EL AÑO		B(i) D' H3					
r	PRECIPITACIÓN ABUNDANTE EN TODAS LAS ESTACIONES		B(o,i) B'3 H3					
i	INVIERNO SECO		B(o,i) C' H3					
р	PRIMAVERA SECA		B(o,i) D' H3					
٧	VERANO SECO		B(r) A' H3					
0	OTOÑO SECO		B(r) A' H4					
d	DEFICIENCIA DE LLUVIAS EN TODAS LAS ESTACIONES		B(r) B'1 H4					
	EFICIENCIA DE TEMPERATURA		B(r) B'2 H3					
A'	CÁLIDO		B(r) C' H3					
B'1	SEMICALIDO		C(i) C' H3					
B'2	TEMPLADO		C(o,i) B'2 H3					
B'3	SEMIFRIO		C(o,i) C' H2					
C'	FRIO		C(o,i,p) A' H3					
D'	SEMIFRÍGIDO		C(o,i,p) B'2 H3					
E'	FRÍGIDO		C(o,i,p) B'3 H3					
F'	POLAR		C(o,i,p) C' H2					
	HUMEDAD ATMOSFÉRICA		C(o,i,p) C' H3					
H1	MUY SECO		D(o,i,p) B'2 H2					
	SECO		E(d) A' H2					
	HÚMEDO		E(d) A' H3					
H4	MUY HÚMEDO		E(d) B'1 H3					
			Lago					
			Nieve					

Imagen 12.- Mapa de la clasificación climática en el área de influencia

Fuente: Senamhi / Elaboración de Mapa equipo técnico

2.6.5.1. Clima

La zona de estudio se localiza entre los 3000 y 3350 msnm, presentando un clima se caracteriza por tener un clima semi seco y templado con una temperatura promedio de 9.5°C. Durante el año se observa dos estaciones: en la época de verano (octubre-marzo) las lluvias son copiosas y constantes, con temperaturas que varían entre los 12° y 21°C, durante el invierno (de abril a septiembre) las lluvias cesan y el frío se acentúa por las noches llegando a niveles bajo cero, pero durante el día el cielo se torna azul y despejado con temperaturas que llegan a los 16°C.

El Clima de la ciudad del Cusco presenta un clima templado seco, las precipitaciones en el distrito de Cusco son de origen orográfico y se caracterizan por que varían de intensidad habitualmente estas precipitaciones son relativamente fuertes, en general, se distingue un periodo seco con ausencia casi total de lluvias entre mayo y setiembre, comenzando el periodo lluvioso en octubre, para acentuarse entre enero y marzo; cuando estas características salen del régimen de sus condiciones normales y alteran los patrones de comportamiento climático, las cuales están relacionados directamente con los periodos lluviosos, desencadenan fenómenos de flujo de detritos.

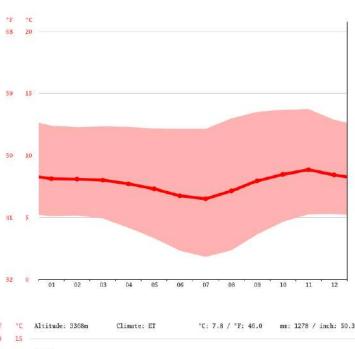
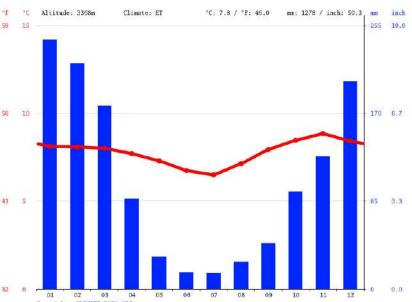



Gráfico 2.- Clima anual del proyecto

Fuente: Climas del Perú (Senamhi)

2.6.5.2. Precipitación

2.6.5.2.1. Estudio Hidrometereológico

Se tienen las precipitaciones mensuales provenientes del Servicio Nacional de Meteorología e Hidrología (SENAMHI) de la estacione hidrometeorológica que se encuentra cercana a nuestra zona de estudio, para poder determinar los umbrales de precipitación en el área de influencia.

Estación hidrometeorológica:

Granja Kayra

Precipitaciones máximas en 24 horas: El registro de precipitaciones máximas en 24 horas tomado de la Estación Pluviométrica de Kayra, nos muestra que los dos picos alcanzados en este parámetro meteorológico se dieron en los años 1993 y 2006, precisamente estas son las que originaron deslizamientos de tierra y acarreo de materiales.

Imagen 13.- Serie Histórica de precipitaciones máximas en 24 horas-Kayra

Año	Fnero	Febrero	Marzo	Ahril	Mayo	lunio	Iulio	Agosto	Satiombro	Octubro	Noviembre	Diciembre	DD MAY
1975	24.6	15.4	18.1	15.9	6	0.4	0.3	0.4	25	13	14.4	16.9	25
1976	13.4	15.4	20	12.7	5.9	5.2	0.5	1	7.6	16.2	12.8	18.8	20
1977	33.9	20.3	22	16	7.1	0	2.2	0	10.7	19.1	16.5	18.3	33.9
1978	27.2	16.4	21.1	20.2	7.1	0	3.4	0	6	7.4	21.4	19.3	27.2
1979	20	39	12.8	15.1	3.9	0	0.9	4.3	10.5	8.2	17.1	12.7	39
1980	23.9	38.2	27.1	10.4	3.7	0	5.1	0.4	4.8	11	9.6	19.5	38.2
1981	28.6	10.4	15.8	22.4	1.8	3.9	0	4		40.2	25.2	19.1	40.2
		16.4			0	5.9			7.6 3.2				
1982	27.4		29.6	17.1			3.4	1.4		13.4	21.4	18	29.6
1983	17.4	21.4	13.1	7.5	2.8	2.6	0.5	0.5	4.4	8.2	10.5	20.7	21.4
1984	36.5	19.4	14.3	25.9	0	0.9	1	7	2.1	18.6	9.6	31.4	36.5
1985	18.1	31.2	24.6	5	6.2	4.8	0.9	0	13	13.1	13.6	20.1	31.2
1986	12.5	26.2	14.5	20.8	2.8	0	1.8	2.6	3.4	8	18	27.5	27.5
1987	42.1	11.2	19.9	4.4	1	0.8	4.6	0	4.1	4.9	18	20.4	42.1
1988	28.4	14.3	35.2	23.8	1.8	0	0	0	7.7	20.2	18.4	25.2	35.2
1989	21.2	41.9	15.5	16.3	3.6	6.1	0	3.8	16	0	14	24.1	41.9
1990	26.5	20.3	11.3	8.9	3.6	9.3	0	3.6	5.3	14	14.5	19.5	26.5
1991	25.5	37.6	37.1	14.2	4.8	2.7	1.5	0	12.8	13.4	17.5	25.2	37.6
1992	13.9	18.8	21.2	6.8	0	19.1	0	14	5.2	16.2	22.6	15.4	22.6
1993	48.5	17.4	24.2	2.9	0.9	0	1.5	5.3	6.9	14.6	15.6	44.1	48.5
1994	39.6	30	20.4	12.3	8.6	0	0	0	10.5	17.4	7.1	28.3	39.6
1995	23.2	18.5	14.3	6.8	0	0	0.4	1.2	19.8	8.3	34.6	20.7	34.6
1996	24.6	17.3	31.3	7.4	6	0	0	3	8.3	11.6	10.5	23.8	31.3
1997	20.1	18.2	24.9	9.5	4.1	0	0	3.5	5.1	12.9	47	30	47
1998	35.9	23.1	4.9	11.7	1	1.9	0	1.5	3.3	11.1	18.9	14.1	35.9
1999	12.7	14.9	17	13.6	1.3	3.2	1	0	10.9	7.2	19.3	16.4	19.3
2000	25.5	24.9	22.6	5.7	0.8	4.5	1.5	2.4	4.9	9.5	17.3	11.4	25.5
2001	15.6	31	21.4	10.6	4.3	0	9.9	3.6	5.4	15.9	23.1	11.6	31
2002	21.2	25.1	13.5	8.1	5.7	1	6.9	2.4	2.6	15.2	26.7	23.5	26.7
2003	24.6	24	18	39.1	1	6.4	0	10.8	1.7	10.2	7	23.4	39.1
2004	24.5	30.8	12.6	6.4	1.4	12.6	8	4.9	7.3	14.7	11	25.2	30.8
2005	23	13.2	27.8	23.2	2	0.4	1.2	2.2	2.1	13.6	11.7	17.2	27.8
2006	37.3	51.6	26.4	30.2	0.2	4	0	5.4	4.1	15	12.6	15.3	51.6
2007	26.7	13.7	19.7	32.9	3.4	0	3	2	1 0 2	11.2	0	16.9	32.9
2008	25.6	27.9	11.2	5.6	2.8	1	_		8.3	11.2	24.5	16.4	27.9
2009	27.8	17.8	23.6	5.9	2.5	0	1.8	0.4	7.6	2.2	24.1	11.9	27.8
2010	41.2	25.7	25.7	5.1	1.3	0	1.4	2.6	3	18.6	10.9	35.9	41.2
2011	22.6	22	25	15.6	1.7	3.2	3	0	9.6	18.9	29.8	14.6	29.8
2012	14.8	47	8.1	28.4	3.4	1.2	0	0.1	10.3	9.2	30.7	24.3	47
2013	20.5	21.1	18.7	4.5	14.6	3	1	6.2	2.7	17.9	13.7	27.2	27.2
2014	31.1	21.9	8.8	16.9	4.4	0	1.4	3	7	0	15.8	35.6	35.6
2015	38.3	23.6	9.7	12.5	8	2.3	5.5	3	6.2	6.3	16.5	23.1	38.3
2016	19.1	24.2	9	5.4	3	0	4.5	0.5	2.9	22.7	12.8	14.5	24.2
2017	24.6	0	24.9	9.8	5.9	5.8	0	7	0	0	0	0	24.9

a) ESTACIÓN GRANJA KAYRA

Cuadro 13.- Estación meteorológica Granja Kayra

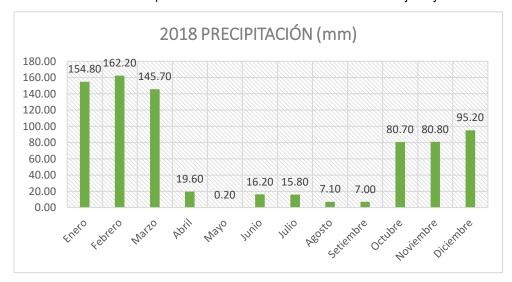
Estación: GRANJA KAYRA									
Departamento:	CUSCO	Provincia:	CUSCO	Distrito:	SAN JERONIMO				
Latitud:	13°33'24.29"	Longitud:	71°52'30.61"	Altitud:	3214 msnm.				
Tipo:	MAP - Meteorológica	Código:	100044						
Fuente: Senamhi	Fuente: Senamhi								

Cuadro 14.- Precipitación mensual 2017 al 2022

Año / Mes	Precipitación (mm)	Año / Mes	Precipitación (mm)	Año / Mes	Precipitación (mm)	Año / Mes	Precipitación (mm)	Año / Mes	Precipitación (mm)	Año / Mes	Precipitación (mm)
2017	TOTAL	2018	TOTAL	2019	TOTAL	2020	TOTAL	2021	TOTAL	2022	TOTAL
Enero	110.40	Enero	154.80	Enero	121	Enero	124.5	Enero	150.5	Enero	198.1
Febrero	84.30	Febrero	162.20	Febrero	126.6	Febrero	153.3	Febrero	116.5	Febrero	89.7
Marzo	118.10	Marzo	145.70	Marzo	164.4	Marzo	80.2	Marzo	74.1	Marzo	142.2
Abril	47.50	Abril	19.60	Abril	38.9	Abril	20.6	Abril	90.5	Abril	6.2
Mayo	11.20	Mayo	0.20	Mayo	28.2	Mayo	14.7	Mayo	6.7	Mayo	2.4
Junio	1.90	Junio	16.20	Junio	1.5	Junio	6.7	Junio	11.5	Junio	0.5
Julio	0.00	Julio	15.80	Julio	3.7	Julio	8.2	Julio	3	Julio	0
Agosto	8.00	Agosto	7.10	Agosto	0	Agosto	0	Agosto	4.3	Agosto	2.5
Setiembre	18.30	Setiembre	7.00	Setiembre	9.8	Setiembre	14.6	Setiembre	1.5	Setiembre	21.9
Octubre	27.70	Octubre	80.70	Octubre	82.4	Octubre	17.5	Octubre	38.2	Octubre	1.2
Noviembre	60.00	Noviembre	80.80	Noviembre	111.7	Noviembre	40.9	Noviembre	102.3	Noviembre	27.5
Diciembre	101.70	Diciembre	95.20	Diciembre	140.4	Diciembre	139.7	Diciembre	106.1	Diciembre	40.7
Total	589.10	Total	785.30	Total	828.6	Total	620.9	Total	705.2	Total	532.9
Promedio Mensual	49.09	-	65.44	-	69.05	-	51.74	-	58.77	-	44.41

Fuente: Senamhi

Gráfico 3.- Precipitación mensual del año 2017- Estación Granja Kayra

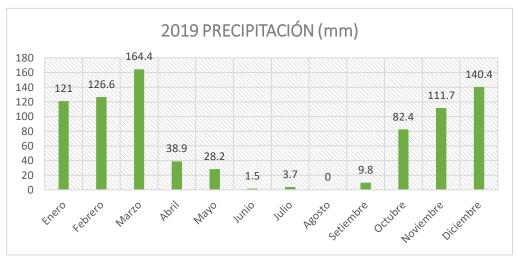
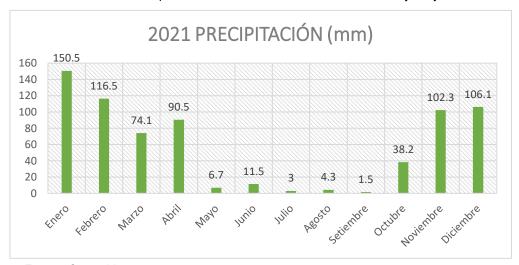


Gráfico 4.- Precipitación mensual del año 2018 - Estación Granja Kayra

Fuente: Senamhi

Gráfico 5.- Precipitación mensual del año 2019 - Estación Granja Kayra

Fuente: Senamhi


Gráfico 6.- Precipitación mensual del año 2020 - Estación Granja Kayra

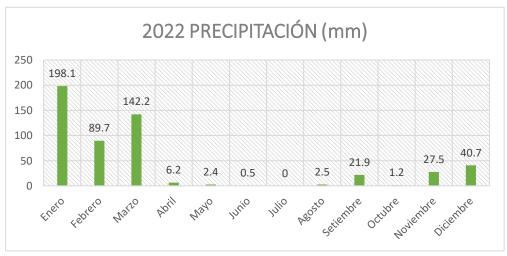


Gráfico 7.- Precipitación mensual del año 2021- Estación Granja Kayra

Fuente: Senamhi

Gráfico 8.- Precipitación mensual del año 2022 - Estación Granja Kayra

Fuente: Senamhi

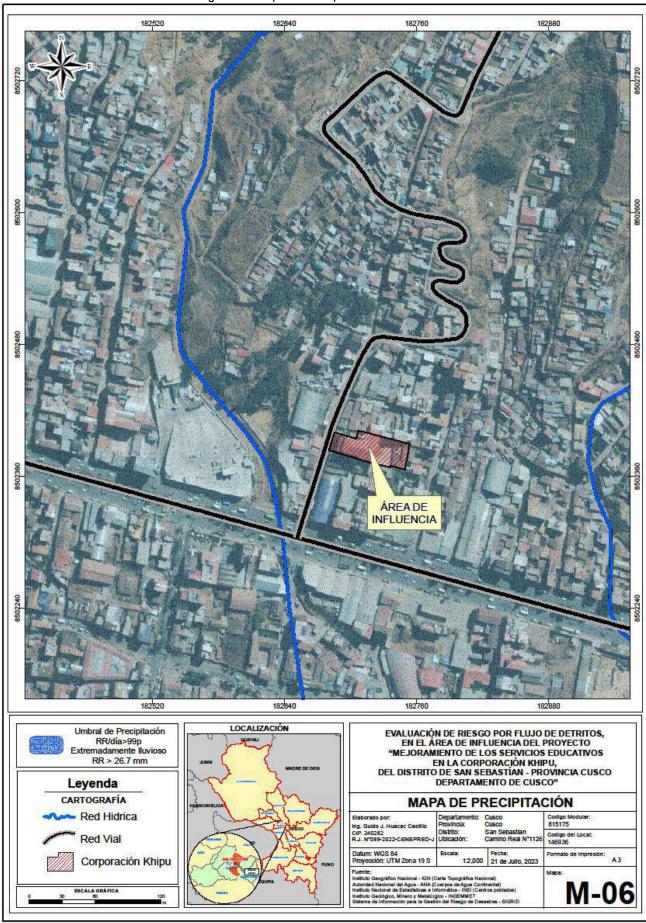
Gráfico 9.- Precipitación anual 2017 – 2022 Estación Granja kayra

Se realizó el análisis de las precipitaciones del año 2017 al 2022 en donde se observa que el área de estudió donde se encuentra el Proyecto, predominó las precipitaciones pluviales mayores a 26.7 mm, que comparando con las umbrales y precipitaciones absolutas de Senamhi, correspondería al umbral de precipitación RR/día>99p extremadamente lluvioso.

2.6.5.2.2. Umbrales de precipitación

En el Cuadro 19, se tomó como referencia los descriptores clasificados en cinco niveles, asociados a la estimación de umbrales y precipitaciones absolutas desde 1964 hasta 2014 (SENAMHI), se utilizó la metodología descrita en la nota técnica 001-SENAMHI-DGM-2014 "Estimación de umbrales de precipitaciones extremas para la emisión de avisos meteorológicos" (Alfaro et al., 2014).

