Caracterización del peligro por movimiento de masa debido a lluvias extremas en la quebrada Malanche, distrito de Punta Hermosa

INFORME FINAL

Direccion de Hidrologia

Municipalidad de Punta Hermosa

DIRECCION DE HIDROLOGÍA

DIRECTORIO

Ing. Gabriela Teófila Rosas Benancio PRESIDENTA EJECUTIVA

Ing. Oscar G. Felipe Obando DIRECTOR DE LA DIRECCIÓN DE HIDROLOGÍA

PhD. Waldo Lavado Casimiro SUBDIRECTOR DE ESTUDIOS E INVESTIGACIONES HIDROLÓGICAS

REVISADO POR:

PhD. Waldo Lavado Casimiro Subdirector De Estudios e Investigaciones Hidrológicas wlavado@senamhi.gob.pe

ELABORADO POR:

M.Sc. Andres Goyburo Peña Especialista en hidrología agoyburo@senamhi.gob.pe

PERSONAL DE APOYO:

M.Sc. Carlos Millán Arancibia Ing. Leonardo Gutierrez Ing. Max Gutierrez Reynaga Especialista en hidrología Analista de hidrología Analista de hidrología

Lima – Perú Abril – 2024

CITAR COMO:

Goyburo, A.; Felipe, O.; Lavado-Casimiro, W.; Millán, C.; Gutierrez, L.; Gutierrez, M. (2024). Caracterización del peligro por movimiento de masa debido a lluvias extremas en la quebrada Malanche, distrito de Punta Hermosa - SENAMHI, Lima, Perú

CONTENIDO

1.	INTRODUCCIÓN	1
2.	OBJETIVOS	2
2.1	Objetivo general	2
2.2	Objetivos Específicos	2
3.	DESCRIPCIÓN DEL ÁREA DE ESTUDIO	2
3.1	Área de estudio	2
3.2	Descripción de la cuenca	
3.3	Análisis cartográfico de la cuenca	4
3.3	1. Parámetros geomorfológicos	4
3.3	2.2. Parámetros de relieve de la cuenca hidrográfica	5
3.4	Topografía del cauce de la Quebrada Malanche	7
3.5	Estudio de suelos	
4.	ANÁLISIS DE PRECIPITACIONES MÁXIMAS	13
4.1	Precipitación máxima diaria	
4.2	Análisis de frecuencias	
4.3	Desarrollo de curvas IDF	
5.	SIMULACIÓN DE RESPUESTA HIDROLÓGICA	16
6.	SIMULACIÓN DEL TRÁNSISTO DE FLUJOS DE ESCOMBROS.	17
6.1	Modelo reológico	
6.2	Modelamiento de estructuras hidráulicas	
7.	RESULTADOS DEL MODELAMIENTO HIDRÁULICO	20
7.1	Movimiento de flujo de escombros	20
7.2	Transporte de sedimentos (socavación y erosión)	
8.	CONCLUSIONES Y RECOMENDACIONES	48
9.	BIBLIOGRAFIA	49
10.	ΑΝΕΧΟ	50
10.1	1. Perfil estratigráfico	
10.	2. Resultados de granulometría	
10.3	3. Panel fotográfico	

Índice de figura

Figura 1: Mapa de ubicación del área de estudio	3
Figura 2: Curva hipsométrica de la cuenca rio Seco	5
Figura 3: Polígonos de frecuencias	5
Figura 4: Pendiente del cauce principal	6
Figura 5: Orden de los ríos determinados	6
Figura 6: Equipo del SENAMHI para el levantamiento fotogramétrico	7
Figura 7: Mapa del tramo 1 de la topografía de la quebrada Malanche	8
Figura 8: Mapa del tramo 2 de la topografía de la quebrada Malanche	9
Figura 9: Mapa del tramo 3 de la topografía de la quebrada Malanche	. 10
Figura 10: Mapa del tramo 4 de la topografía de la quebrada Malanche	. 11
Figura 11: Ubicación del muestreo de calicatas	. 12
Figura 12: Serie de tiempo de precipitación máxima en 24 horas de la estación Antioquia	. 13
Figura 13: Curvas IDF para los periodos de retorno	. 16
Figura 14: Esquema topológico del modelo en HEC HMS	. 16
Figura 15: Hidrograma de avenida para los periodos de retorno usando en el modelo HEC-H	MS
	. 17
Figura 16: Esquema correspondiente al Puente de Nueva Panamericana	. 19
Figura 17: Esquema correspondiente al Puente de Antigua Panamericana	. 20
Figura 18: Profundidad máxima del flujo de escombros para TR de 05 años en Área 1	
(Q _{max} =15.9 m ³ /s)	. 22
Figura 19: Profundidad máxima del flujo de escombros para TR de 10 años Área 1 (Q _{max} = 23.	2
m³/s)	. 23
Figura 20: Profundidad máxima del flujo de escombros para TR de 25 años Área 1 (Q _{max} =39.3	3
m ³ /s)	. 24
Figura 21: Profundidad máxima del flujo de escombros para TR de 50 años Área 1(Q _{max} =56.6	1
m³/s)	. 25
Figura 22: Profundidad máxima del flujo de escombros para TR de 100 años Área 1 (Q _{max} =77	.9
m ³ /s)	. 26
Figura 23: Profundidad máxima del flujo de escombros para TR de 500 años Área 1 (Q _{max} =15	1.3
m ³ /s)	. 27
Figura 24: Profundidad máxima del flujo de escombros para Evento Extremo Área 1	
(Q _{max} =302.6 m ³ /s)	. 28
Figura 25: Profundidad máxima del flujo de escombros para TR de 05 años Área 2 (Q _{max} =15.9)
m ³ /s)	. 29
Figura 26: Profundidad máxima del flujo de escombros para TR de 10 años Área 2 (Q _{max} =23.2	2
m ³ /s)	. 30
Figura 27: Profundidad máxima del flujo de escombros para TR de 25 años Área 2 (Q _{max} =39.3	3
m ³ /s)	. 31
Figura 28: Profundidad máxima del flujo de escombros para TR de 50 años Área 2 (Q _{max} =56.6	5
m ³ /s)	. 32
Figura 29: Profundidad máxima del flujo de escombros para TR de 100 años Área 3 (Q _{max} =77	.9
m³/s)	. 33
Figura 30: Profundidad máxima del flujo de escombros para TR de 500 años Área 2 (Q_{max} =15	1.3
m³/s)	. 34
Figura 31: Profundidad máxima del flujo de escombros para TR de 05 años Área 3 (Q _{max} =15.9)
m³/s)	. 35