Cuadro 15.- Umbrales de Precipitación


Umbrales de Precipitación	Caracterización de Iluvias	
RR/día>99p	Extremadamente lluvioso: RR> 26.7mm	Mayor precipitaciór
95p <rr día≤99p<="" td=""><td>Muy lluvioso: 16.5 mm<rr≤ 26.7mm<="" td=""><td></td></rr≤></td></rr>	Muy lluvioso: 16.5 mm <rr≤ 26.7mm<="" td=""><td></td></rr≤>	
90p <rr día≤95p<="" td=""><td>Lluvioso: 12.5 mm<rr≤ 16.5="" mm<="" td=""><td></td></rr≤></td></rr>	Lluvioso: 12.5 mm <rr≤ 16.5="" mm<="" td=""><td></td></rr≤>	
75p <rr día≤90p<="" td=""><td>Moderadamente Iluvioso: 6.8 mm <rr≤ 12,5mm<="" td=""><td>Menor</td></rr≤></td></rr>	Moderadamente Iluvioso: 6.8 mm <rr≤ 12,5mm<="" td=""><td>Menor</td></rr≤>	Menor
RR/día<75p	Ligeramente lluvioso: RR≤6.8mm	precipitaciór

Fuente: SENAMHI

Imagen 15.- Mapa de Precipitación.

Fuente: Elaboración del mapa por el equipo técnico

2.7. Identificación de peligros naturales en el área de intervención y vías de acceso

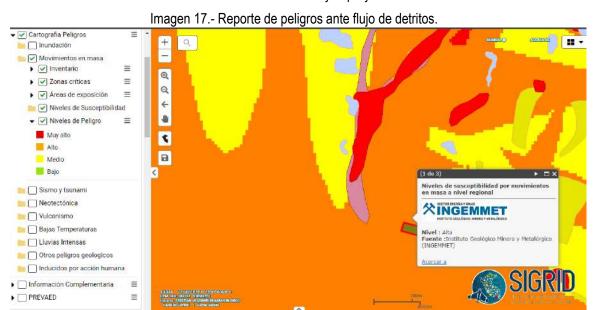
Para el desarrollo de este ítem se tomó en consideración la consulta del Sistema de Información para la Gestión de Riesgos de Desastres (SIGRID) y trabajo de campo.

El acceso a la Corporación Khipu se da por un acceso vial vehicular y un acceso peatonal conectadas a través de pase vehicular regular y pase peatonal regular de alto tránsito.

a) Peligros ante inundaciones.

Según la plataforma SIGRID el área de estudio no se encuentra expuesto a inundaciones, la zona de estudio se encuentra en riesgo bajo ante inundaciones.

Foto N°18 Exposición de las vías de acceso al proyecto frente a inundaciones.


Fuente: Equipo técnico

b) Peligros ante Flujo de detritos

Según la plataforma SIGRID, el nivel de susceptibilidad es alto, en el cartografiado de campo no se encontraron puntos críticos, caídas, flujos, movimientos complejos, reptaciones y vuelcos que afectan a las vías de acceso a la zona de estudio y al proyecto.

Fuente: SIGRID

c) Peligros ante Tsunamis y Sismos.

Se descarta la presencia de tsunamis, para los peligros por sismos la zona de estudio se encuentra en un periodo 1960-2014 según la evaluación del peligro asociado a sismos y efectos secundarios en el Perú, no está dentro de los valores de intensidad para ese periodo.

Imagen 18.- Reporte de peligros ante sísmicos y tsunami. → Cartografia Peligros . . Inundación Movimientos en masa Sismo y tsunami Q ▶ ☐ Areas de exposición a ≡ tsunami Q ▶ Sismos Historicos Imax ≡ >VII (MM) E Riesgo Sismico -Zonificación Sismica 4 ▶ ☐ Retorno local de sismos ≡ (Asperezas) B Intensidades sismicas máximas ▶ Periódo (1400-1900) ≡ ▶ ☐ Periódo (1900-1960) ≡ ✓ Periodo (1960-2014) X-XI 1X VIII Neotectónica Vulcanismo Bajas Temperaturas

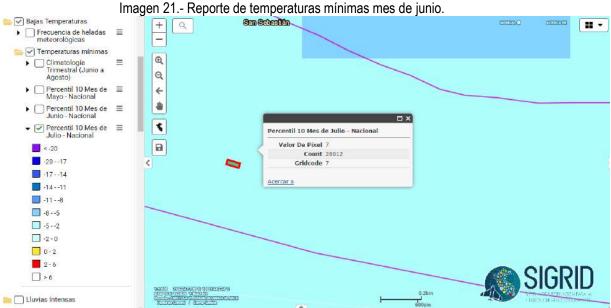
Fuente: SIGRID

d) Fallas

Se encontraron fallas geológicas cerca de la zona de estudio como la falla Cusco que está ubicada en el Valle del Cusco tiene una orientación Noroeste-Sureste.

Fuente: SIGRID

e) Bajas temperaturas


Las heladas tienen una frecuencia de 30 y 60, y un percentil en el mes de junio de temperatura mínima de -8°C a -5°C.

Fuente: SIGRID

Fuente: SIGRID

f) Lluvias intensas.

Presentan anomalías del niño 1997-1998, con un valor de 400 a 800, lo cual representa un valor bajo.

== -► PP Normal Acumulada ≡ (Sept - Mayo) ► Anomalías El Niño 1997 ≡ - 1998 0 ▼ Anomalias El Niño 1982 ≡ - 1983 Q **-** < 0 + San Sabastian 0 - 400 -400 - 800 Anomalías El Niño 1982 - 1983 800 - 1200 4 Minimo 400 1200 - 1600 8 Maximo 800 1600 - 2000 St Area Shape 12.218756 1 2000 - 2400 St Length Shape 72,714044 St Area(shape) 12,218756 2400 - 2800 St 72.714044 2800 - 3000 Length(shape) 3000 - 4000 4000 - 5000 500 - 6000 600 - 7000 > 7000 Wanding On Solson SIGRID otros peligros geologicos Inducidos por acción humana ▶ ☐ Información Complementaria

Imagen 22.- Reporte anomalías de precipitaciones por el fenómeno del niño 1997-1998.

Fuente: SIGRID

g) Otros peligros.

Se descarta la presencia de peligros por vulcanismo, inducidos por acción humana y otros peligros geológicos.

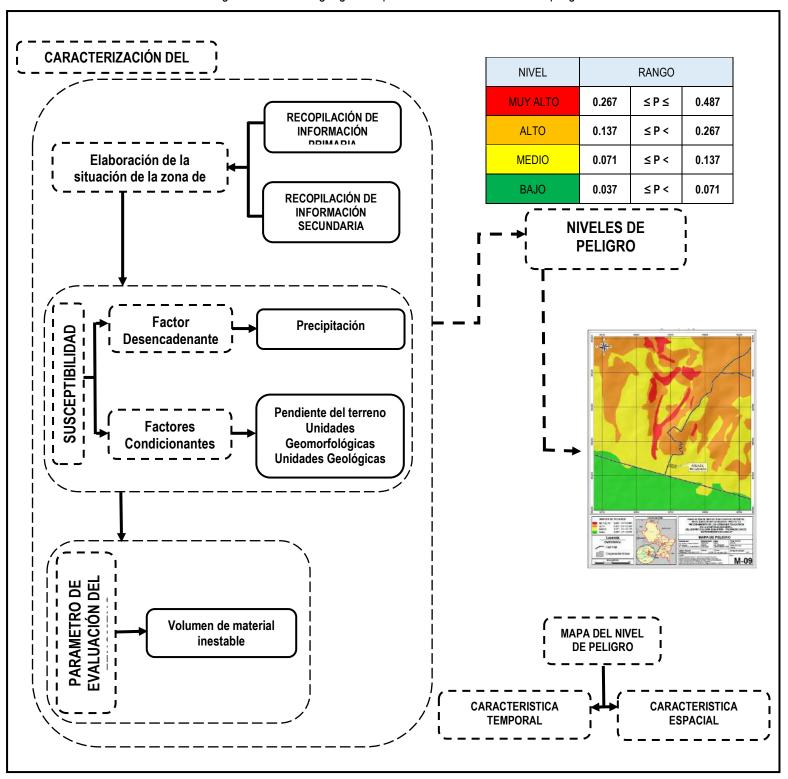
Verificación de no incumplir en incompatibilidad de ubicación.

Cuadro 16.- Incompatibilidad de ubicación en la Institución Educativa.

N°	INCOMPATIBILIDAD DE LAS IIEE	DISPOSITIVO LEGAL QUE SUSTENTA LA INCOMPATIBILIDAD DE UBICACIÓN	EN EL PROYECTO	JUSTIFICACION
1	En relación a los velatorios	D.S. N° 003-94-SA - Reglamento de la Ley de Cementerios y Servicios Funerarios.	CUMPLE	
2	En relación a los establecimientos de salud.	R.M. N° 045-2015/MINSA Norma Técnica de Salud N° 113-MINSA/DGIEM-V.01 "Infraestructura y equipamiento de los establecimientos de salud del Primer nivel de atención" y sus modificatorias R.M. N° 862-2015/MINSA Norma Técnica de Salud N° 119-MINSA/DGIEM-V.01 "Infraestructura y equipamiento de los establecimientos de salud del tercer nivel de atención.	CUMPLE	
3	EN relación a las plantas envasadoras de gas licuado de petróleo (GLP)	D.S. N°027-94-EM Reglamento de seguridad para instalaciones y transportes de Gas Licuado de Petróleo.	CUMPLE	
4	En relación a las estaciones de servicio y puestos de venta de combustible (grifos) gasocentros y establecimientos de venta al público de GNV	D.S. N° 054-93-EM (modificado por el D.S. N° 037- 2007-EM) Reglamento de seguridad para Establecimientos de Venta al público de Combustibles Derivados de Hidrocarburos.	CUMPLE	
5	En relación a los locales de comercialización y consumo de bebidas alcohólicas	Ley N° 28681 Ley que regula la comercialización, consumo y publicidad de bebidas alcohólicas D.S. N° 012-2009-SA Reglamento de la Ley N° 28681, que regula la comercialización. Consumo y publicidad de bebidas alcohólicas.	CUMPLE	
6	En relación a las plantas ende abastecimientos de combustibles líquidos y otros productos derivados de hidrocarburos	D.S. N° 045-2001-EM Reglamento para la comercialización de combustibles líquidos y otros productos derivados de los hidrocarburos.	CUMPLE	
7	En relación a las fajas marginales de las fuentes de agua, naturales y artificiales	D.S. N° 001-2010-AG Reglamento de la Ley de Recursos Hídricos.	CUMPLE	
8	En relación al sistema de transporte de hidrocarburos por ductos	D.S. N°081-2007-EM (modificado por D.S. N° 007- 2012-EM) Reglamento de transporte de hidrocarburos por ductos.	CUMPLE	
9	En relación de los pozos para la exploración y explotación de hidrocarburos	D.S. N° 032-2004-EM Reglamento de las Actividades de Exploración y Explotación de hidrocarburos	CUMPLE	
10	En relación a los aeródromos	D.S. N° 050-2001-MTC Reglamento de la Ley de Aeronáutica civil y sus modificaciones.	CUMPLE	
11	En relación a la servidumbre de líneas aéreas de instalaciones eléctricas	R.M. N° 214-2011-MEM/DM Código Nacional de Electricidad (Suministro 2011)	CUMPLE	

12	En relación a la servidumbre de electroductos	D. Ley N° 25884 Ley de Concesiones Eléctricas	CUMPLE	
13	En relación a las restricciones radioeléctricas en áreas de uso público cuando una IE se encuentras próximo a una estación radioeléctrica	R.M. N° 120-2005-MTC/03 Norma técnica sobre restricciones radioeléctricas en áreas de uso público.	CUMPLE	
14	En relación a las plantas de tratamiento de aguas residuales	D.S. N° 011-2006-VIVIENDA Norma OS.090 del RNE Plantas de tratamiento de aguas residuales	CUMPLE	
15	En relación a la faja de terreno lateral y colindante al derecho de vía	D.S. N° 034-2008-MTC Reglamento Nacional de Gestión de Infraestructura Vial.	CUMPLE	
16	En relación a las zonas restringidas colindantes a las vías ferroviarias	D.S. N° 032-2005-MTC Reglamento Nacional de Gestión de ferrocarriles.	CUMPLE	
17	En relación a los casinos y máquinas tragamonedas	Ley N° 27153 Ley que regula la explotación de los juegos de casino y máquinas tragamonedas y sus modificaciones.	CUMPLE	
18	En relación a los hostales, peñas, discotecas, video- pubs, bingos y salas de billar.	Según lo establecido por los Gobiernos Locales, que de acuerdo al numeral 3.6.4 del artículo 79° de la Ley N° 27972 - Ley Orgánica de Municipalidades, en materia de organización del espacio físico y uso del suelo, establece que son funciones específicas exclusivas de las municipalidades distritales, normar, regular y otorgar autorizaciones, derechos y licencias y realizar la fiscalización de la apertura de establecimientos comerciales, industriales y de actividades profesionales de acuerdo a la zonificación.	CUMPLE	

Fuente: Elaboración equipo técnico



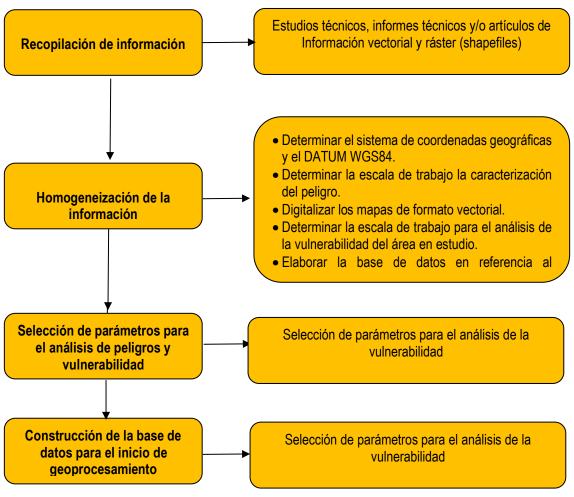
CAPÍTULO III: DETERMINACIÓN DEL PELIGRO

3.1. Metodología para la determinación del peligro

Para determinar los niveles de peligros ante la ocurrencia de sismos, se tuvo en cuenta los procedimientos establecidos en el Manual para la evaluación de riesgos originados por fenómenos naturales – 2da versión, realizándose los siguientes pasos:

Imagen 23.- Metodología general para determinar los niveles del peligro

Fuente: Metodología para determinar el nivel del peligro (Cenepred).


3.2. Identificación del área de influencia

El área de influencia es el proyecto "Mejoramiento de los servicios educativos en la corporación Khipu del distrito de San Sebastián, provincia Cusco, departamento de Cusco", en el sur del Perú, el cual tiene las siguientes coordenadas UTM (WGS 84 Zona 19 L) 182679.98 m E al este, 8502380.14 m S al norte.

3.3. Recopilación y análisis de información de la zona a evaluar

Se recopiló información disponible: Estudios publicados por entidades técnico científicas competentes (INGEMMET, SENAMHI, INEI), información histórica, estudio de peligros, cartografía, topografía, hidrología, climatología, geología y geomorfología del área de estudio del fenómeno de flujo de detritos a causa de las máximas precipitaciones. Así también, se ha realizado el análisis de la información proporcionada de entidades técnicas-científicas y estudios publicados.

Imagen 24.- Flujograma general del proceso de análisis de información.

Fuente: Cenepred

Caracterización del peligro

El proyecto ubicado en el distrito de San Sebastián, presentó emergencia de lluvias intensas producto de las precipitaciones, según la información de INDECI y estas mismas precipitaciones pueden desencadenar flujo de detritos en el área de influencia.

En el presente estudio se usará el parámetro de evaluación, el cual fue estimado en campo: **Volumen de material inestable.** Según el cartografiado y las mediciones en campo se estimó volúmenes hasta de 1000 m³ que ocasionaría flujo de detritos en el área de estudio.

3.4. Identificación de probable área de influencia

Para identificar y seleccionar el peligro a evaluar se ha realizado un trabajo de campo, porque según las plataformas en sistemas de información cartográfica y geográfica de las instituciones técnico científicas, la zona de estudio presenta exposición a peligros, pero con la verificación in situ se pudo evidenciar la exposición ante flujo de detritos, por la presencia de las lluvias y la pendiente

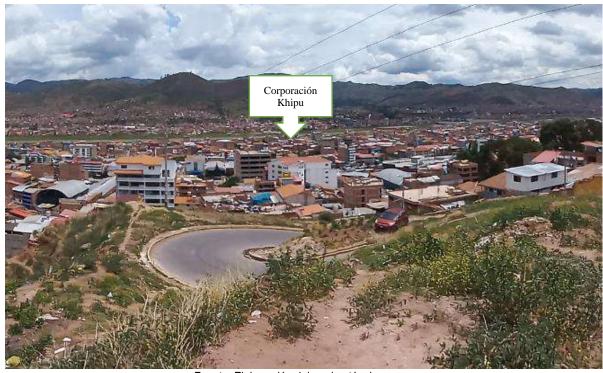
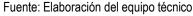
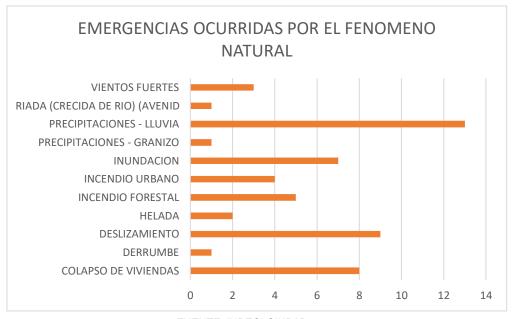


Foto N°19.- Ubicación del área de influencia

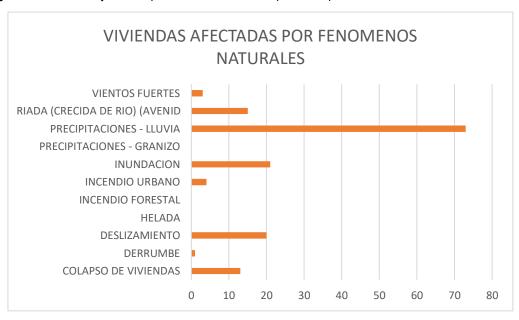


Imagen 25.- Emergencias ocurridas por Fenomenos Naturales en el distrito de San Sebastian

FUENTE: INDECI-SINPAD

Imagen 26.- Viviendas y locales publicos afectados e impactados por Fenomenos Naturales.