Figura 32: Profundidad máxima del flujo de escombros para TR de 10 años Área 3 (Q_{max} =23.2	
m³/s)	36
Figura 33: Profundidad maxima del flujo de escombros para TR de 25 anos Area 3 (Q _{max} =39.3 m ³ /s)	37
Figura 34: Profundidad máxima del flujo de escombros para TR de 50 años Área 3 (Q_{max} =59.6 m ³ /c)	20
Figure 25: Profundidad máxima dol fluio do oscombros para TP do 100 años Ároa 2/0 -77.0	30 N
m ³ /s)	, 39
Figura 36: Profundidad máxima del flujo de escombros para TR de 500 años Área (Q _{max} =151.3 m ³ /s)	40
Figura 37: Profundidad máxima del flujo de escombros para TR de 05 años Área 4 (Q _{max} =15.9 m ³ /c)	11
III^{5}	41
$m^{3}/s)$	42
Figura 39: Profundidad máxima del flujo de escombros para TR de 25 años Área 4 (Q_{max} =39.3	
m ³ /s)	43
Figura 40: Profundidad máxima del flujo de escombros para TR de 50 años Área 4 (Q _{max} =56.6 m ³ /c)	лл
Figure 41, Brefundided méxime del fluie de essembres para TD de 100 años área 4/0 = -776	44 ว
m^3/s)	, 45
Figura 42: Profundidad máxima del flujo de escombros para TR de 500 años Área 4 (Q _{max} =151	.3
m ³ /s)	46
Figura 43: Secciones transversales para determinar el transporte de sedimentos totales	47
Figura 44: Perfil estratigráfico de la muestra C8	50
Figura 45: Perfil estratigráfico de la muestra C9	51
Figura 46: Perfil estratigráfico de la muestra C3	52
Figura 47: Resultados del ensavo de granulometría para el punto C8	53
Figura 48: Resultados del ensavo de granulometría para el punto C9	54
Figura 49: Resultados del ensavo de granulometría para el punto C3	55
Figura 50: Primera inspección en nuestra visita a campo – Quebrada Malanche.	56
Figura 51: Vista panorámica aguas abaio, desde puente de antigua Carretera Panamericana Su	ur.
	56
Figura 52: Segunda visita y trabajos de reconocimiento de campo en quebrada Malanche –	
Punta Hermosa	57
Figura 53. Excavación de calicatas y muestreo en el lecho de la Quebrada Malanche – Punta	
Hermosa	57
Figura 54. Rastro de Huayco a velocidades importantes en el lecho de la Quebrada Malanche Punta Hermosa	- 58
Figura 55. Medición del ancho y altura del lecho natural de la Quebrada Malanche – Punta	50
Hermosa.	58
Figura 56. Medición de la profundidad de la calicata en el lecho natural de la Quebrada	
Malanche – Punta Hermosa.	59
Figura 57. Visualización de la presencia de socavación en estructuras hidráulicas (puente),	
dentro del lecho natural de la Quebrada Malanche – Punta Hermosa	59
Figura 58. Medición del ancho de la base, del puente Perteneciente a la antigua Panamerican	а
Sur	60
Figura 59. Toma de coordenadas en eje central para validación de modelo hidráulico según	
software en la Quebrada Malanche – Punta Hermosa.	60

Figura 60. Construcción de la calicata en el lecho natural de la Quebrada Malanche – Punta	
Hermosa, progresiva 6 + 500	. 61
Figura 61. Visualización y presencia de muros naturales que forman puestes, dentro de la	
quebrada Malanche	. 61
Figura 62. Visualización y presencia de muros naturales que forman puestes, dentro de la	
quebrada Malanche	. 62
Figura 63. Visualización panorámica del punto de aforo de la quebrada Malanche	. 62

Índice de tablas

Tabla 1: Parametros geomorfologicos	. 4
Tabla 2: Resumen de resultado de las muestras en laboratorio.	12
Tabla 3: Precipitación máxima en 24 horas registradas	13
Tabla 4: Funciones de distribución de probabilidad	14
Tabla 5: Magnitud de la precipitación Max de 24 hrs para los periodos de retorno	14
Tabla 6: Parámetros del modelo reológico	19
Tabla 7: Resumen de las viviendas y habitantes en riesgo para los periodos de retorno de	
estudio	21
Tabla 8: Transporte de sedimentos totales para Tr = 25 años	47

PRESENTACIÓN

El Servicio Nacional de Meteorología e Hidrología del Perú-SENAMHI en el marco de la Red Nacional de Alerta Temprana (RNAT) correspondiente al Sistema Nacional de Gestión del Riesgo de Desastres (SINAGERD), conduce el Subcomité de Peligros Hidrometeorológicos que en coordinación con el Instituto Nacional de Defensa Civil (INDECI) viene desarrollando propuestas e instrumentos que permitan la implementación y operación de Sistemas de Alerta Temprana – SAT ante los peligros relacionados a las competencias oficiales del SENAMHI. Uno de los pilares de los SAT es el conocimiento de la amenazas o peligros que deben ser adecuadamente identificados y caracterizados para gestionar los riesgos con una base científica que permita reducir o mitigar sus impactos. El SENAMHI, desde el 2020, en alianza con gobiernos locales y/o universidades, viene ejecutando estudios de peligros de remoción de masa e inundaciones en quebradas y ríos de cuencas de Lima. En esta oportunidad, se pone a disposición de las autoridades de la Municipalidad de Punta Hermosa el presente estudio realizado en la Quebrada Malanche.

En setiembre de 2023, La Municipalidad distrital de Punta Hermosa y el Servicio Nacional de Meteorología e Hidrología del Perú, firmaron el Convenio de Cooperación interinstitucional con el Objeto establecer y desarrollar acciones conjuntas para la realización del Estudio denominado "Caracterización de Iluvias intensas asociado al peligro de movimientos de masa en la Quebrada Malanche del distrito de Punta Hermosa", que permitan el diseño y elaboración de medidas en gestión del riesgo de desastres en beneficio de la población del distrito.

Las simulaciones hidráulicas realizadas en un transecto de 11.7 km, han permitido determinar áreas de inundación y población afectada en la quebrada Malanche, para períodos de retorno de 5, 10, 25, 50, 100 y 500 años. En las condiciones actuales, para que se vuelvan a producir las mismas afectaciones del huayco del 14 de marzo del 2023, debe ocurrir un evento extraordinario que superen los periodos de retorno evaluados con un caudal pico estimado de 300.0 m³/s.

1. INTRODUCCIÓN

Punta Hermosa es conocida por sus hermosas playas por lo que es un popular destino turístico, especialmente para aquellos interesados en el surf. La zona cuenta con diversas playas, como Playa Norte, Playa Caballeros y Playa Señoritas. Estas playas son conocidas por tener buenas olas lo que lo convierte en un destino turístico tanto para los limeños que buscan escapar de la ciudad como para los turistas que visitan Lima.

En los últimos años, Punta Hermosa y sus alrededores han sido afectados por movimientos en masa causado por lluvias intensas que en el Perú denominamos "huaicos". Los huaicos son flujos de lodo y piedras causados por intensas lluvias, siendo muy peligrosos y destructivos. Estos eventos suelen ocurrir durante la temporada de lluvias, que generalmente se extiende de diciembre a abril. Las fuertes precipitaciones en las zonas montañosas cercanas pueden causar el desprendimiento de grandes volúmenes de tierra y rocas, que luego se desplazan rápidamente hacia las zonas más bajas, incluyendo Punta Hermosa.

En el año 2017 y 2023, Punta Hermosa fue afectada por intensas lluvias que provocaron huaicos y graves inundaciones durante el evento de "El Niño costero" y por el ciclón "Yaku". Durante los meses de marzo y abril, se registraron fuertes lluvias que superaron los niveles normales. Estas precipitaciones generaron la activación de la quebrada Pampapacta, lo que generó un huaico que afecto al distrito de Punta Hermosa. Este evento causó graves daños en viviendas, infraestructuras, carreteras y servicios básicos. Muchas familias perdieron sus hogares y se vieron obligadas a ser evacuadas. Además, la comunidad sufrió cortes de agua potable y energía eléctrica debido a los daños en la infraestructura. Ocurriendo el mismo evento y sus consecuencias en el año 2023.

En Punta Hermosa, las condiciones de riesgo se incrementan en quebradas con escasa cobertura vegetal, debido a la ocurrencia de eventos extremos de precipitación que detonan los huaicos y suelen provocar la pérdida de vidas humanas y daños económicos en la población instalada en las zonas cercanas. Para evitar o reducir el impacto de dichas pérdidas es imprescindible contar con estudios de caracterización de las lluvias intensas a nivel de cuenca, a través del modelamiento hidrológico-hidráulico-reológico para la identificación de zonas de impacto; todo ello fortalecerá el entendimiento de los peligros frente a los huaicos y la toma de decisiones para mejorar la gestión de riesgos de desastres con mayor oportunidad y confiabilidad.

Al respecto, es necesario indicar que el SENAMHI ya ha realizado este tipo de trabajos en las quebradas de Chosica y Chaclacayo, como La Cantuta, Pedregal, Cusipata, Los Cóndores, Ramón Castilla; Quebradas Progreso y Torre Blanca en cuenca del Chillón y Payhua en Matucana.

2. OBJETIVOS

2.1. Objetivo general

Realizar un estudio de caracterización de los peligros frente a los huaicos que generen la activación de la Quebrada Malanche, como línea de base para el desarrollo de acciones de prevención de riesgos de desastres en el distrito de Punta Hermosa.

2.2. Objetivos Específicos

- Recopilación y procesamiento de información cartográfica (Delimitación de la cuenca y determinación de parámetros geomorfológicos).
- Recopilar y procesar la información meteorológica disponible (Precipitaciones máximas 24h SENAMHI) Estación Antioquia.
- Elaboración del modelamiento hidrológico y su validación correspondiente.
- Realización del modelamiento hidráulico a lo largo de los 11.7 kilómetros de la quebrada Malanche.
- Reconstruir el flujo de escombros, mediante el modelamiento reológico.
- Elaboración de los mapas de peligro frente a huaycos para la zona urbana de Punta Hermosa.

3. DESCRIPCIÓN DEL ÁREA DE ESTUDIO

3.1. Área de estudio

El área geográfica pertenece a la región Lima, provincia Lima y distrito de Punta Hermosa; forma parte de la vertiente del pacifico (Figura 1).

Figura 1: Mapa de ubicación del área de estudio.

3.2. Descripción de la cuenca

La zona de estudio se encuentra ubicada en la parte izquierda de la Carretera panamericana Sur, si se toma como referencia la dirección de Lima al Sur del Perú, a 11.7 Km de distancia, respecto del puente Malanche; a la fecha es un lecho natural – artificial, compuesto en su mayoría de material aluvial.

Se accede por la margen izquierda del río Seco, si se toma como referencia aguas arriba del lecho del rio, y se puede hacer mediante transporte público o privado, es una trocha no asfaltada variable en cuanto a su ancho de calzada, que va desde los 6 metros de ancho hasta los 20 metros en algunos sectores, dicha trocha es adyacente a casi todo el tramo del rio; unos 10 minutos antes de llegar al punto emisor, se tiene que recorrer el tramo a pie, de manera obligatoria, puesto que el ultimo paradero de transporte público se encuentra a esa distancia, expresada en términos de tiempo, respecto al punto emisor de coordenadas consideradas para el estudio.

Aguas abajo del punto emisor de la cuenca hidrográfica mencionada, existen dos urbanizaciones separadas por la carretera Panamericana Sur. Por otro lado, también se ha observado que el aspecto urbano-marginal de la quebrada Malanche, está concentrada en ambos márgenes, aunque no se descarta la existencia de mayor cantidad de construcciones (principalmente en la margen izquierda), estas construcciones están hechas en base a material noble y también material rústico o precarias hacia las partes superiores; es decir, construcciones de mantas, calamina y triplay.

3.3. Análisis cartográfico de la cuenca

3.3.1. Parámetros geomorfológicos

Los parámetros que se muestran en la Tabla 1, describen los parámetros geomorfológicos obtenidos.