FUENTE: INDECI-SINPAD

En el trabajo de campo se contrastó y se validó la información recopilada por INDECI y SIGRID a nivel nacional, del mismo modo se trabajó en coordinación y apoyo con los representantes del proyecto, identificándose como peligro relevante flujo de detritos por la presencia de la pendiente de terreno en donde las precipitaciones desencadenarían el peligro que puede afectar al área de influencia.

3.5. Parámetros de evaluación

Para la obtención de los pesos ponderados de los parámetros de evaluación, se utilizó el proceso de análisis jerárquico. Los resultados obtenidos son los siguientes.

Cuadro 17.- Matriz de comparación de pares de los parámetros de evaluación.

Parámetros	de evaluación
Volumen de material inestable	1.00

Fuente: Elaboración del equipo técnico

a) Volumen de material inestable

Cuadro 18.- Matriz de comparación de pares del parámetro material inestable

Volumen de materiales inestables	Mayor a 1000 m ³	De 700 a 1000 m ³	De 300 a 700 m ³	De 100 a 300 m ³	Menor a 100 m ³
Mayor a 1000 m ³	1.00	3.00	5.00	6.00	7.00
De 700 a 1000 m ³	0.33	1.00	3.00	5.00	6.00
De 300 a 700 m ³	0.20	0.33	1.00	3.00	4.00
De 100 a 300 m ³	0.14	0.20	0.33	1.00	3.00
Menor a 100 m ³	0.11	0.14	0.20	0.33	1.00
SUMA	1.79	4.68	9.53	15.33	21.00
1/SUMA	0.56	0.21	0.10	0.07	0.05

Fuente: Elaboración del equipo técnico

Cuadro 19.- Matriz de normalización de pares del parámetro material inestable

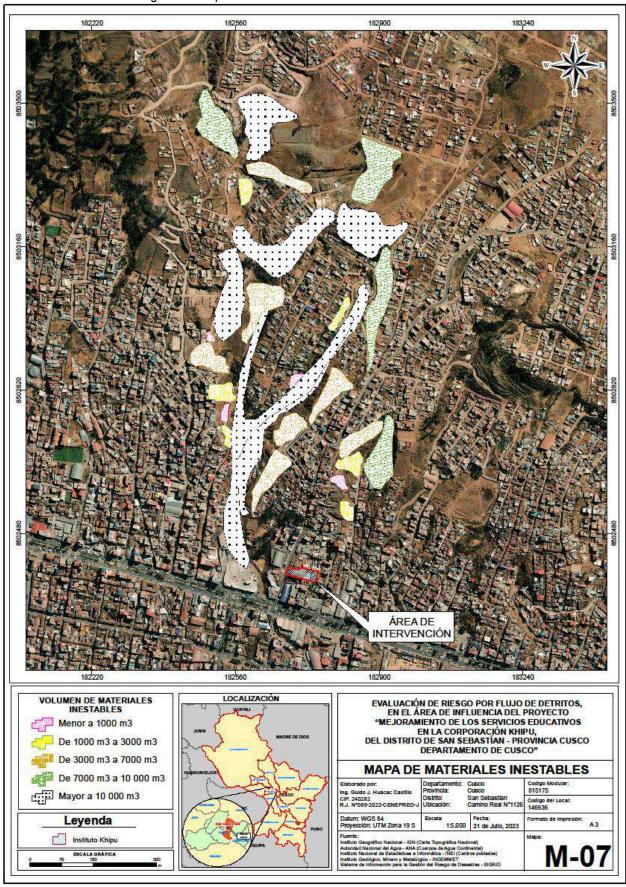
Volumen de materiales inestables	Mayor a 1000 m ³	De 700 a 1000 m ³	De 300 a 700 m ³	De 100 a 300 m ³	Menor a 100 m ³	Vector Priorización
Mayor a 1000 m ³	0.560	0.642	0.524	0.391	0.333	0.490
De 700 a 1000 m ³	0.187	0.214	0.315	0.326	0.286	0.265
De 300 a 700 m ³	0.112	0.071	0.105	0.196	0.190	0.135
De 100 a 300 m ³	0.080	0.043	0.035	0.065	0.143	0.073
Menor a 100 m ³	0.062	0.031	0.021	0.022	0.048	0.037

Fuente: Elaboración del equipo técnico

Cuadro 20.- Índice (IC) y Relación de consistencia (RC) del parámetro material inestable

INDICE DE CONSISTENCIA

RELACION DE CONSISTENCIA < 0.1 (*)


Fuente: Elaboración del equipo técnico

IC 0.029 RC 0.026

Imagen 27.- Mapa de volúmenes de materiales inestables

Fuente: Elaboración del mapa por el equipo técnico.

3.6. Susceptibilidad del territorio

Para la evaluación de la susceptibilidad ante flujo de detritos del proyecto "Mejoramiento de los servicios educativos en la corporación Khipu del distrito de San Sebastián, provincia Cusco, departamento de Cusco", se analiza los siguientes parámetros:

Cuadro 21.- Parámetros a considerar en la evaluación de la susceptibilidad

Factor Desencadenante	Factores Condicionantes
	Pendiente del terreno
Precipitación	Unidades geomorfológicas
	Unidades geológicas

Fuente: Elaboración del equipo técnico

La metodología a utilizar tanto para la evaluación del peligro como para el análisis de la vulnerabilidad es el procedimiento de Análisis Jerárquico mencionado en los Lineamientos para la elaboración del informe de Evaluación del Riesgo de Desastres en Proyectos de Infraestructura Educativa (Cenepred,2020).

A continuación, se desarrolla la matriz de comparación de pares, la matriz de normalización, índice de consistencias y los pesos ponderados de cada descriptor. Para el proceso de cálculo de los pesos ponderados se utiliza la tabla desarrollada por Saaty.

3.6.1. Análisis de los factores condicionantes

Para la obtención de los pesos ponderados de los parámetros de los factores condicionantes, se utilizó el proceso de análisis jerárquico. Los resultados obtenidos son los siguientes:

Cuadro 22.- Matriz de comparación de pares del parámetro factores condicionantes.

Factores Condicionantes	Pendientes de Terreno	Unidades Geomorfológicas	Unidades Geológicas
Pendientes de Terreno	1.00	3.00	7.00
Unidades Geomorfológicas	0.33	1.00	3.00
Unidades Geológicas	0.14	0.33	1.00
SUMA	1.48	4.33	11.00
1/SUMA	0.68	0.23	0.09

Fuente: Elaboración del equipo técnico

Cuadro 23.- Matriz de normalización de pares del parámetro factores condicionantes.

Factores Condicionantes	Pendiente de Terreno	Unidades Geomorfológicas	Unidades Geológicas	Vector Priorización
Pendientes de Terreno	0.677	0.692	0.636	0.669
Unidades Geomorfológicas	0.226	0.231	0.273	0.243
Unidades Geológicas	0.097	0.077	0.091	0.088

Fuente: Elaboración del equipo técnico

Cuadro 24.- Índice (IC) y Relación de consistencia (RC) del parámetro factores condicionantes.

ÍNDICE DE CONSISTENCIA

RELACIÓN DE CONSISTENCIA < 0.04 (*)

Fuente: Elaboración del equipo técnico

IC	0.004
RC	0.007

a) Pendientes del Terreno

Cuadro 25.- Matriz de comparación de pares del parámetro pendiente del terreno

Pendientes del Terreno	Muy empinado (> 30°)	Empinado (16°-30°)	Fuertemente inclinado (8° - 16°)	Moderadamente inclinado (4° - 8°)	Plano o casi al nivel (< 4°)
Muy empinado (> 30°)	1.00	2.00	5.00	7.00	8.00
Empinado (16°-30°)	0.50	1.00	2.00	5.00	7.00
Fuertemente inclinado (8° - 16°)	0.20	0.50	1.00	2.00	4.00
Moderadamente inclinado (4° - 8°)	0.14	0.20	0.50	1.00	2.00
Plano o casi al nivel (< 4°)	0.11	0.14	0.20	0.50	1.00
SUMA	1.95	3.84	8.70	15.50	22.00
1/SUMA	0.51	0.26	0.11	0.06	0.05

Fuente: Elaboración del equipo técnico

Cuadro 26.- Matriz de normalización de pares del parámetro pendiente del terreno

Pendientes del Terreno	Muy empinado (> 30°)	Empinado (16°- 30°)	Fuertemente inclinado (8° - 16°)	Moderadamente inclinado (4° - 8°)	Plano o casi al nivel (< 4°)	Vector Priorización
Muy empinado (> 30°)	0.512	0.520	0.575	0.452	0.364	0.484
Empinado (16°-30°)	0.256	0.260	0.230	0.323	0.318	0.277
Fuertemente inclinado (8° - 16°)	0.102	0.130	0.115	0.129	0.182	0.132
Moderadamente inclinado (4° - 8°)	0.073	0.052	0.057	0.065	0.091	0.068
Plano o casi al nivel (< 4°)	0.057	0.037	0.023	0.032	0.045	0.039

Fuente: Elaboración del equipo técnico

Cuadro 27.- Índice (IC) y Relación de consistencia (RC) del parámetro la pendiente del terreno

INDICE DE CONSISTENCIA

RELACION DE CONSISTENCIA < 0.1 (*)

Fuente: Elaboración del equipo técnico

IC 0.003 RC 0.003

b) Parámetro Unidades Geomorfológicas

Cuadro 28.- Matriz de comparación de pares del parámetro geomorfología

Unidades Geomorfológicas	Colina en roca sedimentaria	Altiplanicie sedimentaria	Vertiente o pie de monte coluvio-deluvial	Terraza coluvial	Terraza aluvial
Colina en roca sedimentaria	1.00	3.00	4.00	7.00	9.00
Altiplanicie sedimentaria	0.33	1.00	3.00	4.00	6.00
Vertiente o pie de monte coluvio-deluvial	0.25	0.33	1.00	3.00	5.00
Terraza coluvial	0.17	0.25	0.33	1.00	3.00
Terraza aluvial	0.11	0.17	0.25	0.33	1.00
SUMA	1.86	4.75	8.58	14.33	24.00
1/SUMA	0.54	0.21	0.12	0.07	0.04

Fuente: Elaboración del equipo técnico

Cuadro 29.- Matriz de normalización de pares del parámetro geomorfología

Unidades Geomorfológicas	Colina en roca sedimentaria	Altiplanicie sedimentaria	Vertiente o pie de monte coluvio- deluvial	Terraza coluvial	Terraza aluvial	Vector Priorización
Colina en roca sedimentaria	0.537	0.632	0.466	0.419	0.391	0.493
Altiplanicie sedimentaria	0.179	0.211	0.350	0.279	0.261	0.250
Vertiente o pie de monte coluvio-deluvial	0.134	0.070	0.117	0.209	0.174	0.145
Terraza coluvial	0.090	0.053	0.039	0.070	0.130	0.074
Terraza aluvial	0.060	0.035	0.029	0.023	0.043	0.037

Fuente: Elaboración del equipo técnico

Cuadro 30.- Índice (IC) y Relación de consistencia (RC) del parámetro geomorfología

INDICE DE CONSISTENCIA
RELACION DE CONSISTENCIA < 0.1 (*)

Fuente: Elaboración del equipo técnico

IC 0.074 RC 0.067

c) Parámetro Unidades Geológicas

Cuadro 31.- Matriz de comparación de pares del parámetro geología

Unidades Geológicas	Dep. Coluviales	Fm. Ayabacas	Fm. San Sebastían	Fm. Chincheros	Dep. Aluviales
Dep. Coluviales	1.00	3.00	4.00	6.00	8.00
Fm. Ayabacas	0.33	1.00	3.00	5.00	7.00
Fm. San Sebastían	0.25	0.33	1.00	3.00	5.00
Fm. Chincheros	0.13	0.25	0.33	1.00	2.00
Dep. Aluviales	0.11	0.13	0.25	0.33	1.00
SUMA	1.82	4.71	8.58	15.33	23.00
1/SUMA	0.55	0.21	0.12	0.07	0.04

Fuente: Elaboración del equipo técnico

Cuadro 32.- Matriz de normalización de pares del parámetro geología

Unidades Geológicas	Dep. Coluviales	Fm. Ayabacas	Fm. San Sebastían	Fm. Chincheros	Dep. Aluviales	Vector Priorizacion
Dep. Coluviales	0.550	0.637	0.466	0.391	0.348	0.478
Fm. Ayabacas	0.183	0.212	0.350	0.326	0.304	0.275
Fm. San Sebastían	0.137	0.071	0.117	0.196	0.217	0.148
Fm. Chincheros	0.069	0.053	0.039	0.065	0.087	0.063
Dep. Aluviales	0.061	0.027	0.029	0.022	0.043	0.036

Fuente: Elaboración del equipo técnico

Cuadro 33.- Índice (IC) y Relación de consistencia (RC) del parámetro geología

INDICE DE CONSISTENCIA
RELACION DE CONSISTENCIA < 0.1 (*)

Fuente: Elaboración del equipo técnico

IC 0.027 RC 0.024

3.6.2. Análisis del factor desencadenante

Por lo cual se realizará el método de jerarquía analíticas de Saaty en la ponderación de variables de lluvias anómalas para el escenario más probable en el cual suceda el fenómeno natural de inundaciones fluviales.

a) Parámetro precipitación

Cuadro 34.- Matriz de comparación de pares del parámetro precipitación

Umbrales De Precipitación	Extremadamente Iluvioso: (RR>26.7 mm)	Muy Iluvioso: (16.5 <rr≤26.7 mm)</rr≤26.7 	Lluvioso: (12.5 <rr≤16.5 mm)</rr≤16.5 	Moderadamente Iluvioso: (6.8 <rr≤12.5 mm)<="" th=""><th>Ligeramente Iluvioso: RR/≤75p (RR≤6.8)</th></rr≤12.5>	Ligeramente Iluvioso: RR/≤75p (RR≤6.8)
Extremadamente Iluvioso: (RR>26.7 mm)	1.00	3.00	4.00	5.00	7.00
Muy Iluvioso: (16.5 <rr≤26.7 mm)<="" th=""><th>0.33</th><th>1.00</th><th>3.00</th><th>4.00</th><th>7.00</th></rr≤26.7>	0.33	1.00	3.00	4.00	7.00
Lluvioso: (12.5 <rr≤16.5 mm)<="" th=""><th>0.25</th><th>0.33</th><th>1.00</th><th>3.00</th><th>6.00</th></rr≤16.5>	0.25	0.33	1.00	3.00	6.00
Moderadamente Iluvioso: (6.8 <rr≤12.5 mm)<="" th=""><th>0.14</th><th>0.25</th><th>0.33</th><th>1.00</th><th>4.00</th></rr≤12.5>	0.14	0.25	0.33	1.00	4.00
Ligeramente Iluvioso: RR/≤75p (RR≤6.8)	0.11	0.14	0.25	0.33	1.00
SUMA	1.84	4.73	8.58	13.33	25.00
1/SUMA	0.54	0.21	0.12	0.08	0.04

Fuente: Senamhi

Cuadro 35.- Matriz de normalización de pares del parámetro precipitación

Umbrales De Precipitación	Extremadamente Iluvioso: (RR>26.7 mm)	Muy Iluvioso: (16.5 <rr≤26.7 mm)</rr≤26.7 	Lluvioso: (12.5 <rr≤16.5 mm)</rr≤16.5 	Moderadamente Iluvioso: (6.8 <rr≤12.5 mm)<="" th=""><th>Ligeramente Iluvioso: RR/≤75p (RR≤6.8)</th><th>Vector Priorización</th></rr≤12.5>	Ligeramente Iluvioso: RR/≤75p (RR≤6.8)	Vector Priorización
Extremadamente Iluvioso: (RR>26.7 mm)	0.544	0.635	0.466	0.375	0.280	0.460
Muy Iluvioso: (16.5 <rr≤26.7 mm)</rr≤26.7 	0.181	0.212	0.350	0.300	0.280	0.265
Lluvioso: (12.5 <rr≤16.5 mm)</rr≤16.5 	0.136	0.071	0.117	0.225	0.240	0.158
Moderadamente Iluvioso: (6.8 <rr≤12.5 mm)<="" th=""><th>0.078</th><th>0.053</th><th>0.039</th><th>0.075</th><th>0.160</th><th>0.081</th></rr≤12.5>	0.078	0.053	0.039	0.075	0.160	0.081
Ligeramente Iluvioso: RR/≤75p (RR≤6.8)	0.060	0.030	0.029	0.025	0.040	0.037

Fuente: Senamhi

Cuadro 36.- Índice (IC) y Relación de consistencia (RC) del parámetro precipitación

INDICE DE CONSISTENCIA

RELACION DE CONSISTENCIA < 0.1 (*)

Fuente: Elaboración del equipo técnico

IC	0.082
RC	0.074

3.7. Análisis de elementos expuestos

Identificación de los elementos expuestos

Determinando los niveles de peligro y estratificando los niveles dentro del área de estudio, se identificó los elementos expuestos susceptibles (alumnos, docentes, infraestructura, etc.) que se encuentran en la zona potencial del impacto al peligro por flujo de detritos y que podrían sufrir los efectos ante la ocurrencia o manifestación del peligro.