PARAMETROS			UND	NOMENCLATURA	CUENCA	
Superficie total de la cuenca			Km²	At	151.910	
Perímetro			Km.	Р	69.640	
Longitud del cauce principal			Km.	Lc	28.26	
Zona de Proyeccion UTM		s/U	Zona	18		
ACACIE		X			Coord. X	321458.59
JE		Ŷ		m	Coord. X	8648920.72
ш	DE	Coeficient	e de Compacidad (Gravelius)	s/U	Kc = 0.28 P / (At) ^{1/2}	1.594
ONES D RMA	OR I	CUENC FACTOR DE FORMA	Longitud de la Cuenca	Km.	LB	30.024
	ACT CUE		Ancho Medio de la Cuenca	Km.	AM = At / LB	5.060
For	E .		Factor de Forma	s/U	Kf = AM / LB	0.169
REL	RECT	TANGULO	Lado Mayor	Km.	Kc*(pi*A) ^{1/2} /2*(1+(1-4/pi*Kc²))	30.021
	EQUIVALENTE		Lado Menor	Km.	Kc*(pi*A) ^{1/2} /2*(1-(1-4/pi*Kc²))	5.060
Densidedad de drenaje		enaje	Km./Km².	Dd = Lt / At	0.714	
Orden de los Ríos			n	0	4	
Altura media d	Altura media de la cuenca			m.s.n.m.	Hm	1454
Pendiente cue	Pendiente cuenca (Met. Rectangulo Equivalente)			%	Ht / Lma	4.84%
Tiempo de Concentracion Kirpich			min.	0.0195(L^3/h)^0.385	175.31	

labla 1: Parametros geomorfologico.

3.3.2. Parámetros de relieve de la cuenca hidrográfica

Se determinaron los parámetros de relieve, denominado altitud más frecuente (H_fr), de la cuenca hidrográfica del Río Seco. Esto consiste en determinar la curva hipsométrica y el polígono de Tratamiento de datos.

- Curva Hipsométrica de la Cuenca Río Seco 3000 2500 Altitud (msnm) 2000 1500 1000 500 10.00 60.00 70.00 80.00 90.00 100.00 0.00 20.00 30.00 40.00 50.00 Area Acumulado (%) PORENCEMA ----- POR DEBAIO
- Curva hipsométrica

Figura 2: Curva hipsométrica de la cuenca rio Seco

• Cálculo de polígono de frecuencias de áreas parciales

Figura 3: Polígonos de frecuencias

• Determinación de la pendiente de cauce principal

• Orden de ríos en la cuenca hidrográfica

Figura 5: Orden de los ríos determinados

3.4. Topografía del cauce de la Quebrada Malanche

Durante el mes de octubre del 2023 se realizó el levantamiento fotogramétrico de la quebrada Malanche (Figura 6). Se realizo el vuelo de 808 Ha y 11 km de cauce, recolectando 3671 fotografías. Para la georreferenciación de las imágenes se colocaron 18 puntos de control en toda el área. Para obtener el modelo digital de elevación, de superficie y ortofoto (ANEXO 1).

Figura 6: Equipo del SENAMHI para el levantamiento fotogramétrico

El método fotogramétrico utilizado para crear los modelos tridimensionales fue el "Structure from Motion" (SfM), a partir de las fotografías bidimensionales superpuestas tomadas desde muchas ubicaciones y orientaciones para reconstruir la escena fotografiada. Las aplicaciones de la SfM son muy variadas, desde muchos subcampos de la geociencia (geomorfología, tectónica, geología estructural, geodesia, minería) hasta la arqueología, la arquitectura y la agricultura. Además de imágenes ortorrectificadas, la SfM produce un denso conjunto de datos de nubes de puntos que es similar en muchos aspectos al producido por el lidar aerotransportado o terrestre. Para la aplicación de la metodología se utilizó el software Agisoft PhotoScan.

Agisoft Metashape Pro es un software de vanguardia, cuyo núcleo motor lleva la fotogrametría a sus límites máximos, mientras que todo el sistema está diseñado para ofrecer resultados específicos del sector basándose en técnicas de aprendizaje automático para las tareas de post-proceso y análisis. El software permite procesar imágenes de cámaras RGB o multiespectrales, incluidos los sistemas multicámara, y convertirlas en información espacial de alto valor en forma de nubes de puntos densas, modelos poligonales texturizados, ortomosaicos reales georreferenciados y DSM/DTM. El postprocesamiento posterior permite eliminar sombras y artefactos de textura de los modelos, calcular índices de vegetación, clasificar automáticamente nubes de puntos densas, etc.

Figura 7: Mapa del tramo 1 de la topografía de la quebrada Malanche

Figura 8: Mapa del tramo 2 de la topografía de la quebrada Malanche.

Figura 9: Mapa del tramo 3 de la topografía de la quebrada Malanche.

Figura 10: Mapa del tramo 4 de la topografía de la quebrada Malanche.

3.5.Estudio de suelos

Las muestras de suelos, se tomaron en el eje principal del cauce. El número de muestras tomadas ha sido por cada kilómetro y de manera aleatoria, por lo que fueron en total 11 muestras (Figura 11). Para la representatividad y semejanza de las muestras se escogieron la C8, C9 y C3. En la Tabla 2 se muestra el resumen de los resultados.

Se resalta que en todos los casos se tiene un perfil del suelo hasta una profundidad 3.65 m y que la matriz de sedimentos está constituida preferentemente por arenas. Para el primer metro de profundidad se tiene un porcentaje de 14.3% de finos (limos) lo que representa que existe una cohesión entre partículas en los depósitos sedimentarios analizados. Sin embargo, con el aumento de la profundidad es menor el contenido de finos (limos) hasta 2.4%, indicando que, una vez erosionado los primeros metros, lo siguientes no tiene la suficiente cohesión lo que facilita el movimiento de masas.

Tabla 2: Resumen de resultado de las muestras en laboratorio.				
Variable	Muestra 1	Muestra 2	Muestra 3	
Profundidad (m)	1.05	1.65	3.65	
Grava (%)	0	0	6.1	
Arena (%)	85.7	98.2	91.2	
Finos (%)	14.3	1.8	2.4	
d95 (mm)	4.76	4.76	9.525	
d90 (mm)	2	2	8.7	
d50 (mm)	0.8	0.82	0.95	
SUCS	SM (arena	SW (arena	SW (arena	
	limosa)	fina)	gruesa)	

Figura 11: Ubicación del muestreo de calicatas

0.00

2987

4. ANÁLISIS DE PRECIPITACIONES MÁXIMAS

4.1. Precipitación máxima diaria

De las estaciones pluviométricas con las que se cuenta con información de precipitación máxima en 24 horas, se estableció que la más representativa es la estación Antioquia, por presentar una longitud de 40 años de datos para poder realizar el análisis de frecuencias respectivo.

En la Tabla 3 y Figura 12 se muestra la información de precipitación máxima en 24 horas del registro de la estación Antioquia.

	Tabla 3: Precip	itación máxi	ma en 24 hoi	ras registrad	as
1981	32.21	1996	8.93	2011	4.52
1982	8.70	1997	13.11	2012	6.22
1983	19.78	1998	11.07	2013	19.78
1984	11.30	1999	19.78	2014	11.53
1985	7.23	2000	14.24	2015	10.40
1986	8.25	2001	12.77	2016	4.41
1987	5.09	2002	18.08	2017	10.85
1988	24.63	2003	6.33	2018	9.94
1989	9.38	2004	13.00	2019	10.85
1990	10.51	2005	1.36	2020	6.55
1991	9.38	2006	16.72		
1992	3.73	2007	8.14		
1993	8.36	2008	15.14		
1994	24.63	2009	18.65		
1995	14.92	2010	6.55		

Figura 12: Serie de tiempo de precipitación máxima en 24 horas de la estación Antioquia

4.2. Análisis de frecuencias

El objetivo en esta sección fue la de ajustar las distribuciones de probabilidad teóricas disponibles a los datos observados de precipitación máxima en 24 horas a fin de poder hacer extrapolaciones para diferentes periodos de retorno.

En la Tabla 4 se muestran los valores de las pruebas de bondad de ajuste generados por las diferentes distribuciones, usando el software Hydroesta, donde se puede observar que la distribución **GUMBEL** presenta un mejor ajuste acorde con las ocurrencias meteorológicas registradas en la zona de estudio.

Tabla 4: Funciones de distribución de probabilidad				
DISTRIBUCION	ΔTEORICO	ΔTABULAR		
Normal	0.1344	0.215		
Log normal2	0.0812	0.215		
Log nomal3	0.0665	0.215		
Ganma2	0.0627	0.215		
Ganma3	0.0623	0.215		
Gumbel	0.0652	0.215		
Log Gumbel	0.1295	0.215		

Luego de realizar la prueba de bondad de ajuste y de verificar que la distribución que mejor se ajusta es la distribución Gumbel, se calculó la serie de precipitaciones máximas para diferentes periodos de retorno (Tabla 5).

Tr (años)	Probabilidad de excedencia	Antioquia Pmáx (mm)
5	0.73	19.51
10	0.90	23.92
25	0.96	29.50
50	0.98	33.64
100	0.99	37.75
500	1.00	47.24

Tabla 5: Magnitud de la precipitación Max de 24 hrs para los periodos de retorno

4.3. Desarrollo de curvas IDF

La estación de lluvia ubicada en la zona del proyecto no cuenta con registros pluviográficos que permitan obtener registros de intensidades máximas o no han sido proporcionadas para el desarrollo del presente estudio.

Para superar este problema se recurrió al principio conceptual, referente a que los valores extremos de lluvias de alta intensidad y corta duración, en el mayor de los casos, marginalmente dependientes de la localización geográfica, tienen propiedades físicas similares en la mayor parte del mundo, con base en el hecho de que estos eventos de lluvia están asociados con celdas atmosféricas.

Existen varios modelos para estimar la intensidad a partir de la precipitación máxima en 24 horas. Uno de ellos es el modelo de Frederich Bell (1969) que permite calcular la lluvia máxima en función del período de retorno, la duración de la tormenta en minutos y la precipitación máxima de una hora de duración y periodo de retorno de 10 años. La expresión es la siguiente:

$$P_t^T = (0.21 \log_e T + 0.52)(0.54t^{0.25} - 0.50)P_{60}^{10}$$

Donde:

t: Duración en minutos

T: Periodo de retorno en años

: Precipitación caída en t minutos con periodo de retorno en T años

: Precipitación caída en 60 minutos con periodo de retorno de 10 años

El valor de puede ser calculado a partir del modelo de Yance Tueros, que estima la intensidad máxima horaria a partir de la precipitación máxima en 24 horas.

$$I = a P_{24}^{b}$$

Donde:

I: intensidad máxima en mm/h

a, b: parámetros del modelo

P24: Precipitación máxima en 24 hrs

Las curvas de intensidad-duración-frecuencia, se han calculado indirectamente, mediante la siguiente relación:

$$I = \frac{KT^m}{t^n}$$

Donde:

I: intensidad máxima en mm/min

K, m, n: factores característicos de la zona de estudio

T: período de retorno en años

t: duración de la precipitación equivalente al tiempo de concentración (min)

En la Figura 13, se muestra las curvas de intensidad-duración-frecuencia para diferentes periodos de retorno y duración considerando la ecuación mostrada previamente.

Figura 13: Curvas IDF para los periodos de retorno

5. SIMULACIÓN DE RESPUESTA HIDROLÓGICA

Para simular el proceso de precipitación-escorrentía, se ha utilizado el modelo HEC HMS. El software HEC-HMS fue desarrollado para la modelación de procesos hidrológicos que ocurren en una cuenca desde precipitaciones habituales hasta simulaciones de tormentas hipotéticas. De toda esa variedad de métodos que nos permite usar el software se optó por emplear la metodología del FRECUENCY STORM debido a que este método nos permite introducir datos de frecuencias de precipitaciones máximas en cada subcuenca, lo que representaría un comportamiento hídrico de la cuenca más exacto y por ende nos permitirá obtener un hidrograma más preciso. Esta metodología requiere del tiempo de concentración, coeficiente de almacenamiento y del número de curva (CN), los cuales son parámetros previamente obtenidos mediante HEC-GeoHMS.

En la Figura 14 se muestra el esquema topológico con el que se representa el comportamiento hidrológico de la cuenca aportante a la quebrada Malanche.

Figura 14: Esquema topológico del modelo en HEC HMS

En la Figura 15 se muestran los hidrogramas obtenidos por el modelo hidrológico para los periodos de retorno. Estos caudales serán introducidos al modelo hidráulico para modelar el movimiento de masa en la quebrada.