3.7.1. Elementos expuestos susceptibles a nivel social

Los elementos expuestos inmersos al área de influencia fueron obtenidos con la información del Proyecto "Mejoramiento de los servicios educativos en la corporación Khipu del distrito de San Sebastián, provincia Cusco, departamento de Cusco", fueron obtenidos con información estadística.

a) Alumnos y docentes Institución Educativa Khipu:

Cuadro 37.- Cuadro de Aforo general

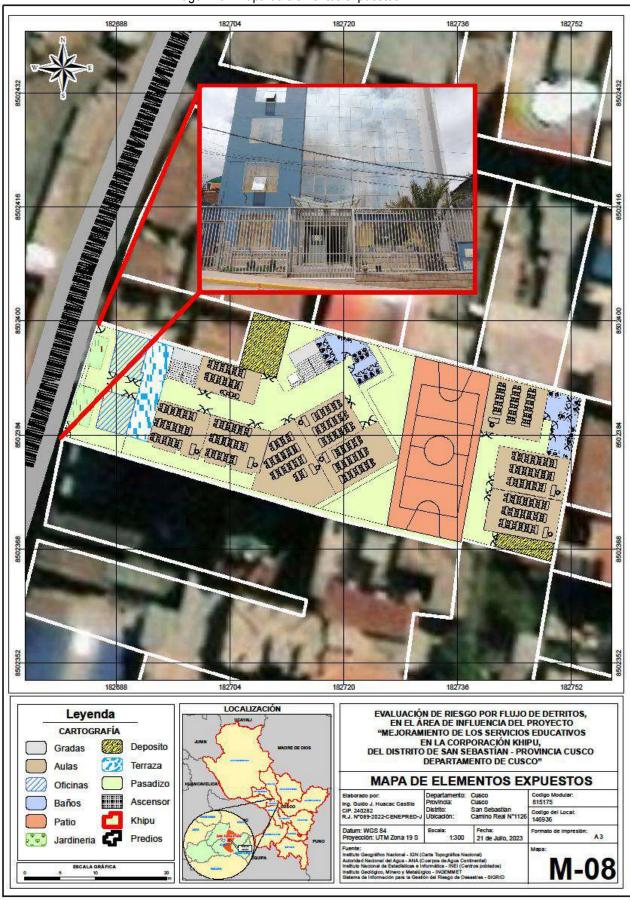
	CUADRO DE AFORO GENERAL						
DESCRIPCIÓN	A	FORO TOTAL DEL EDIFICI	0				
DESCRIPCION	BLOQUE A	BLOQUE B	TOTAL				
SÓTANO	60		60				
1° NIVEL	130	152	282				
2° NIVEL	181	105	286				
3° NIVEL	173	105	278				
4° NIVEL	148	105	253				
5° NIVEL	177		177				
6° NIVEL	177		177				
TOTAL PARCIAL	1104	03	1513				
AF	1513 PERSONAS						

Fuente: Estudio de demanda del proyecto

b) Infraestructura:

El área de influencia del proyecto, los cuales fueron obtenidos de los planos del proyecto "Mejoramiento de los servicios educativos en la corporación Khipu del distrito de San Sebastián, provincia Cusco, departamento de Cusco", según se detalla a continuación.

Cuadro 38.- Infraestructura de la Institución Educativa expuestas


CUADRO DE AREAS					
DESCRIPCION	BLOQUE A	BLOQUE B	AREA CONSTRUIDA TOTAL(m²)		
SÓTANO	271.00 m ²		271.00 m ²		
1° NIVEL	646.67 m ²	305.29 m ²	951.96 m ²		
2° NIVEL	573.65 m ²	301.39 m ²	875.04 m ²		
3° NIVEL	573.65 m ²	301.39 m ²	875.04 m ²		
4° NIVEL	573.65 m ²	301.39 m ²	875.04 m ²		
5° NIVEL	528.80 m ²		528.80 m ²		
6° NIVEL	528.80 m ²		528.80 m ²		
AREA CONSTRUIDA	3696.22 m ²	1209.46 m ²	4905.68 m ²		
AREA TOTAL DEL TERRENO1546.48 m ²					
PERIMETRO TOTAL DEL TERRENO187.68 ml					
AREA LIBRE DE TERRENO38.44% = 594.52 m ²					

Fuente: Información de planos del proyecto

Imagen 28.- Mapa de elementos expuestos

Fuente: Elaboración del equipo técnico.

3.8. Definición de escenarios

Se ha considerado el escenario muy alto, durante la temporada de precipitaciones en la ciudad de Cusco, se registran días extremadamente lluviosos que superan los 26.7 mm (milímetros), en donde se estima que podría ocurrir flujo de detritos de materiales inestables mayor a 1000 m³, producto de pendiente de terreno muy empinada mayor a 30°(grados), con geoforma de colina en roca sedimentaria y litológicamente por depósitos coluviales, que ocasionara severos daños y pérdidas probables en los elementos expuestos en la dimensión social, económica y ambiental, en el área de influencia del proyecto "Mejoramiento de los servicios educativos en la corporación Khipu, distrito de San Sebastián, provincia Cusco, departamento de Cusco".

3.9. Niveles de peligro

En el siguiente cuadro, se muestran los procedimientos del análisis jerárquico obteniendo los niveles de peligro y sus respectivos rangos.

Cuadro 39.- Niveles de peligro

NIVEL	RANGO		
MUY ALTO	0.268	≤P≤	0.485
ALTO	0.138	≤ P <	0.268
MEDIO	0.072	≤ P <	0.138
BAJO	0.037	≤ P <	0.072

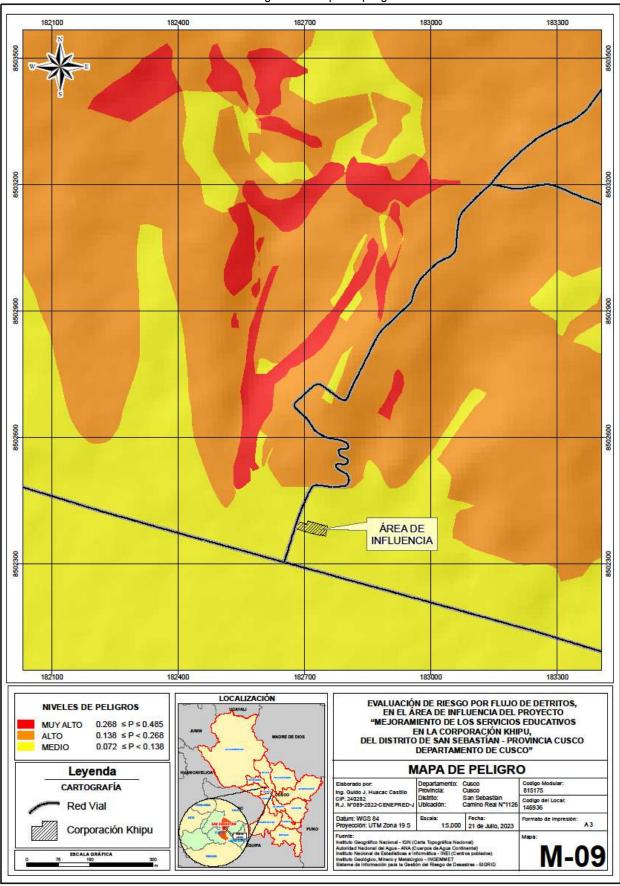
Fuente: Elaboración del equipo técnico

3.10. Estratificación del nivel del peligro

En el siguiente cuadro, se muestran los procedimientos del análisis jerárquico obteniendo los niveles de peligro y sus respectivos rangos.

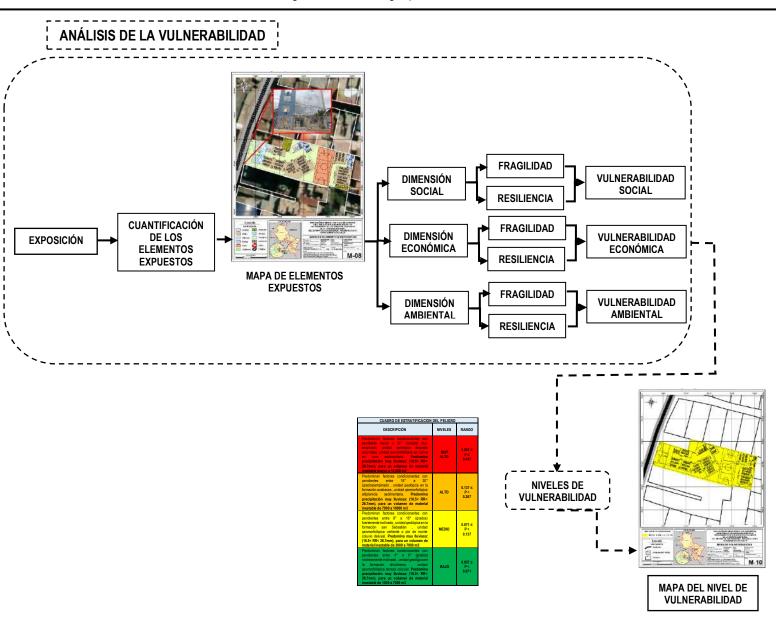
Cuadro 40.- Cuadro de estratificación del peligro

NIVELES DE PELIGRO	ro de estratificación del peligro DESCRIPICION	RANGO
MUY ALTO	Durante la temporada de precipitaciones, se registran días extremadamente lluviosos que superan los 26.7 mm (milímetros), en donde se estima que podría ocurrir flujo de detritos de materiales inestables mayor a 1000 m³, producto de pendiente de terreno muy empinada mayor a 30°(grados), con geoforma de colina en roca	0.268 ≤ P ≤ 0.485
ALTO	sedimentaria y litológicamente por depósitos coluviales. Durante la temporada de precipitaciones, se registran días extremadamente lluviosos que superan los 26.7 mm (milímetros), en donde se estima que podría ocurrir flujo de detritos de materiales inestables de 700 a 1000 m³, producto de pendiente de terreno empinados de 16° a 30° (grados), con geoformas de altiplanicie sedimentaria y litológicamente por la formación Ayabacas.	0.138 ≤ P < 0.268
MEDIO	Durante la temporada de precipitaciones, se registran días extremadamente lluviosos que superan los 26.7 mm (milímetros), en donde se estima que podría ocurrir flujo de detritos de materiales inestables de 100 a 300 m³, producto de pendiente de terreno moderadamente inclinados de 4° a 8° (grados), con geoformas de terraza coluvial y litológicamente por la formación San Sebastián.	0.072 ≤ P < 0.138
BAJO	Durante la temporada de precipitaciones, se registran días extremadamente lluviosos que superan los 26.7 mm (milímetros), en donde se estima que podría ocurrir flujo de detritos de materiales inestables menor de 100 m³, producto de pendiente de terreno planas o casi al nivel, menor a 4° (grados), con geoformas de terraza aluvial y litológicamente por depósitos aluviales.	0.037 ≤ P < 0.072


Fuente: Elaboración del equipo técnico

3.11. Mapa de peligro

Imagen 29.- Mapa de peligro


CAPÍTULO IV: ANÁLISIS DE LA VULNERABILIDAD.

4.1. Análisis de vulnerabilidad

4.1.1. Metodología para el análisis de la vulnerabilidad

Para efectos de analizar la vulnerabilidad de los elementos expuestos respecto al ámbito de estudio, se ha desarrollado la siguiente metodología.

Imagen 30.- Metodología para el análisis de vulnerabilidad

Fuente: Cenepred

4.2. Vulnerabilidad en Dimensión Social

Para el análisis de la vulnerabilidad en su dimensión social, se evaluaron los siguientes parámetros:

Cuadro 41.- Parámetros a utilizar en los factores exposición, fragilidad y resiliencia de la dimensión social

Dimensión Social						
Exposición Fragilidad Resiliencia						
Cantidad de personas por nivel	Grupos etarios de la comunidad educativa	Conocimiento de zonas de evacuación				
-	-	Actitud frente al riesgo				

Fuente: Elaboración del equipo técnico

4.2.1. Análisis de la exposición en la dimensión social

a) Parámetro: Niveles educativos

Cuadro 42.- Matriz de comparación de pares del parámetro Cantidad de personas x nivel

Cantidad de personas por nivel	Mayor a 200 personas	De 150 a 200 personas	De 100 a 150 personas	De 50 a 100 personas	Menor a 50 personas
Mayor a 200 personas	1.00	3.00	5.00	7.00	9.00
De 150 a 200 personas	0.33	1.00	2.00	3.00	7.00
De 100 a 150 personas	0.20	0.50	1.00	2.00	3.00
De 50 a 100 personas	0.14	0.33	0.50	1.00	5.00
Menor a 50 personas	0.11	0.14	0.33	0.20	1.00
SUMA	1.79	4.98	8.83	13.20	25.00
1/SUMA	0.56	0.20	0.11	0.08	0.04

Fuente: Elaboración del equipo técnico

Cuadro 43.- Matriz de normalización del parámetro Cantidad de personas x nivel

Cantidad de personas por nivel	Mayor a 200 personas	De 150 a 200 personas	De 100 a 150 personas	De 50 a 100 personas	Menor a 50 personas	Vector Priorización
Mayor a 200 personas	0.56	0.60	0.57	0.53	0.36	0.524
De 150 a 200 personas	0.19	0.20	0.23	0.23	0.28	0.224
De 100 a 150 personas	0.11	0.10	0.11	0.15	0.12	0.119
De 50 a 100 personas	0.08	0.07	0.06	0.08	0.20	0.096
Menor a 50 personas	0.06	0.03	0.04	0.02	0.04	0.037

Fuente: Elaboración del equipo técnico

Cuadro 44.- Índice (IC) y Relación de consistencia (RC) del parámetro Cantidad de personas x nivel

INDICE DE CONSISTENCIA

RELACION DE CONSISTENCIA < 0.1(*)

IC 0.056 RC 0.050

4.2.2. Análisis de la fragilidad en la dimensión social

Cuadro 45.- Parámetros de la fragilidad social

Fragilidad Social	Peso
Grupos etarios de la comunidad educativa	1.00

Fuente: Elaboración del equipo técnico

a) Parámetro: Grupo de edades de la comunidad educativa

Cuadro 46.- Matriz de comparación de pares del parámetro Grupo Etario

Grupos etarios de la comunidad educativa	Menor a 20 años y mayores a 60 años	De 50 a 60 años	De 40 a 50 años	De 30 a 40 años	De 20 a 30 años
Menor a 20 años y mayores a 60 años	1.00	2.00	5.00	7.00	9.00
De 50 a 60 años	0.50	1.00	3.00	5.00	7.00
De 40 a 50 años	0.20	0.33	1.00	3.00	5.00
De 30 a 40 años	0.14	0.20	0.33	1.00	3.00
De 20 a 30 años	0.11	0.14	0.20	0.33	1.00
SUMA	1.95	3.68	9.53	16.33	25.00
1/SUMA	0.51	0.27	0.10	0.06	0.04

Fuente: Elaboración del equipo técnico

Cuadro 47.- Matriz de normalización de pares del parámetro Grupo Etario

Grupos etarios de la comunidad educativa	Menor a 20 años y mayores a 60 años	De 50 a 60 años	De 40 a 50 años	De 30 a 40 años	De 20 a 30 años	Vector Priorización
Menor a 20 años y mayores a 60 años	0.512	0.544	0.524	0.429	0.360	0.474
De 50 a 60 años	0.256	0.272	0.315	0.306	0.280	0.286
De 40 a 50 años	0.102	0.091	0.105	0.184	0.200	0.136
De 30 a 40 años	0.073	0.054	0.035	0.061	0.120	0.069
De 20 a 30 años	0.057	0.039	0.021	0.020	0.040	0.035

Fuente: Elaboración del equipo técnico

Cuadro 48.- Índice (IC) y Relación de consistencia (RC) del parámetro Grupo Etario

INDICE DE CONSISTENCIA

RELACION DE CONSISTENCIA < 0.1(*)

0.047 IC RC 0.043

4.2.3. Análisis de la resiliencia en la dimensión social

Cuadro 49.- Parámetros de la resiliencia social

Resiliencia social	Peso
Actitud frente al riesgo	0.5
Conocimiento sobre la ruta de evacuación	0.5

Fuente: Elaboración del equipo técnico

a) Parámetro: Actitud frente al riesgo

Cuadro 50.- Matriz de comparación de pares del parámetro actitud frente al riesgo.

ACTITUD FRENTE AL RIESGO	Actitud fatalista	Escasamente previsora	Parcialmente previsora sin medidas para prevenir	Parcialmente previsora con medidas para prevenir	Actitud previsora
Actitud fatalista	1.00	2.00	3.00	5.00	7.00
Escasamente previsora	0.50	1.00	2.00	3.00	5.00
Parcialmente previsora sin medidas para prevenir	0.33	0.50	1.00	2.00	3.00
Parcialmente previsora con medidas para prevenir	0.20	0.33	0.50	1.00	5.00
Actitud previsora	0.14	0.20	0.33	0.20	1.00
SUMA	2.18	4.03	6.83	11.20	21.00
1/SUMA	0.46	0.25	0.15	0.09	0.05

Fuente: Elaboración del equipo técnico

Cuadro 51.- Matriz de normalización de pares del parámetro actitud frente al riesgo.

ACTITUD FRENTE AL RIESGO	Actitud fatalista	Escasamente previsora	Parcialmente previsora sin medidas para prevenir	Parcialmente previsora con medidas para prevenir	Actitud previsora	Vector Priorización
Actitud fatalista	0.460	0.496	0.439	0.446	0.333	0.435
Escasamente previsora	0.230	0.248	0.293	0.268	0.238	0.255
Parcialmente previsora sin medidas para prevenir	0.153	0.124	0.146	0.179	0.143	0.149
Parcialmente previsora con medidas para prevenir	0.092	0.083	0.073	0.089	0.238	0.115
Actitud previsora	0.066	0.050	0.049	0.018	0.048	0.046

Fuente: Elaboración del equipo técnico

Cuadro 52.- Índice (IC) y Relación de consistencia (RC) del parámetro actitud frente al riesgo

INDICE DE CONSISTENCIA

RELACION DE CONSISTENCIA < 0.1(*)

Fuente: Elaboración del equipo técnico

IC 0.051

RC 0.046

b) Parámetro: Conocimiento sobre la ruta de evacuación

Cuadro 53.- Matriz de comparación de pares del parámetro Conocimiento sobre la ruta de evacuación

CONOCIMIENTO SOBRE LA RUTA DE EVACUACIÓN	Desconocimiento de la ruta de evacuación	Básico conocimiento de la ruta de evacuación	Intermedio conocimiento de la ruta de evacuación	Avanzado conocimiento de la ruta de evacuación	Avanzado conocimiento de la ruta de evacuación y lo aplica
Desconocimiento de la ruta de evacuación	1.00	2.00	3.00	5.00	7.00
Básico conocimiento de la ruta de evacuación	0.50	1.00	3.00	5.00	7.00
Intermedio conocimiento de la ruta de evacuación	0.33	0.33	1.00	3.00	5.00
Avanzado conocimiento de la ruta de evacuación	0.20	0.20	0.33	1.00	3.00
Avanzado conocimiento de la ruta de evacuación y lo aplica	0.14	0.14	0.20	0.33	1.00
SUMA	2.18	3.68	7.53	14.33	23.00
1/SUMA	0.46	0.27	0.13	0.07	0.04

Fuente: Elaboración del equipo técnico

Cuadro 54.- Matriz de normalización de pares del parámetro Conocimiento sobre la ruta de evacuación

Cuadro 34 Matriz de normalización de pares del parametro Conocimiento sobre la ruta de evacuación						
CONOCIMIENTO SOBRE LA RUTA DE EVACUACIÓN	Desconocimiento de la ruta de evacuación	Básico conocimiento de la ruta de evacuación	Intermedio conocimiento de la ruta de evacuación	Avanzado conocimiento de la ruta de evacuación	Avanzado conocimiento de la ruta de evacuación y lo aplica	Vector Priorización
Desconocimiento de la ruta de evacuación	0.460	0.544	0.398	0.349	0.304	0.411
Básico conocimiento de la ruta de evacuación	0.230	0.272	0.398	0.349	0.304	0.311
Intermedio conocimiento de la ruta de evacuación	0.153	0.091	0.133	0.209	0.217	0.161
Avanzado conocimiento de la ruta de evacuación	0.092	0.054	0.044	0.070	0.130	0.078
Avanzado conocimiento de la ruta de evacuación y lo aplica	0.066	0.039	0.027	0.023	0.043	0.040

Fuente: Elaboración del equipo técnico

Cuadro 55.- Índice (IC) y Relación de consistencia (RC) del parámetro Conocimiento sobre la ruta de evacuación

INDICE DE CONSISTENCIA
RELACION DE CONSISTENCIA < 0.1(*)

Fuente: Elaboración del equipo técnico

IC 0.049
RC 0.044

4.3. Vulnerabilidad en dimensión económica

Para el análisis de la vulnerabilidad en su dimensión económica, se evaluaron los siguientes parámetros

Cuadro 56.- Parámetros a utilizar en los factores exposición, fragilidad y resiliencia de la dimensión social

Dimensión Económica						
Exposición	Resiliencia					
Localizacion de la infraestructura respecto al área de impacto del peligro	Tipo de material predominante pared de la infraestructura	Cumplimiento de la normatividad RNE en el diseño y construcción de la infraestructura				
-	Estado de conservación de la infraestructura	-				

Fuente: Elaboración del equipo técnico

4.3.1. Análisis de la exposición en la dimensión económica

a) Parámetro: localización de la infraestructura respecto al área de impacto del peligro

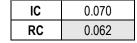
Cuadro 57.- Matriz de comparación de pares del parámetro localización de la infraestructura respecto al

Localización de la infraestructura respecto al área de impacto del peligro	Muy cercana	Cerca	Medianamente cercano	Alejado	Muy alejado
Muy cercana	1.00	2.00	4.00	6.00	8.00
Cerca	0.50	1.00	2.00	4.00	6.00
Medianamente cercano	0.25	0.50	1.00	3.00	5.00
Alejado	0.17	0.25	0.33	1.00	5.00
Muy alejado	0.13	0.17	0.20	0.20	1.00
SUMA	2.04	3.92	7.53	14.20	25.00
1/SUMA	0.49	0.26	0.13	0.07	0.04

área de impacto del peligro

Fuente: Elaboración del equipo técnico

Cuadro 58.- Matriz de normalización de pares del parámetro localización de la infraestructura respecto al área de impacto del peligro


Localización de la infraestructura respecto al área de impacto del peligro	Muy cercana	Cerca	Medianamente cercano	Alejado	Muy alejado	Vector Priorización
Muy cercana	0.490	0.511	0.531	0.423	0.320	0.455
Cerca	0.245	0.255	0.265	0.282	0.240	0.257
Medianamente cercano	0.122	0.128	0.133	0.211	0.200	0.159
Alejado	0.082	0.064	0.044	0.070	0.200	0.092
Muy alejado	0.061	0.043	0.027	0.014	0.040	0.037

Fuente: Elaboración del equipo técnico

Cuadro 59.- Índice (IC) y Relación de consistencia (RC) del parámetro localización de la infraestructura respecto al area de impacto del peligro

INDICE DE CONSISTENCIA

RELACION DE CONSISTENCIA < 0.1 (+)

4.3.2. Análisis de la fragilidad en la dimensión económica

Cuadro 60.- Parámetros de la fragilidad económica

Fragilidad económica	Peso
Tipo de material predominante pared de la infraestructura	0.5
Estado de conservación de la infraestructura	0.5

Fuente: Elaboración del equipo técnico

a) Parámetro: Tipo de material predominante en la edificación

Cuadro 61.- Matriz de comparación de pares del parámetro Tipo de material predominante pared de la infraestructura

Tipo de material predominante pared de la infraestructura	Vidrio	Drywall	Adobe	Ladrillo o bloque de cemento	Concreto armado
Vidrio	1.00	2.00	5.00	7.00	8.00
Drywall	0.50	1.00	3.00	5.00	6.00
Adobe	0.20	0.33	1.00	3.00	4.00
Ladrillo o bloque de cemento	0.14	0.20	0.33	1.00	4.00
Concreto armado	0.13	0.17	0.25	0.25	1.00
SUMA	1.97	3.70	9.58	16.25	23.00
1/SUMA	0.51	0.27	0.10	0.06	0.04

Fuente: Elaboración del equipo técnico

Cuadro 62.- Matriz de normalización de pares del parámetro Tipo de material predominante pared de la infraestructura

Tipo de material predominante pared de la infraestructura	Vidrio	Drywall	Adobe	Ladrillo o bloque de cemento	Concreto armado	Vector Priorización
Vidrio	0.508	0.541	0.522	0.431	0.348	0.470
Drywall	0.254	0.270	0.313	0.308	0.261	0.281
Adobe	0.102	0.090	0.104	0.185	0.174	0.131
Ladrillo o bloque de cemento	0.073	0.054	0.035	0.062	0.174	0.079
Concreto armado	0.064	0.045	0.026	0.015	0.043	0.039

Fuente: Elaboración del equipo técnico

Cuadro 63.- Índice (IC) y Relación de consistencia (RC) del parámetro Tipo de material predominante pared de la infraestructura

INDICE DE CONSISTENCIA

RELACION DE CONSISTENCIA < 0.1 (+)

Fuente: Elaboración del equipo técnico

IC 0.074

RC 0.066

b) Parámetro: Estado de conservación de la Infraestructura

Cuadro 64.- Matriz de comparación de pares del parámetro estado de conservación de la infraestructura

Estado de conservación de la infraestructura	Muy malo	Malo	Regular	Bueno	Muy bueno
Muy malo	1.00	3.00	4.00	6.00	9.00
Malo	0.33	1.00	3.00	5.00	7.00
Regular	0.25	0.33	1.00	4.00	5.00
Bueno	0.17	0.20	0.25	1.00	3.00
Muy bueno	0.11	0.14	0.20	0.33	1.00
SUMA	1.86	4.68	8.45	16.33	25.00
1/SUMA	0.54	0.21	0.12	0.06	0.04

Fuente: Elaboración del equipo técnico

Cuadro 65.- Matriz de normalización de pares del parámetro estado de conservación de la infraestructura

Estado de conservación de la infraestructura	Muy malo	Malo	Regular	Bueno	Muy bueno	Vector Priorización
Muy malo	0.537	0.642	0.473	0.367	0.360	0.476
Malo	0.179	0.214	0.355	0.306	0.280	0.267
Regular	0.134	0.071	0.118	0.245	0.200	0.154
Bueno	0.090	0.043	0.030	0.061	0.120	0.069
Muy bueno	0.060	0.031	0.024	0.020	0.040	0.035

Fuente: Elaboración del equipo técnico

Cuadro 66.- Índice (IC) y Relación de consistencia (RC) del parámetro estado de conservación de la infraestructura

INDICE DE CONSISTENCIA

RELACION DE CONSISTENCIA < 0.1 (+)

Fuente: Elaboración del equipo técnico

IC 0.073 RC 0.065

4.3.3. Análisis de la resiliencia en la Dimensión Económica.

Cuadro 67.- Parámetros de la resiliencia económica

Resiliencia Económica	Peso
Cumplimiento de la normatividad RNE en el diseño y construcción	1.00

Fuente: Elaboración del equipo técnico

a) Parámetro: Cumplimiento con el reglamento nacional de infraestructura

Cuadro 68.- Matriz de comparación de pares del parámetro Cumplimiento de la normatividad RNE en el diseño y construcción

Cumplimiento de la normatividad RNE en el diseño y construcción	No cumple con el RNE	Cumplimiento escaso del RNE	Cumple parcialmente el RNE	Cumple con casi todo el RNE	Cumplimiento total del RNE
No cumple con el RNE	1.00	2.00	5.00	7.00	8.00
Cumplimiento escaso del RNE	0.50	1.00	3.00	5.00	7.00
Cumple parcialmente el RNE	0.20	0.33	1.00	3.00	6.00
Cumple con casi todo el RNE	0.14	0.20	0.33	1.00	3.00
Cumplimiento total del RNE	0.13	0.14	0.17	0.33	1.00
SUMA	1.97	3.68	9.50	16.33	25.00
1/SUMA	0.51	0.27	0.11	0.06	0.04

Fuente: Elaboración del equipo técnico

Cuadro 69.- Matriz de normalización de pares del parámetro Cumplimiento de la normatividad RNE en el diseño v construcción

Cumplimiento de la normatividad RNE en el diseño y construcción	No cumple con el RNE	Cumplimiento escaso del RNE	Cumple parcialmente el RNE	Cumple con casi todo el RNE	Cumplimiento total del RNE	Vector Priorización
No cumple con el RNE	0.508	0.544	0.526	0.429	0.320	0.465
Cumplimiento escaso del RNE	0.254	0.272	0.316	0.306	0.280	0.286
Cumple parcialmente el RNE	0.102	0.091	0.105	0.184	0.240	0.144
Cumple con casi todo el RNE	0.073	0.054	0.035	0.061	0.120	0.069
Cumplimiento total del RNE	0.064	0.039	0.018	0.020	0.040	0.036

Fuente: Elaboración del equipo técnico

Cuadro 70.- Índice (IC) y Relación de consistencia (RC) del parámetro Cumplimiento de la normatividad RNE en el diseño y construcción

INDICE DE CONSISTENCIA

RELACION DE CONSISTENCIA < 0.1 (+)

IC	0.060
RC	0.054

4.4. Vulnerabilidad en Diemnsion Ambiental

Para el análisis de la vulnerabilidad en su dimensión ambiental, se evaluaron los siguientes parámetros

Cuadro 71.- Parámetros a utilizar en los factores exposición, fragilidad y resiliencia de la dimensión ambiental

	Dimensión Ambiental	
Exposición	Fragilidad	Resiliencia
Distancia a un botadero de residuos solidos	Disposicion final de residuos solidos	Conservación y protección de áreas verdes

Fuente: Elaboración del equipo técnico

4.4.1. Analisis en la Exposición Ambiental

a) Parámetro: Distancia a un botadero de residuos solidos

Cuadro 72.- Matriz de comparación de pares del parámetro Distancia a un botadero de residuos solidos

Distancia a un botadero de Residuos Solidos	Menor de 50 m	De 50 m a 150 m	De 150 m a 350 m	De 350 m a 500 m	Mayor de 500 m
Menor de 50 m	1.00	2.00	4.00	6.00	8.00
De 50 m a 150 m	0.50	1.00	2.00	4.00	6.00
De 150 m a 350 m	0.25	0.50	1.00	3.00	7.00
De 350 m a 500 m	0.17	0.25	0.33	1.00	5.00
Mayor de 500 m	0.13	0.17	0.14	0.20	1.00
SUMA	2.04	3.92	7.48	14.20	27.00
1/SUMA	0.49	0.26	0.13	0.07	0.04

Fuente: Elaboración del equipo técnico

Cuadro 73.- Matriz de normalización de pares del parámetro Distancia a un botadero de residuos solido

Distancia a un botadero de Residuos Solidos	Menor de 50 m	De 50 m a 150 m	De 150 m a 350 m	De 350 m a 500 m	Mayor de 500 m	Vector Priorización
Menor de 50 m	0.490	0.511	0.535	0.423	0.296	0.451
De 50 m a 150 m	0.245	0.255	0.268	0.282	0.222	0.254
De 150 m a 350 m	0.122	0.128	0.134	0.211	0.259	0.171
De 350 m a 500 m	0.082	0.064	0.045	0.070	0.185	0.089
Mayor de 500 m	0.061	0.043	0.019	0.014	0.037	0.035

Fuente: Elaboración del equipo técnico

Cuadro 74.- Índice (IC) y Relación de consistencia (RC) del parámetro Distancia a un botadero de residuos solido

INDICE DE CONSISTENCIA
RELACION DE CONSISTENCIA < 0.1 (+)

Fuente: Elaboración del equipo técnico

IC 0.075 RC 0.067

b) Parámetro: Disposición final de Residuos Solidos

Cuadro 75.- Matriz de comparación de pares del parámetro disposicion final de residuos solidos

Disposición final de Residuos Solidos	Desechar en rio	Quema de residuos solidos	Desechar en vías y calles	Desechar en botaderos	Carro recolector
Desechar en rio	1.00	2.00	5.00	7.00	8.00
Quema de residuos solidos	0.50	1.00	3.00	5.00	6.00
Desechar en vías y calles	0.20	0.33	1.00	3.00	4.00
Desechar en botaderos	0.14	0.20	0.33	1.00	2.00
Carro recolector	0.13	0.17	0.25	0.50	1.00
SUMA	1.97	3.70	9.58	16.50	21.00
1/SUMA	0.51	0.27	0.10	0.06	0.05

Fuente: Elaboración del equipo técnico

Cuadro 76.- Matriz de normalización de pares del parámetro disposicion final de residuos solidos

Disposición final de Residuos Solidos	Desechar en rio	Quema de residuos solidos	Desechar en vías y calles	Desechar en botaderos	Carro recolector	Vector Priorización
Desechar en rio	0.508	0.541	0.522	0.424	0.381	0.475
Quema de residuos solidos	0.254	0.270	0.313	0.303	0.286	0.285
Desechar en vías y calles	0.102	0.090	0.104	0.182	0.190	0.134
Desechar en botaderos	0.073	0.054	0.035	0.061	0.095	0.063
Carro recolector	0.064	0.045	0.026	0.030	0.048	0.043

Fuente: Elaboración del equipo técnico

Cuadro 77.- Índice (IC) y Relación de consistencia (RC) del parámetro disposicion final de residuos solidos

INDICE DE CONSISTENCIA

RELACION DE CONSISTENCIA < 0.1 (+)

Fuente: Elaboración del equipo técnico

 IC
 0.034

 RC
 0.031

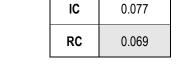
c) Parámetro: Conservación y protección de áreas verdes

Cuadro 78.- Matriz de comparación de pares del parámetro Conservación y protección de áreas verdes

Conservación y protección de áreas verdes	Degrada el suelo para uso residencial	Conserva y protege el suelo	Ornamentación y jardinería	Revegetación y reforestación	Conservación de especies nativas
Degrada el suelo para uso residencial	1.00	2.00	5.00	7.00	8.00
Conserva y protege el suelo	0.50	1.00	3.00	5.00	7.00
Ornamentación y jardinería	0.20	0.33	1.00	3.00	6.00
Revegetación y reforestación	0.14	0.20	0.33	1.00	4.00
Conservación de especies nativas	0.13	0.14	0.17	0.25	1.00
SUMA	1.97	3.68	9.50	16.25	26.00
1/SUMA	0.51	0.27	0.11	0.06	0.04

Fuente: Elaboración del equipo técnico

Cuadro 79.- Matriz de normalización de pares del parámetro Conservación y protección de áreas verdes


Conservación y protección de áreas verdes	Degrada el suelo para uso residencial	Conserva y protege el suelo	Ornamentación y jardinería	Revegetación y reforestación	Conservación de especies nativas	Vector Priorización
Degrada el suelo para uso residencial	0.508	0.544	0.526	0.431	0.308	0.463
Conserva y protege el suelo	0.254	0.272	0.316	0.308	0.269	0.284
Ornamentación y jardinería	0.102	0.091	0.105	0.185	0.231	0.143
Revegetación y reforestación	0.073	0.054	0.035	0.062	0.154	0.075
Conservación de especies nativas	0.064	0.039	0.018	0.015	0.038	0.035

Fuente: Elaboración del equipo técnico

Cuadro 80.- Índice (IC) y Relación de consistencia (RC) del parámetro Conservación y protección de áreas verdes

INDICE DE CONSISTENCIA

RELACION DE CONSISTENCIA < 0.1 (+)

4.5. Niveles de vulnerabilidad

En el siguiente Cuadro, se muestran los niveles de vulnerabilidad y sus respectivos rangos obtenidos a través de utilizar el Proceso de Análisis Jerárquico.