Figura 15: Hidrograma de avenida para los periodos de retorno usando en el modelo HEC-HMS

6. SIMULACIÓN DEL TRÁNSISTO DE FLUJOS DE ESCOMBROS

Para la simulación del tránsito de flujos hiperconcentrados se ha utilizado el modelo HEC RAS. Esta herramienta simula el flujo de escombros en dos dimensiones considerando las ecuaciones del flujo en superficie libre promediadas en la profundidad. La ecuación de continuidad está dada como:

$$\frac{\partial h}{\partial t} + \frac{\partial = (uh)}{\partial x} + \frac{\partial (vh)}{\partial y} = i$$

Donde h es la profundidad del flujo de escombros (m), u es la profundidad media del flujo en el eje x (m^1s^{-1})), v es la profundidad media del flujo en el eje y (m^1s^{-1}) e i es la intensidad de la lluvia (mm^1hr^{-1}) .

Asimismo, las ecuaciones de momentum se describe de la siguiente manera:

$$S_{fx} = S_{bx} - \frac{\partial h}{\partial x} - \frac{\partial u}{g\partial t} - u\frac{\partial u}{g\partial x} - v\frac{\partial u}{g\partial y}$$
$$S_{fy} = S_{by} - \frac{\partial h}{\partial y} - \frac{\partial u}{g\partial t} - u\frac{\partial u}{g\partial x} - v\frac{\partial u}{g\partial y}$$

Donde Sfx, Sfx corresponden a la pendiente de fricción en los ejes x-y, respectivamente. Sbx, Sby son la pendiente de fondo en los ejes x-y, respectivamente. g es la aceleración de la gravedad (m^1s^{-2}). Las ecuaciones de momentum representan el balance de las fuerzas representativas en las dos dimensiones consideradas (x-y). Incluyen, de izquierda a derecha, pendiente de fricción afectada por la potencia de los sedimentos en contacto (modelo reológico), pendiente de fondo debido a la gravedad,

el gradiente de presión, el término de aceleración local de las fuerzas de inercia, y la aceleración convectiva.

HEC-RAS usa diferentes modelos reológicos cuadráticos para modelamiento de flujos no newtonianos, de los cuales, se utilizó el presentado por O'Brien y Julien (1998), que incluye esfuerzos de cedencia, esfuerzos viscosos, esfuerzos cohesivos y esfuerzos turbulentos. Los parámetros para caracterizar el modelo reológico son: la rugosidad superficial, la concentración en volumen (CV), el esfuerzo de cedencia, la viscosidad, y la densidad de los sedimentos. La experiencia indica que los parámetros más importantes son la rugosidad superficial y la concentración en volumen de la mezcla agua-sedimentos. El modelo reológico Hec Ras, está representado por la siguiente ecuación:

$$S_f = S_y + S_v + S_{td} = \frac{\tau_y}{\gamma_m h} + \frac{knu}{8\gamma h^2} + \frac{n^2 u^2}{h^{4/3}}$$

Donde S_y es la pendiente de cedencia, S_v es la pendiente viscosa, y S_{td} es la pendiente turbulenta-dispersiva, es el esfuerzo de cedencia de Bingham, η es la viscosidad dinámica de Bingham, γ_m peso unitario del flujo de escombros, K resistencia del flujo laminar, n coeficiente de rugosidad de Manning, h profundidad del flujo de escombros, u velocidad del flujo de escombros.

En nuestro caso, se ha utilizado el mismo DSM documentado en líneas arriba. Como se requiere mayor detalle en la simulación del flujo de escombros, se ha remuestreado el DSM y se ha desarrollado una malla computacional de 3 m de resolución espacial.

Como condiciones de borde de aguas arriba se ha utilizado los hidrogramas generados en la simulación del proceso de precipitación-escorrentía con HEC-HMS. Para la de aguas abajo, se ha utilizado una condición de borde libre.

6.1. Modelo reológico

Para seleccionar los parámetros del modelo reológico usado para simular el tránsito de los flujos de escombros que produce la quebrada Malanche, hemos considerado los siguientes criterios:

- El valor seleccionado para la concentración en volumen de los sedimentos fue de 45%, teniendo en cuenta los resultados de los ensayos de mecánica de suelos realizados en la quebrada en estudio. Este valor está estrechamente relacionado con la producción de sedimentos de la quebrada asociado a eventos extremos (100 años PR).
- La relación entre el esfuerzo de cedencia y viscosidad dinámica, τy y, η y la concentración en volumen, Cv, se muestra en las siguientes ecuaciones:

$$\tau_{y} = a_{1}e^{\beta_{2}C_{v}}$$
$$\eta = a_{2}e^{\beta_{2}C_{v}}$$

Cabe resaltar que valores referenciales se pueden encontrar en el manual de usuario de HEC RAS en función de ensayos estándar de mecánica de suelos.

- El valor de Manning seleccionado tiene en cuenta la rugosidad superficial de los granos de sedimentos, a través de la granulometría, así como la generada por los elementos macrorugosos que se han podido observar en el trabajo de campo. Es por ello que se ha seleccionado el valor de 0.05 para representar la rugosidad total en el tramo de simulación.
- La gravedad específica utilizada corresponde a los resultados de laboratorio de la matriz de sedimentos.

Se observa en la Tabla 6 los parámetros del modelo reológico cuadrático utilizado para simular el tránsito de flujos de escombros en la quebrada Malanche. (INGEMET, 2019)

Tabla 6: Parámetros del modelo reológico				
Método no newtoniano O´Brien Equation (Cuadrático)				
Shear components	a=0.0765 b=16.9			
Volumetric Concentration (Cv) %	0.45			
Mixture Dynamic Viscocity	6.2			
(Exponencial)				
Representative Grain Size (mm)	125			
Max Cv	61.5			

6.2. Modelamiento de estructuras hidráulicas

Para darle mayor representatividad al modelo se incluyeron los puentes correspondientes a la panamericana antigua y nueva. Con eso el resultado del modelo de tránsito de escombros será más cercano a un evento real (Figura 16 y Figura 17).

Figura 16: Esquema correspondiente al Puente de Nueva Panamericana

Figura 17: Esquema correspondiente al Puente de Antigua Panamericana

7. RESULTADOS DEL MODELAMIENTO HIDRÁULICO

7.1. Movimiento de flujo de escombros

En las siguientes páginas se muestran los mapas resultados del modelamiento reológico con el software HEC-RAS 6.4.1. Para determinar las áreas afectadas se utilizó la profundidad máxima obtenido por el modelo para el tránsito de flujo de escombros, de esta forma se puede determinar los escenarios más críticos.