Cuadro 81.- Matriz de niveles de vulnerabilidad

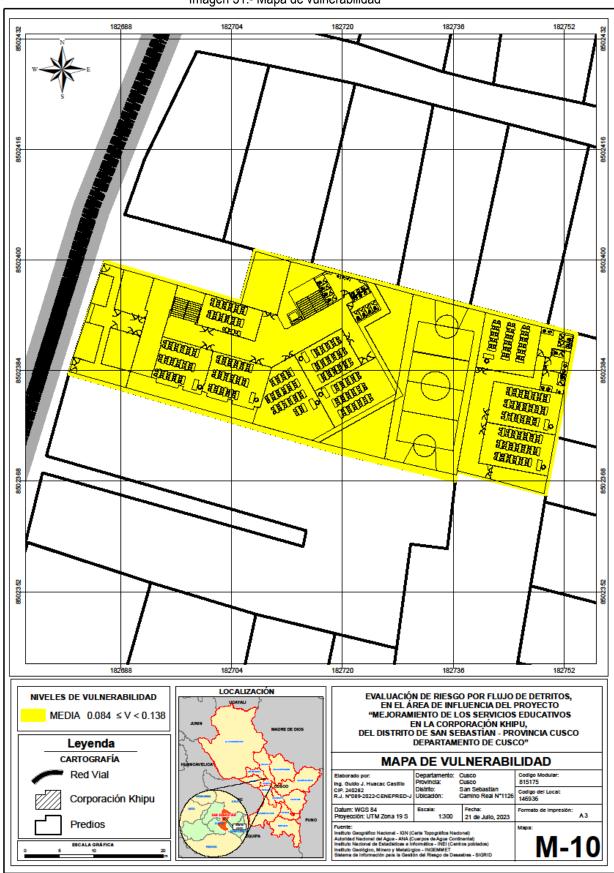
NIVEL	RANGO				
MUY ALTA	0.261	≤ V ≤	0.480		
ALTA	0.138	≤ V <	0.261		
MEDIA	0.084	≤ V <	0.138		
BAJA	0.037	≤ V <	0.084		

Fuente: Elaboración del equipo técnico

4.6. Estratificación de la vulnerabilidad

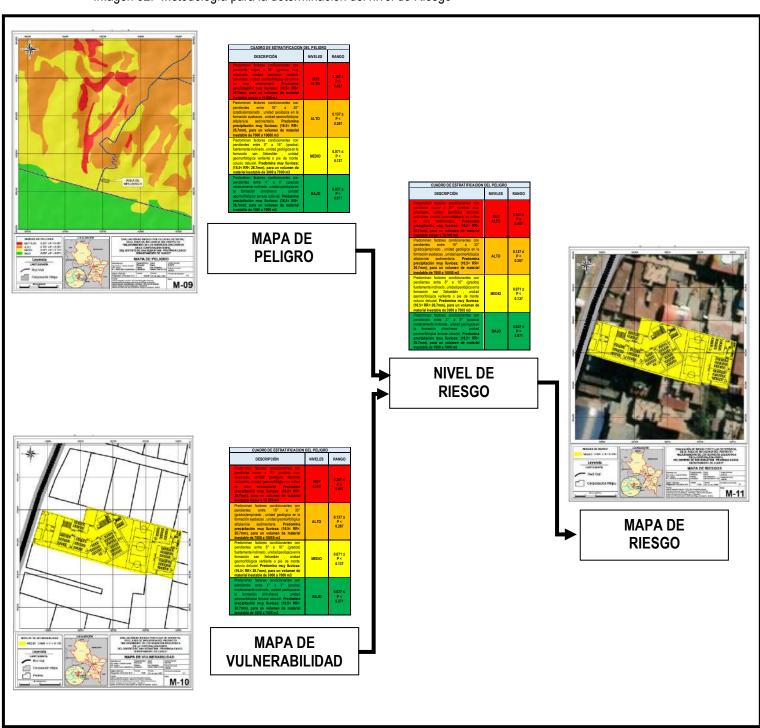
Cuadro 82.- Cuadro de estratificación de la vulnerabilidad.

Nivel de Vulnerabilidad	Descripción	Rangos
Muy Alta	La infraestructura cuenta con una cantidad de más de 200 personas por nivel; es vulnerable el grupo etario de menores a 20 y mayores a 60 años de la comunidad educativa; son vulnerables la población dentro de la infraestructura con una actitud fatalista frente al peligro, así mismo un desconocimiento de la ruta de evacuación. La localización de la infraestructura respecto al área de impacto del peligro se encuentra muy cercano; en la infraestructura el material predominante de las paredes es de vidrio, el estado de conservación de la infraestructura es mala; no cumple el reglamento nacional de edificaciones RNE. La infraestructura se encuentra a una distancia menor de 50 metros frente a un botadero de residuos sólidos; la disposición final de residuos sólidos que genera la comunidad educativa es al río y en la conservación y/o protección de áreas verdes se degradada el suelo para uso residencial.	0.261 ≤ V ≤ 0.480


Alta	La infraestructura cuenta con una cantidad de 150 a 200 personas por nivel; es vulnerable el grupo etario de 50 a 60 años de la comunidad educativa; son vulnerables la población dentro de la infraestructura con una actitud escasamente previsora frente al peligro, así mismo un básico conocimiento de la ruta de evacuación. La localización de la infraestructura respecto al área de impacto del peligro se encuentra cerca; en la infraestructura el material predominante de las paredes es drywall, el estado de conservación de la infraestructura es regular; cumplimiento escaso del reglamento nacional de edificaciones RNE. La infraestructura se encuentra a una distancia de 50 a 150 metros a un botadero de residuos sólidos; la disposición final de residuos sólidos que genera la comunidad educativa es quemada y en la conservación y/o protección de áreas verdes se conserva y protege el suelo.	0.138 ≤ V < 0.261
Media	La infraestructura cuenta con una cantidad de 100 a 150 personas por nivel; es vulnerable el grupo etario de 40 a 50 años de la comunidad educativa; son vulnerables la población dentro de la infraestructura con una actitud parcialmente previsora con medidas para prevenir frente al peligro, así mismo un intermedio conocimiento de las rutas de evacuación. La localización de la infraestructura respecto al área de impacto del peligro se encuentra alejado; en la infraestructura el material predominante de las paredes es de ladrillo y bloque de cemento, el estado de conservación de la infraestructura es bueno; cumple con casi todo el reglamento nacional de edificaciones RNE. La infraestructura se encuentra a una distancia entre 150 a 350 metros a un botadero de residuos sólidos; la disposición final de residuos sólidos que genera la comunidad educativa es en vías y calles, en la conservación y/o protección de áreas verdes se tiene ornamentación y jardinería en la infraestructura.	0.084 ≤ V < 0.138
Baja	La infraestructura cuenta con una cantidad de menos de 100 personas por nivel; es vulnerable el grupo etario menor de 40 y mayor de 20 años de la comunidad educativa; la población dentro de la infraestructura con una actitud previsora frente al peligro, así mismo un avanzado conocimiento de las rutas de evacuación y lo aplica. La localización de la infraestructura respecto al área de impacto del peligro se encuentra muy alejado; en la infraestructura el material predominante de las paredes es de concreto armado, el estado de conservación de la infraestructura es muy bueno; cumplimiento total con el reglamento nacional de edificaciones RNE. La infraestructura se encuentra a una distancia mayor a 500 metros a un botadero de residuos sólidos; la disposición final de residuos sólidos que genera la comunidad educativa es en el carro recolector y en la conservación y/o protección de áreas verdes se realiza reforestación.	0.037 ≤ V < 0.084

4.7. Mapa de vulnerabilidad

Imagen 31.- Mapa de vulnerabilidad



CAPÍTULO V: CÁLCULO DEL RIESGO

5.1. Metodología para el cálculo de riesgo

Para la determinación de los niveles de riesgo, se ha utilizado un Sistema de Información Geográfica (SIG) el cual nos ha permitido automatizar el proceso, por lo cual se ha construido una base de datos con información espacial vectorial y alfanumérica georreferenciada, la cual contiene toda la información (cuantitativa y cualitativa) del área de análisis del presente estudio.

Imagen 32.- Metodología para la determinación del nivel de Riesgo

Fuente: Calculo del riesgo (CENEPRED)

5.2. Niveles de riesgo

5.2.1. Niveles de riesgo

Los niveles de riesgo por flujo de detritos del proyecto "Mejoramiento de los servicios educativos en la corporación Khipu del distrito de San Sebastián, provincia Cusco, departamento de Cusco", se detallan a continuación:

Cuadro 83.- Niveles de riesgos

NIVEL		RANGO	
MUY ALTO	0.070	< R ≤	0.233
ALTO	0.019	< R ≤	0.070
MEDIO	0.006	< R ≤	0.019
BAJO	0.001	≤R≤	0.006

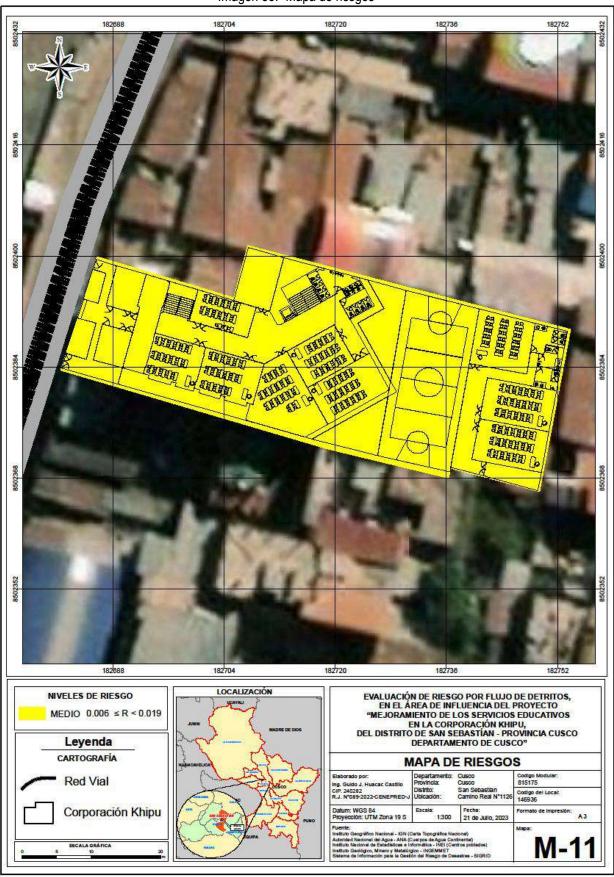
Fuente: Elaboración del equipo técnico

5.3. Estratificación del nivel de riesgo

Cuadro 84.- Cuadro de estratificación de riesgo por Flujo de detritos

Nivel de Riesgo	Descripción	Rangos
Muy Alto	Durante la temporada de precipitaciones, se registran días extremadamente lluviosos que superan los 26.7 mm (milímetros), en donde se estima que podría ocurrir flujo de detritos de materiales inestables mayor a 1000 m³, producto de pendiente de terreno muy empinada mayor a 30°(grados), con geoforma de colina en roca sedimentaria y litológicamente por depósitos coluviales La infraestructura cuenta con una cantidad de más de 200 personas por nivel; es vulnerable el grupo etario de menores a 20 y mayores a 60 años de la comunidad educativa; son vulnerables la población dentro de la infraestructura con una actitud fatalista frente al peligro, así mismo un desconocimiento de la ruta de evacuación. La localización de la infraestructura respecto al área de impacto del peligro se encuentra muy cercano; en la infraestructura el material predominante de las paredes es de vidrio, el estado de conservación de la infraestructura es mala; no cumple el reglamento nacional de edificaciones RNE. La infraestructura se encuentra a una distancia menor de 50 metros frente a un botadero de residuos sólidos; la disposición final de residuos sólidos que genera la comunidad educativa es al río y en la conservación y/o protección de áreas verdes se degradada el suelo para uso residencial.	0.070 ≤ R ≤ 0.233

Nivel de Riesgo	Descripción	Rangos
Alto	Durante la temporada de precipitaciones, se registran días extremadamente lluviosos que superan los 26.7 mm (milímetros), en donde se estima que podría ocurrir flujo de detritos de materiales inestables de 700 a 1000 m³, producto de pendiente de terreno empinados de 16° a 30° (grados), con geoformas de altiplanicie sedimentaria y litológicamente por la formación Ayabacas. La infraestructura cuenta con una cantidad de 150 a 200 personas por nivel; es vulnerable el grupo etario de 50 a 60 años de la comunidad educativa; son vulnerables la población dentro de la infraestructura con una actitud escasamente previsora frente al peligro, así mismo un básico conocimiento de la ruta de evacuación. La localización de la infraestructura respecto al área de impacto del peligro se encuentra cerca; en la infraestructura el material predominante de las paredes es drywall, el estado de conservación de la infraestructura es regular; cumplimiento escaso del reglamento nacional de edificaciones RNE. La infraestructura se encuentra a una distancia de 50 a 150 metros a un botadero de residuos sólidos; la disposición final de residuos sólidos que genera la comunidad educativa es quemada y en la conservación y/o protección de áreas verdes se conserva y protege el suelo.	0.019 ≤ R < 0.070
Medio	Durante la temporada de precipitaciones, se registran días extremadamente lluviosos que superan los 26.7 mm (milímetros), en donde se estima que podría ocurrir flujo de detritos de materiales inestables de 100 a 300 m³, producto de pendiente de terreno moderadamente inclinados de 4° a 8° (grados), con geoformas de terraza coluvial y litológicamente por la formación San Sebastián. La infraestructura cuenta con una cantidad de 150 a 200 personas por nivel; es vulnerable el grupo etario de 50 a 60 años de la comunidad educativa; son vulnerables la población dentro de la infraestructura con una actitud escasamente previsora frente al peligro, así mismo un básico conocimiento de la ruta de evacuación. La localización de la infraestructura respecto al área de impacto del peligro se encuentra cerca; en la infraestructura el material predominante de las paredes es drywall, el estado de conservación de la infraestructura es regular; cumplimiento escaso del reglamento nacional de edificaciones RNE. La infraestructura se encuentra a una distancia de 50 a 150 metros a un botadero de residuos sólidos; la disposición final de residuos sólidos que genera la comunidad educativa es quemada y en la conservación y/o protección de áreas verdes se conserva y protege el suelo.	0.006 ≤ R < 0.019


Nivel de Riesgo	Descripción	Rangos
Bajo	Durante la temporada de precipitaciones, se registran días extremadamente lluviosos que superan los 26.7 mm (milímetros), en donde se estima que podría ocurrir flujo de detritos de materiales inestables menor de 100 m³, producto de pendiente de terreno planas o casi al nivel, menor a 4° (grados), con geoformas de terraza aluvial y litológicamente por depósitos aluviales. La infraestructura cuenta con una cantidad de menos de 100 personas por nivel; es vulnerable el grupo etario menor de 40 y mayor de 20 años de la comunidad educativa; la población dentro de la infraestructura con una actitud previsora frente al peligro, así mismo un avanzado conocimiento de las rutas de evacuación y lo aplica. La localización de la infraestructura respecto al área de impacto del peligro se encuentra muy alejado; en la infraestructura el material predominante de las paredes es de concreto armado, el estado de conservación de la infraestructura es muy bueno; cumplimiento total con el reglamento nacional de edificaciones RNE. La infraestructura se encuentra a una distancia mayor a 500 metros a un botadero de residuos sólidos; la disposición final de residuos sólidos que genera la comunidad educativa es en el carro recolector y en la conservación y/o protección de áreas verdes se realiza reforestación.	0.001 ≤ R < 0.006

5.4. Mapa de riesgos

Imagen 33.- Mapa de riesgos

5.5. Matriz de riesgos

La matriz de riesgo originado por flujo de detritos se detalla a continuación:

Cuadro 85.- Método simplificado para la determinación del nivel de riesgo

PMA	0.485	0.041	0.067	0.126	0.233
PA	0.268	0.023	0.037	0.070	0.129
PM	0.138	0.012	0.019	0.036	0.066
РВ	0.072	0.006	0.010	0.019	0.035
		0.084	0.138	0.261	0.480
		VB	VM	VA	VMA

5.6. Calculo Efectos Probables (Daños y Pérdidas)

En esta parte de la evaluación, se estiman los efectos probables que podrían generarse en el área de la influencia, a consecuencia del impacto del peligro por flujo de detritos. Se muestra a continuación los efectos probables del área de influencia del proyecto, siendo estos de carácter netamente referencial.

Para un mejor análisis de las posibles pérdidas se tomó como referencia los valores de:

a. RESOLUCIÓN JEFATURAL Nº 074-2023-INEI (01 MARZO 2023) IPC mes de febrero 2023 0.52%

Cuadro 86.- Valores en soles por metro cuadrado de área techada para la sierra al 31 de octubre del 2020.

Cuadro 60 Valores en soles por metro cuadrado de area techada para la sierra ar 51 de octubre del 2020.					
VALORES EN SOLES POR METRO CUADRADO DE ÁREA TECHADA				Costo por tipo de	
Tipo de estructura Elementos		Descripción	Costo en soles	estructura en soles	
Estructuras	Muros y columnas.	Columnas, vigas y/o placas de concreto armado y/o metálicas	382.82	618.11	
	Techos	Aligerado o losas de concreto armado inclinadas	235.29		
	Pisos	Mármol nacional o reconstituido, parquet fino (olivo, chonta o similar) cerámica importada, madera fina	190.89		
Acabados	Puertas y ventanas	Aluminio o madera fina (caoba o similar) vidrio tratado polarizado (2) laminado o templado	109.78	652.93	
Acabauos	Revestimientos	Mármol nacional madera fina (caoba o similar) enchapes en techos	263.15	032.93	
	Baños	Baños completos (7) importados con mayólica o cerámico decorativo importado	89.11		
Instalaciones eléctricas y sanitarias	Instalaciones eléctricas y sanitarias	Sistemas de bombeo de agua potable (5) ascensor, teléfono, agua caliente y fría, gas natural	251.50	251.50	
	Costo en soles por m² de área techada				

Fuente: resolución jefatural N° 074-2023-inei (01 marzo 2023) ipc mes de febrero 2023 0.52%

Cuadro 87.- Efectos probables en la infraestructura

DESCRIPCION	ÁREA	COSTO X M2	COSTO TOTAL
SOTANO	271.00	S/1,522.54	S/412,608.34
1° NIVEL	951.96	S/1,522.54	S/1,449,397.18
2° NIVEL	875.04	S/1,522.54	S/1,332,283.40
3° NIVEL	875.04	S/1,522.54	S/1,332,283.40
4° NIVEL	875.04	S/1,522.54	S/1,332,283.40
5° NIVEL	528.80	S/1,522.54	S/805,119.15
6° NIVEL	528.80	S/1,522.54	S/805,119.15
TOTAL	4 905.68	S/1,522.54	S/7,469,094.03

Fuente: Elaboración por el equipo técnico

Cuadro 88.- Cálculo de los efectos probables

Efectos probables	Daños Probables S/	Pérdidas probables S/	Total S/
1 infraestructura (6 niveles)	7,469,094.00	-	7′,469,094.00
Atención de emergencias	-	250,000.00	
Pérdidas económicas por la interrupción de las actividades académicas (por año)	-	3,840,000.00	
Pérdidas económicas por suspensión de actividades administrativas (por año)	-	460,000.00	4,615,000.00
Adquisición de local para la prestación de actividades académicas (por año)	-	65,000.00	.,0.0,000
	12,084,094.00		

Fuente: Elaboración por el equipo técnico

El proyecto "Mejoramiento de los servicios educativos en la Corporación Khipu del distrito de San Sebastián, provincia Cusco, departamento Cusco", los resultados muestran que el área de estudio presenta peligro medio y vulnerabilidad media, por lo tanto, cuenta con un nivel de **RIESGO MEDIO** presentando condiciones favorables.

En el proceso de las obras se debe de tener en cuenta los impactos que pudieran poner en riesgo la obra en caso de flujo de detritos se deben de implementar medidas de manejo en las etapas de pre-construcción, construcción, operación y cierre.

El total de pérdidas probables si es que se da el peligro por flujo de detritos asciende un total de S/.12,084,094.00

CAPÍTULO VI: CONTROL DE RIESGO

6.1. Costo efectividad

Según la información determinada por el equipo consultor y el análisis del equipo técnico del proyecto se determinó el cuadro donde se muestra el costo de **perdidas probables** de **S/.12´084 094.00 soles** y el costo de **medidas de reducción** de **S/. 25,500.00 soles**, por lo tanto, los proyectos de medidas estructurales y no estructurales para la reducción de riesgos del proyecto es **viable**.

6.2. Control de riesgos

a) Prioridad de intervención

Cuadro 89.- Prioridad de intervención

Valor	Descriptor	Nivel de priorización
4	Inadmisible	1
3	Inaceptable	II
2	Tolerable	III
1	Aceptable	IV

Fuente: Elaboración del equipo técnico

Se ha determinado nivel de riesgo es **MEDIO** ante Flujo de detritos en el área de influencia del proyecto, del distrito de San Sebastián, el nivel de aceptabilidad y tolerancia del riesgo identificado es tolerable de lo cual se deben desarrollar actividades para el manejo de riesgos ante flujo de detritos.

6.2.1. Evaluación de las medidas

6.2.1.1. Aceptabilidad / tolerabilidad

a) Valoración de consecuencias

Cuadro 90.- Valoración de consecuencias

Fuente: Elaboración del equipo técnico

Valor	Nivel	Descripción
4	Muy Alto	Las consecuencias debido al impacto de un fenómeno natural son catastróficas.
3	Alto	Las consecuencias debido al impacto de un fenómeno natural pueden ser gestionadas con apoyo externo, (La emergencia debe ser gestionada con INDECI a través de su DDI para tener acceso a herramientas y recursos para poder atender la emergencia).
2	Medio	Las consecuencias debido al impacto de un fenómeno natural pueden ser gestionadas con los recursos disponibles.
1	Bajo	Las consecuencias debido al impacto de un fenómeno natural pueden ser gestionadas sin dificultad.

Del cuadro anterior, obtenemos que las consecuencias debido al impacto de un fenómeno natural pueden ser gestionadas con los recursos disponibles, posee el nivel 2 - Medio

b) Valoración de frecuencia

El historial de precipitaciones según los datos meteorológicos, el cual indica una precipitación muy lluviosa, **siendo esta anomalía de periodo de tiempo largo.**

Cuadro 91.- Valoración de la frecuencia de ocurrencia

Valor	Nivel	Descripción
4	Muy Alto	Puede ocurrir en la mayoría de las circunstancias.
3	Alto	Puede ocurrir en periodos de tiempo medianamente largos según las circunstancias.
2	Medio	Puede ocurrir en periodos de tiempo largos según las circunstancias. (Según la consulta de campo, las precipitaciones extremas no se han dado hasta la actualidad, pero se estima que se podría dar en tiempos largos)
1	Bajo	Puede ocurrir en circunstancias excepcionales.

Fuente: Elaboración del equipo técnico

Del Cuadro anterior, se obtiene que el evento de inundación fluvial, puede ocurrir en periodos de tiempo largos según las circunstancias, posee el nivel 2 - Medio.

c) Nivel de consecuencia y daños

Cuadro 92.- Nivel de consecuencia y daños

NIVEL DE CONSECUENCIA Y DAÑOS					
CONSECUENCIAS	NIVEL	ZONA DE CONSECUENCIAS Y DAÑOS			
Muy Alta	4	Alta	Muy Alta	Muy Alta	Muy Alta
Alta	3	Alta	Alta	Alta	Muy Alta
Media	2	Media	Media	Alta	Alta
Baja	1	Baja	Media	Media	Alta
	Nivel	1	2	3	4
	Frecuencia	Baja	Media	Alta	Muy Alta

Fuente: Elaboración del equipo técnico

De lo anterior se obtiene que el nivel de consecuencia y daño es de MEDIA.

d) Aceptabilidad y/o tolerancia

Cuadro 93.- Nivel de aceptabilidad v/o tolerancia

Valor	Descriptor	Descripción
4	Inadmisible	Se debe aplicar inmediatamente medida de control físico y de ser posible transferir inmediatamente los riesgos.
3	Inaceptable	Se deben desarrollar actividades INMEDIATAS y PRIORITARIAS para el manejo de riesgos. (Es necesario intervenir con obras de orden estructural () y no estructurales (Capacitaciones en GRD).
2	Tolerable	Se deben desarrollar actividades para el manejo de riesgos.
1	Aceptable	El riesgo no presenta un peligro significativo

Fuente: Elaboración del equipo técnico

En base a los ajustes en los puntos anteriores se concluye **TOLERABLE** el riesgo por flujo de detritos en el área de influencia del Proyecto "Mejoramiento de los servicios educativos en la corporación Khipu del distrito de San Sebastián, provincia Cusco, departamento de Cusco" en vista que se deben desarrollar actividades para el manejo y reducción de riesgos.

La matriz de Aceptabilidad y/o Tolerancia del Riesgo se indica a continuación:

Cuadro 94.- Nivel de matriz de consecuencia y tolerancia del riesgo

Matriz de consecuencias y tolerancia del riesgo					
Riesgo Inaceptable	Riesgo Inadmisible	Riesgo Inadmisible	Riesgo Inadmisible		
Riesgo Inaceptable	Riesgo Inaceptable	Riesgo Inaceptable	Riesgo Inadmisible		
Riesgo Tolerable	Riesgo Tolerable	Riesgo Inaceptable	Riesgo Inaceptable		
Riesgo aceptable	Riesgo Tolerable	Riesgo Tolerable	Riesgo Inaceptable		

6.3. Medidas de prevención y reducción de riesgo de desastre

La autoridad competente (responsable), deberá utilizar el presente informe de evaluación de riesgo, según lo estipulado en la normatividad vigente, con la finalidad de prevenir y/o reducir el riesgo:

6.3.1. De orden estructural

a) Medidas de prevención de riesgos

Estas medidas representan una intervención física mediante el desarrollo o refuerzo de obras de ingeniería para reducir o evitar los posibles impactos de las amenazas para lograr de esa manera la resistencia y la resiliencia de las estructuras o de los sistemas, y de esa manera proteger a la población y sus bienes.

- Reforestación y construcción de zanjas de infiltración en las zonas altas.

b) Medidas de reducción de riesgos

- Implementar sistemas de drenaje adecuados (cunetas) a fin de drenar las aguas superficiales (escorrentías) hacia los cauces naturales.
- Implementar acciones de mantenimiento mensual de limpieza de material inestable, escombros, desmonte y residuos sólidos.

6.3.2. De orden no estructural

Las medidas no estructurales son aquellas más directamente relacionadas con la legislación y la planificación, como las siguientes: códigos y normas de construcción, reglamentación de usos del suelo y ordenamiento territorial, estímulos fiscales, financieros y promoción de seguros.

a) Medidas de prevención de riesgos

 Programa de fortalecimiento y capacitación en temas de gestión de riesgos de desastres ante la ocurrencia de flujo de detritos.

b) Medidas de reducción de riesgos

 Elaborar un plan de evacuación que permita identificar las zonas seguras ante un fenómeno de flujo de detritos.

Tipo de medida	Unidad de medida	Costo unitario	Costo total
Programa de descolmatación de material inestable	800 metros cúbicos	S/ 15 x m3	S/ 12,000.00
Monitoreo Visual (con drones)		S/ 1500x día	S/ 7500
Programas de capacitaciones y fortalecimiento en temas GRD		S/ 3000x día	S/ 6000
	\$/25,500.00		

CONCLUSIONES

- El proyecto del área "Mejoramiento de los servicios educativos en la corporación Khipu del distrito de San Sebastián, provincia Cusco, departamento Cusco". se encuentra predominantemente en zona de peligro **MEDIO** mediante la ocurrencia de flujo de detritos con un volumen de material inestable de 100 a 300 m³ (metros cúbicos), ante la presencia de una precipitación muy lluviosa (22.4 mm <RR≤ 31.8 mm).
- 2. Los niveles de vulnerabilidad en el proyecto mejoramiento de los servicios educativos en la corporación Khipu, predominantemente se encuentra en vulnerabilidad MEDIA, esto debido a que la infraestructura cuenta con una cantidad de 100 a 150 personas por nivel, es vulnerable el grupo etario de edades entre los 40 a 50 años de la comunidad educativa, con una actitud parcialmente previsora con medidas para prevenir frente al peligro, así mismo un conocimiento intermedio de las rutas de evacuación; La localización de la infraestructura respecto al área de impacto del peligro es alejado, el material predominante de las paredes de la infraestructura es de ladrillo o bloque de cemento, el estado de conservación de la infraestructura es bueno, cumple con casi todo el reglamento nacional de edificaciones (RNE), la cual se encuentra entre 150 a 350 metros a un botadero de residuos sólidos, la disposición final de residuos sólidos que genera la comunidad educativa es en vías o calles y encontrándose en la infraestructura un área de ornamentación y jardinería.
- 3. Se determinó a partir del análisis de peligro y vulnerabilidad que el nivel de riesgo es MEDIO, esto se debe a la exposición de la infraestructura, que se asientan en la altiplanicie sedimentaria y en la formación San Sebastián con pendiente moderadamente inclinado de 4° a 8° (grados). Se debe contemplarse las medidas estructurales y/o no estructurales para la prevención y reducción del riesgo.
- El resultado del análisis de la tolerancia y de aceptabilidad del riesgo es RIESGO TOLERABLE, donde se deben desarrollar actividades para el manejo de riesgos.
- 5. Se propone medidas de orden estructural y/o no estructural para la prevención y reducción del riesgo:

De orden estructural

- a) Medidas de prevención de riesgos
- Reforestación y construcción de zanjas de infiltración en las zonas altas.
- b) Medidas de reducción de riesgos
- Implementar sistemas de drenaje adecuados (cunetas) a fin de drenar las aguas superficiales (escorrentías) hacia los cauces naturales.
- Implementar acciones de mantenimiento mensual de limpieza de material inestable, escombros, desmonte y residuos sólidos.

De orden no estructural

- a) Medidas de prevención de riesgos
- Programa de fortalecimiento de capacidades de las personas en temas de Gestión de Riesgo en zona de presencia de problemas de flujo de detritos.
- b) Medidas de reducción de riesgos
- Elaborar un plan de educación comunitario que permita identificar las zonas seguras ante un fenómeno de flujo de detritos.
- 6. El cálculo de efectos probables asciende a S/.**12'084 094.00** soles (S/ 7,469,094.00 daños probables y S/ 4,615,000.00 perdidas probables)./

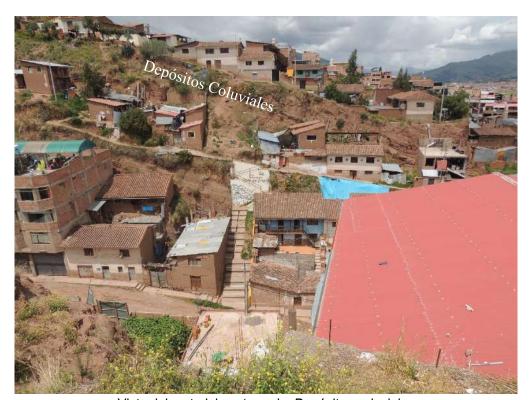
RECOMENDACIONES

- 1. Tomar en cuenta las medidas de prevención y reducción estructural en el presente informe, a efecto de las acciones complementarias del proyecto.
- Socializar los estudios de evaluación de riesgo, así como las medidas de control de manera que la población educativa presente en la infraestructura incremente su resiliencia, es decir alcance un mayor nivel de preparación y capacidad de respuesta ante dicho evento.
- 3. Implementar un sistema de alerta temprana (SAT), en temporadas de lluvias intensas y/o excepcionales para informar a la población educativa involucrada y que pueda realizarse la evacuación de las posibles zonas que pueden resultar afectadas.
- 4. Organizar y realizar simulacros de evacuación ante dicho evento, a fin de incrementar acciones de respuesta en la población educativa presente en la infraestructura.
- 5. Sugerir la inclusión de este informe de evaluación de riesgos para la zonificación territorial del riesgo que sirva de base para el plan de uso de suelos, para el plan de ordenamiento territorial, plan de desarrollo urbano y para el plan de prevención y reducción del riesgo de desastre.

BIBLIOGRAFÍA

- SENAMHI, 1988. Mapa de Clasificación Climática del Perú. Método de Thornthwaite. Eds. SENAMHI Perú, 14 pp.
- MINAGRI- SENAMHI. 2013. Normales Decadales de temperatura y precipitación y calendario de siembras y cosechas. Lima, Perú. 439 pp.
- SENAMHI, Umbrales de precipitaciones absolutas.
- SENAMHI, umbrales de precipitación a nivel nacional.
- INGEMMET, Carta Geológica Nacional 28s.
- Informe técnico Nº A7076 Evaluación de peligros geológicos por flujo de detritos en el alto Qosqo, distrito de San Sebastián, provincia y región Cusco
- SIGRID Sistema de Información para la Gestión del Riesgo de Desastres / CENEPRED.
- Instituto Nacional de Estadística e Informática; Censo Poblacional. Año 2007

ANEXOS



PANEL FOTOGRÁFICO FOTOS DE IDENTIFICACION DEL PELIGRO Y MAPEOS EN CAMPO

Vista del material cuaternario: Depósitos Fluviales.

Vista del material cuaternario: Depósitos coluviales

Contacto de la Fm. San Sebastián y la Fm. Ayabacas

Afloramiento de la Formación San Sebastián

Vista de la unidad geomorfológica: Terraza aluvial y coluvial

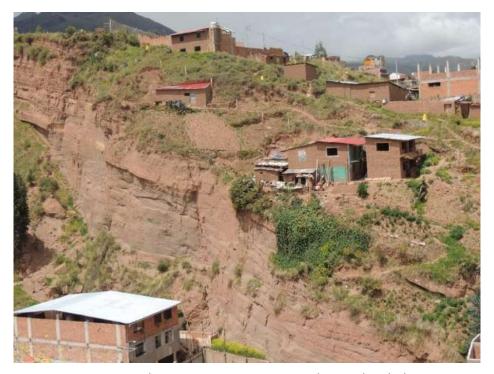
Vista de la pendiente del terreno: Moderadamente inclinado (M - mi) y Fuertemente inclinado (F - ic).