Para mostrar los efectos del flujo de escombros de dividió el área del cauce en 4 áreas de intereses determinadas por la presencia de población que puede ser afectada. Se realizo el conteo de viviendas y estableciendo un promedio de 4 habitantes por vivienda se determino el numero de personas en riesgo para cada tiempo de retorno.

En la Figura 24 se muestra las áreas afectadas por un evento extremo, siendo el doble del caudal obtenido para el TR=500 años. Esto para determinar cuáles serían las áreas más afectadas ante un evento que sobrepase las defensas diseñadas.

En la Tabla 7 se muestran el numero aproximado de viviendas y habitantes en riesgo para los tiempos de retorno en las áreas de interés.

Periodo de retorno	Áreas	N° Vivienda en Riesgo	N° Habitantes en Riesgo
5	Área 1	0	0
	Área 2	0	0
	Área 3	20	80
	Área 4	250	1000
10	Área 1	0	0
	Área 2	0	0
	Área 3	30	120
	Área 4	250	1000
25	Área 1	0	0
	Área 2	0	0
	Área 3	30	120
	Área 4	250	1000
50	Área 1	0	0
	Área 2	0	0
	Área 3	50	200
	Área 4	270	1080
100	Área 1	0	0
	Área 2	25	100
	Área 3	50	200
	Área 4	450	1800
500	Área 1	0	0
	Área 2	50	200
	Área 3	75	300
	Área 4	450	1800
Evento Extremo	Área 1	1200	4800

Tahla 7 [,] Resumen	de las viviendas	v hahitantes en riesao	nara los neriod	os de retorno de estudio
rabia / . nesamen	ac has vivicinaas	y nabitantes en nesgo	para los perioa	

Figura 18: Profundidad máxima del flujo de escombros para TR de 05 años en Área 1 (Q_{max}=15.9 m³/s)

Figura 19: Profundidad máxima del flujo de escombros para TR de 10 años Área 1 (Q_{max}= 23.2 m³/s)

Figura 20: Profundidad máxima del flujo de escombros para TR de 25 años Área 1 (Q_{max}=39.3 m³/s)

Figura 21: Profundidad máxima del flujo de escombros para TR de 50 años Área 1(Q_{max}=56.6 m³/s)

Figura 22: Profundidad máxima del flujo de escombros para TR de 100 años Área 1 (Q_{max}=77.9 m³/s)

Figura 23: Profundidad máxima del flujo de escombros para TR de 500 años Área 1 (Q_{max}=151.3 m³/s)

Figura 24: Profundidad máxima del flujo de escombros para Evento Extremo Área 1 (Q_{max}=302.6 m³/s)

Figura 25: Profundidad máxima del flujo de escombros para TR de 05 años Área 2 (Q_{max}=15.9 m³/s)

Figura 26: Profundidad máxima del flujo de escombros para TR de 10 años Área 2 (Q_{max}=23.2 m³/s)

Figura 27: Profundidad máxima del flujo de escombros para TR de 25 años Área 2 (Q_{max}=39.3 m³/s)

Figura 28: Profundidad máxima del flujo de escombros para TR de 50 años Área 2 (Q_{max}=56.6 m³/s)

Figura 29: Profundidad máxima del flujo de escombros para TR de 100 años Área 3 (Q_{max}=77.9 m³/s)

Figura 30: Profundidad máxima del flujo de escombros para TR de 500 años Área 2 (Q_{max}=151.3 m³/s)

Figura 31: Profundidad máxima del flujo de escombros para TR de 05 años Área 3 (Q_{max}=15.9 m³/s)

Figura 32: Profundidad máxima del flujo de escombros para TR de 10 años Área 3 (Q_{max}=23.2 m³/s)

Figura 33: Profundidad máxima del flujo de escombros para TR de 25 años Área 3 (Q_{max}=39.3 m³/s)

Figura 34: Profundidad máxima del flujo de escombros para TR de 50 años Área 3 (Q_{max}=59.6 m³/s)

Figura 35: Profundidad máxima del flujo de escombros para TR de 100 años Área 3 (Q_{max}=77.9 m³/s)

Figura 36: Profundidad máxima del flujo de escombros para TR de 500 años Área (Q_{max}=151.3 m³/s)

Figura 37: Profundidad máxima del flujo de escombros para TR de 05 años Área 4 (Q_{max}=15.9 m³/s)

Figura 38: Profundidad máxima del flujo de escombros para TR de 10 años Área 4 (Q_{max}=23.2 m³/s)

Figura 39: Profundidad máxima del flujo de escombros para TR de 25 años Área 4 (Q_{max}=39.3 m³/s)

Figura 40: Profundidad máxima del flujo de escombros para TR de 50 años Área 4 (Q_{max}=56.6 m³/s)

Figura 41: Profundidad máxima del flujo de escombros para TR de 100 años Área 4 (Q_{max}=77.9 m³/s)

Figura 42: Profundidad máxima del flujo de escombros para TR de 500 años Área 4 (Q_{max}=151.3 m³/s)

7.2. Transporte de sedimentos (socavación y erosión)

Para determinar el transporte de sedimentos se eligió el evento correspondiente el periodo de retorno de 25 años debido que es sería el evento a ocurrir al mediano plazo. En la Figura 43 se muestra las secciones transversales establecidas para determinar si ocurre socavación o erosión después del tránsito del flujo. Correspondiendo a las muestras tomadas en el estudio de suelo.

Figura 43: Secciones transversales para determinar el transporte de sedimentos totales.

En la Tabla 8 se muestra el total de los sedimentos transportaos en cada sección como la variación de la profundidad en cada sección.

	Tabla 8: Trans	porte de sedimento	os totales para T	r = 25 anos	
Sección	Cota inicio (m)	Cota Final (m)	Condición	Trans (Tn)	Total (Tn)
10898	326.79	326.79	Sedimentado	66179	66179
10071	304	304.7486	Sedimentado	66206	132385
9304	278.25	276.22	Erosionado	40256	172641
7958	239.4	239.63	Sedimentado	79543	252184
6183	193.5	193.79	Sedimentado	74645	326829
4568	152.8	153	Sedimentado	67920	394749
2882	115.99	115.9	Erosionado	63458	458207
1057	63.17	62.93	Erosionado	71947	530154
994	61.98	61.27	Erosionado	87178	617332
957	60.89	60.18	Erosionado	88840	706172
907	56.62	59	Sedimentado	89355	795527
548	48.9	51.59	Sedimentado	76359	871886
256	42.12	44.11	Sedimentado	49484	921370

_ . . 1.