Vista de la pendiente del terreno: Fuertemente inclinado (F – ic).

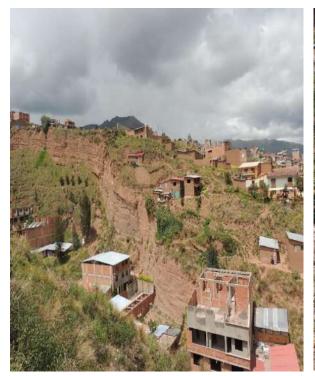
Vista de la pendiente del terreno: Fuertemente inclinado (F – ic).

Vista de la pendiente del terreno: Empinado (E – ep) y Muy empinado (ME – mp)


Vista de la pendiente del terreno: Muy empinado (ME – mp)



Se puede observar puntos de botaderos en la zona de estudio


En ambas imágenes (A y B) se puede observar que en la zona de estudio se está botando diferentes tipos de solidos que afectan a la zona baja ya que en tiempos de precipitación estas serán desplazadas a la parte baja.

Vista de construcciones cercanas al corte de talud.

Se evidencian construcciones en laderas.

Evidencias de erosión

En la zona de estudio se observa evidencia de erosión que se están generando debido a temporadas de fuertes precipitaciones y por la contaminación (botadero de residuos sólidos).

CALCULOS

CUADRO I CÁLCULO DEL FACTOR CONDICIONANTE Y DESCENCADENANTE

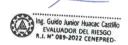
	FACTOR DESENCADENANTE										
PENDIENTE DE TERRENO		UNIDADES GEOMORFOLOGICAS		UNIDADES GEOL	UNIDADES GEOLOGICAS		UNIDADES GEOLOGICAS				
Ppar (1)	Pdesc.	Ppar (1)	Pdesc.	Ppar (1)	Pdesc.	VALOR	PESO	VALOR	PESO		
0.669	0.484	0.243	0.493	0.088	0.478	0.49	0.8	0.460	0.2		
0.669	0.277	0.243	0.250	0.088	0.275	0.27	0.8	0.265	0.2		
0.669	0.132	0.243	0.145	0.088	0.148	0.14	0.8	0.158	0.2		
0.669	0.068	0.243	0.074	0.088	0.063	0.07	0.8	0.081	0.2		
0.669	0.039	0.243	0.037	0.088	0.036	0.04	0.8	0.037	0.2		

CUADRO II CÁLCULO DE RANGOS DEL PELIGRO

SUSCEPTIBILIDAD (S)	PARÁMETROS DE EVALUACIÓN (PE)				
VALOR (VALOR FC*PESO FC)+(VALOR FD*PESO FD)	PESO	VALOR	PESO	VALOR	PESO
0.486	0.60	0.490	1.000	0.490	0.40
0.268	0.60	0.265	1.000	0.265	0.40
0.138	0.60	0.135	1.000	0.135	0.40
0.069	0.60	0.073	1.000	0.073	0.40
0.038	0.60	0.037	1.000	0.037	0.40

VALOR DE PELIGRO
(VALOR S*PESO S+(VALOR PE*PESO PE)
0.485
0.268
0.138
0.072
0.037

RANGO	NIVELES DE PELIGRO
0.268 ≤ P ≤ 0.485	MUY ALTO
0.138 ≤ P < 0.268	ALTO
0.072 ≤ P < 0.138	MEDIO
0.037 ≤ P < 0.072	BAJO



CUADRO III CALCULOS DE LOS PARAMETROS DE LA EVALUACION PARA LA DIMENSION SOCIAL

	DIMENSIÓN SOCIAL														
PERSO	CANTIDAD DE PERSONAS POR NIVEL		Peso Exp.	GRUPO ET LA COMI EDUCA	UNIDAD	Valor Frag.	Peso Frag.	FREN	ITUD TE AL SGO	CONOCIMIENTO SOBR LA RUTA DE EVACUACIÓN		Valor Resil.	Peso Resil.	Valor Dim. Social	Peso Dim. Social
Ppar	Pdesc	Social	Social	Ppar	Pdes	Social	Social	Ppar (1)	Pdesc	Ppar (1)	Pdesc	Social	Social		
0.524	1.000	0.524	0.557	0.474	1.00	0.474	0.320	0.435	0.500	0.411	0.500	0.423	0.123	0.495	0.539
0.224	1.000	0.224	0.557	0.286	1.00	0.286	0.320	0.255	0.500	0.311	0.500	0.283	0.123	0.251	0.539
0.119	1.000	0.119	0.557	0.136	1.00	0.136	0.320	0.149	0.500	0.161	0.500	0.155	0.123	0.129	0.539
0.096	1.000	0.096	0.557	0.069	1.00	0.069	0.320	0.115	0.500	0.078	0.500	0.097	0.123	0.087	0.539
0.037	1.000	0.037	0.557	0.035	1.00	0.035	0.320	0.046	0.500	0.040	0.500	0.043	0.123	0.037	0.539

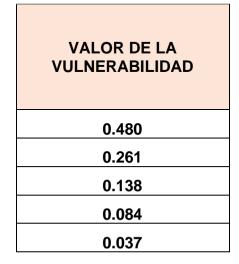
CUADRO IV CALCULOS DE LOS PARAMETROS DE LA EVALUACION PARA LA DIMENSION ECONOMICA

DIMENSIÓN ECONÓMICA															
INFRAEST RESPEC AREA DE	ACION DE A RUCTURA TO A LA IMPACTO ELIGRO	valor Exp.	Peso Exp. Economico	PREDO PAREI	MATERIAL MINANTE D DE LA FRUCTURA	CONSE	DO DE RVACIÓN E LA CACIÓN	Valor Frag. Economico	Peso Frag. Economico	NORMA RNE DISE CONSTI	IMIENTO E LA LTIVIDAD EN EL EÑO Y RUCCIÓN UNIDAD JCTORA	Valor Resil. Economico	Peso Resil. Economico	Valor Dim. Econom	Peso Dim. Econom
Ppar	Pdes			Ppar	Pdesc	Ppar	Pdesc			Ppar	Pdesc				
0.455	1.000	0.455	0.568	0.470	0.500	0.476	0.500	0.473	0.334	0.465	1.000	0.465	0.098	0.462	0.297
0.257	1.000	0.257	0.568	0.281	0.500	0.267	0.500	0.274	0.334	0.286	1.000	0.286	0.098	0.266	0.297
0.159	1.000	0.159	0.568	0.131	0.500	0.154	0.500	0.142	0.334	0.144	1.000	0.144	0.098	0.152	0.297
0.092	1.000	0.092	0.568	0.079	0.500	0.069	0.500	0.074	0.334	0.069	1.000	0.069	0.098	0.084	0.297
0.037	1.000	0.037	0.568	0.039	0.500	0.035	0.500	0.037	0.334	0.036	1.000	0.036	0.098	0.037	0.297

CUADRO V

CALCULOS DE LOS PARAMETROS DE LA EVALUACION PARA LA DIMENSION AMBIENTAL

	DIMENSIÓN AMBIENTAL												
DISTANCIA D PRODUCTORA A L RESIDUOS	JN BOTADERO DE	Valor Exp. Ambiental	talPeso Exp. Ambiental				Frag. Peso Frag. Ambiental CONSERVACIÓN Y PROTECCIÓN DE ÁREAS VERDES		PROTECCIÓN DE ÁREAS		Peso Resil. Ambiental		
Ppar	Pdes			Ppar	Pdesc			Ppar	Pdesc				
0.451	1.000	0.451	0.633	0.475	1.000	0.475	0.260	0.463	1.000	0.463	0.164		
0.254	1.000	0.254	0.633	0.285	1.000	0.285	0.260	0.284	1.000	0.284	0.164		
0.171	1.000	0.171	0.633	0.134	1.000	0.134	0.260	0.143	1.000	0.143	0.164		
0.089	1.000	0.089	0.633	0.063	1.000	0.063	0.260	0.075	1.000	0.075	0.164		
0.035	1.000	0.035	0.633	0.043	1.000	0.043	0.260	0.035	1.000	0.035	0.164		



CÁLCULO DE LOS RANGOS DE VULNERABILIDAD

VALOR DIMENSIÓN SOCIAL	PESO DIMENSIÓN SOCIAL
0.495	0.539
0.251	0.539
0.129	0.539
0.087	0.539
0.037	0.539

VALOR DIMENSIÓN ECONÓMICA	PESO DIMENSIÓN ECONÓMICA
0.462	0.297
0.266	0.297
0.152	0.297
0.084	0.297
0.037	0.297

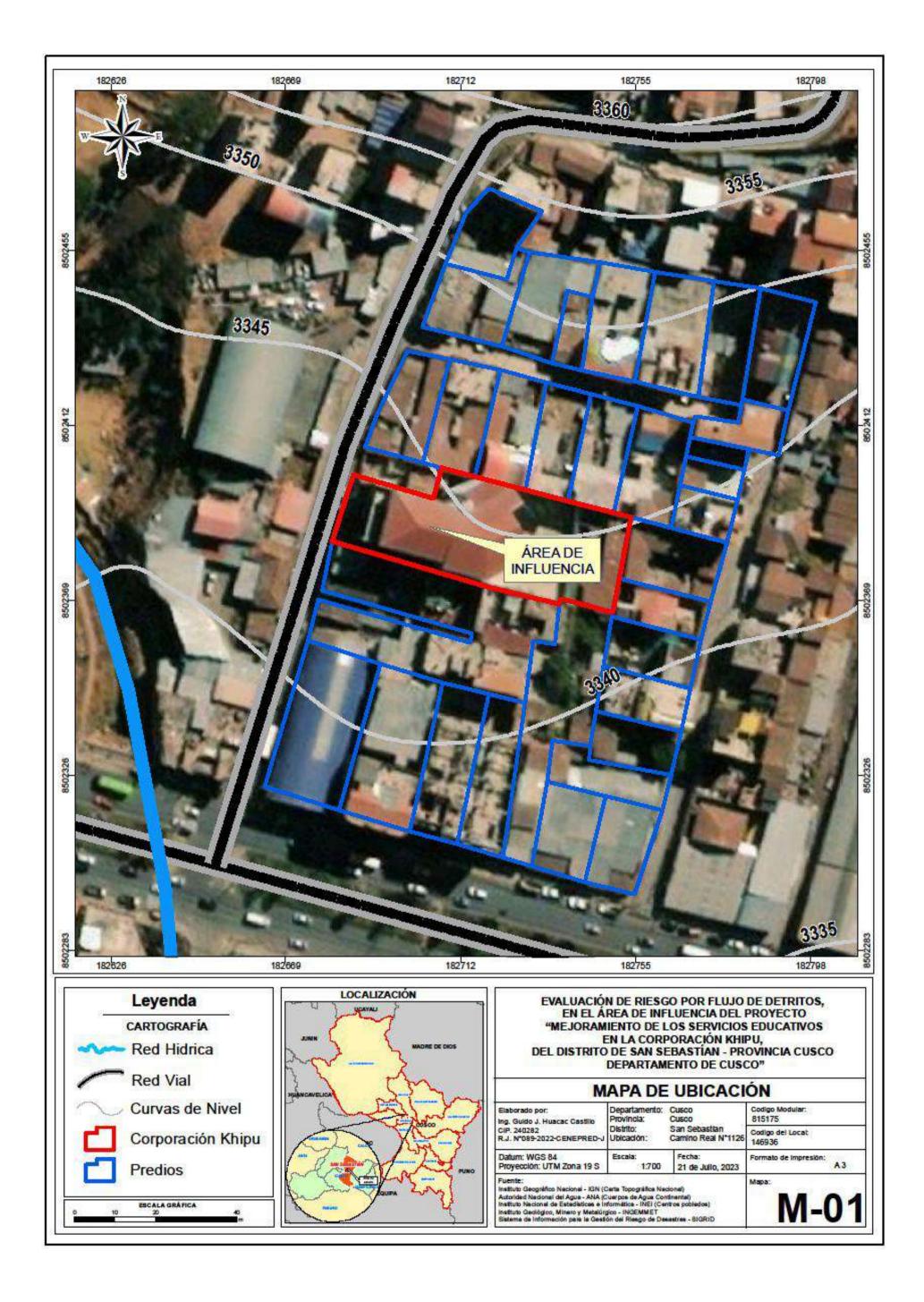
VALOR DIMENSIÓN AMBIENTAL	PESO DIMENSIÓN ECONÓMICA
0.463	0.164
0.284	0.164
0.143	0.164
0.075	0.164
0.035	0.164

NIVEL	RANGO						
MUY ALTA	0.261 ≤ V ≤ 0.480						
ALTA	0.138 ≤ V < 0.261						
MEDIA	0.084 ≤ V < 0.138						
BAJA	0.037 ≤ V < 0.084						

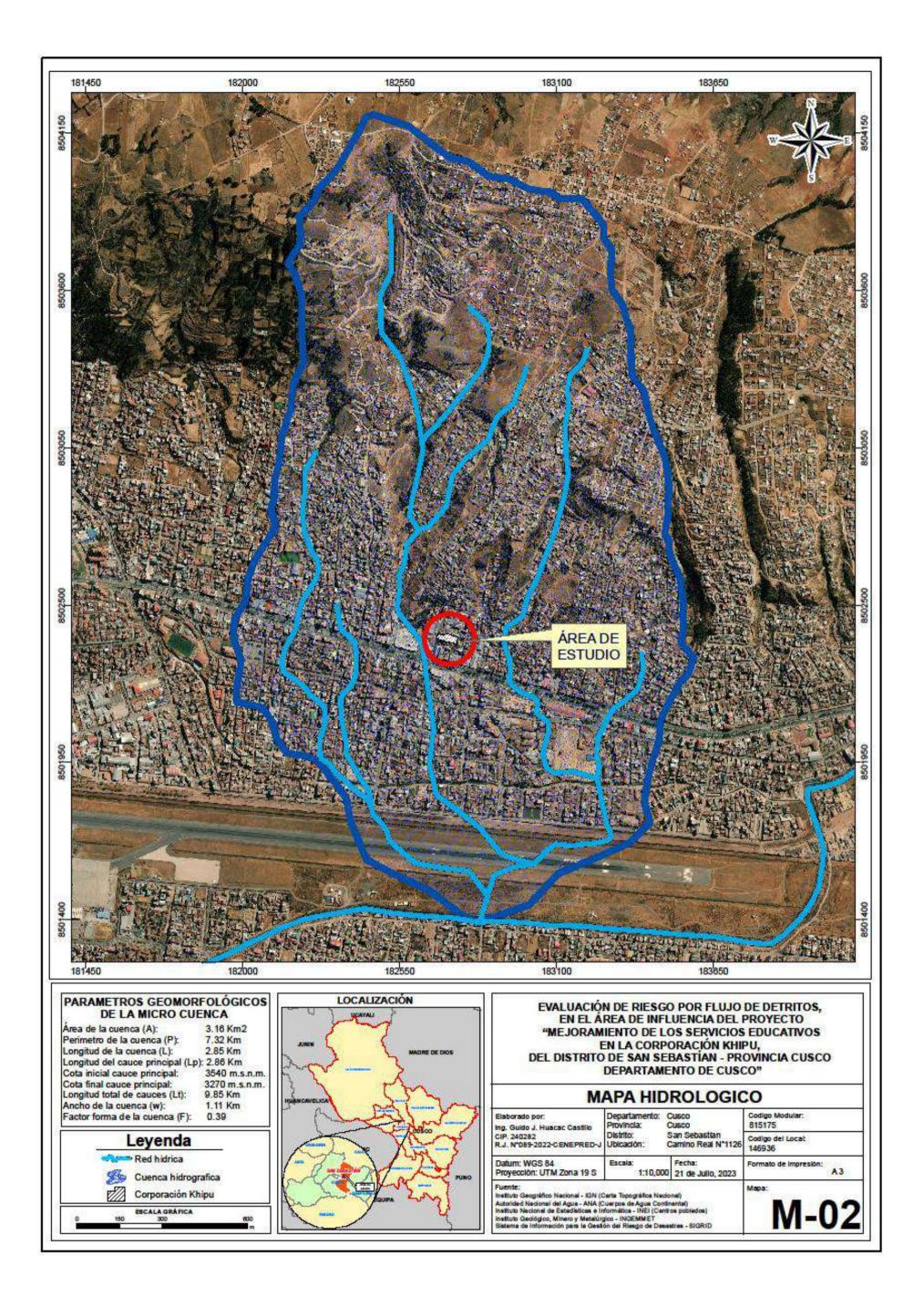
CÁLCULO DE LOS RANGOS DEL RIESGO

VALOR DE PELIGRO (P)	VALOR DE LA VULNERABILIDAD (V)	RIESGO (P*V=R)
0.485	0.480	0.233
0.268	0.261	0.070
0.138	0.138	0.019
0.072	0.084	0.006
0.037	0.037	0.001

Rango				
0.233	≤	R	≤	0.070
0.070	<	R	≤	0.019
0.019	<	R	≤	0.006
0.006	<	R	≤	0.001



PMA	0.485	0.041	0.067	0.126	0.233
PA	0.268	0.023	0.037	0.070	0.129
PM	0.138	0.012	0.019	0.036	0.066
РВ	0.072	0.006	0.010	0.019	0.035
		0.084	0.138	0.261	0.480
		VB	VM	VA	VMA



MAPAS