8. CONCLUSIONES Y RECOMENDACIONES

Se ha realizado la simulación para periodos de retorno de 5, 10, 25, 50, 100, 500 años del fenómeno de iniciación y propagación de flujos de escombros de la quebrada Malanche utilizando los modelos numéricos HEC-HMS y HEC-RAS.

Se ha realizado el análisis de frecuencias de la precipitación máxima en 24 horas de la estación Antioquia y se han estimado las magnitudes para distintos periodos de retorno. Sin embargo, se recomienda estudiar la variabilidad espacial de las tormentas y aumentar la densidad de estaciones del registro de lluvia en tiempo real.

Se ha simulado el proceso de precipitación-escorrentía con el modelo HEC-HMS. Se recomienda realizar un análisis de sensibilidad de la topología de la red de drenaje y la rugosidad superficial sobre la simulación. Asimismo, simular la producción de sedimentos asociada a diferentes periodos de retorno para que la concentración en volumen ingrese como entrada al modelo HEC-RAS.

No se ha podido validar las simulaciones debido a que en la quebrada Malanche no se cuenta con mediciones de las variables de flujo de agua ni sedimentos. Sin embargo, en base a la experiencia, los resultados son muy razonables. Se recomienda instalar cámaras LSPIV o de seguridad para registrar el paso del flujo de agua y sedimentos cuando se activen por lluvias intensas. Asimismo, para poder calibrar los procesos físicos, se recomienda utilizar el método geomorfológico, que implica realizar vuelos con Dron y obtener DSM antes y después de un evento de flujo de escombros importante y estimar las zonas de erosión y deposición de sedimentos en toda la quebrada y compararla con la simulación en cascada.

El área urbana cercana a la playa no se vería afectada para los tiempos de retorno estudiados. Sin embargo, para simular los efectos del fenómeno del año 2023 se tuvo que generar un evento extremo superior al correspondiente el periodo de retorno al de 500 años. Se puede concluir que las acciones tomadas en el ultimo trimestre del 2023 para la mitigación de estos eventos (limpieza del cauce antes de la desembocadura al mar) serian efectivas.

Sin embargo, Pampacta y Santa Rosa de Punta Hermosa se verían ampliamente afectados por los fenómenos simulados por los periodos de retorno. Generando daños materiales y la posible afectación directa sobre la población. Se recomiendo realizar campañas de concientización sobre el peligro de los movimientos de masa.

Para definir los umbrales de inundación de un sistema de alerta temprana, se recomienda considerar dos variables: la intensidad media de la precipitación y la duración total de la tormenta. Para efectos prácticos se recomienda simular los modelos configurados considerandos diferentes escenarios en base a la variabilidad de estos dos factores.

9. BIBLIOGRAFIA

Hydrologic Engineering Center. HEC-RAS User's Manual version 4.6.1.

Hydrologic Engineering Center. HEC-HMS User's Manual version 4.7.

O'Brien, J.S., Julien, P.Y. (1998). Laboratory analysis of mudflow properties. Journal of Hydraulic Engineering 114(8), 877-887.

INGEMMET. (2019). Evaluación de peligros geológicos en el distrito de punta hermosa. Lima: dirección de geología ambiental y riesgo geológico.

10. ANEXO

10.1. Perfil estratigráfico

C	PU	ÍCF	>							Perforación:	P-1).93 m
oyect	o: Est	. Hidro	lógico	Maland	che	Ciudad:		Punta	Hermosa	Fecha de Inicio: 27	02/2024
iente:	SG	MONT	TE .			Prov/ Dp	sto:	Lin	ia, Lima	Fecha de Fin: 27	02/2024
pedie	inte:	P	12024-	1-G6	0.000010-	Altura (n	nsnm):	-	N/A	Perforista: J, Cl	IOLAN
mentar	nios: Ma	rtillo de	seguri	dad/ma	lacate	Napa Fr	eática:	No er	ncontrada	Tipo de Perf: Esp/SF	T (Φ=10cr
	Muestra		Ens	ayo de (M es por	Peneti NTP 33 15cm	ración Es 9.133) N	Altura	Prof		Descripción del Suelo (SUCS	i)
No.	Prof (m)	Tipo	1er	2do	3er	campo	Cabezal	(m)			SIMBOLO
								1.1	Suelo superfi	cial (topsoli) compuesto de limo arcilloso	
				-	5			-			
1	0.6 -1.05	Mab	7	10	5		1.8	- - 	ARENA med ligeramente	ia mal gradada, ligeramente limosa, gris, húmeda (SM)	
2	1.2 -1.65	Mab	3	11	8	-	1,8	-	Dr = 69.23	3% (Arena Densa)	
3	2.2-2.85	Mab	7	9	11		1.7		ARENA med ligeramente l Dr = 72.91	ia mal gradiada, gris, númeda (SP) 1% (Arena Densa)	
4	3.2-3.65	Mab	5	10	10		17	- - - - - - 3.0 -	ARENA grue	sa a media, mal gradada, gris,)	
					2042 1 1			- - - - - 4.0	Dr = 65.48	% (Arena Densa)	
5	4.2-4.65	Mab	9	12	12	v - 13	1.7	-			
6	5.2-5.65	Mab	15	13	12	<u> </u>	1.7	6.0 	imuy hûmeda	se, margraduada, matron, (SP)	
										Fin de perforación	

Figura 44: Perfil estratigráfico de la muestra C8

	P	Ŭ	CF	•							Perforación:	P-2
		etu	dia Hi	idrológ	ico Ma	danc	Ciudad: P	unta Hor	mosa		Fort, Total:	1.25 m
opto:	·	C. N	MONT	E	neo ma	name.	Browl Dr	do-	Lin	a Lima	Fecha de Fin	27/02/2024
ente.	nto: P	1202	24.1.0	16		_	Alluro (n	nenna's		a, Linia	Derforiete:	L CHOLAN
heale		120	illo de	soquely	dadimal	Incate	Nona En	adtina:	No.e	u contrada	Tipo de Derf: Een	SPT // =10
nentar	104. <u> </u>	wart	nio de	segun	dad/mai	acate	мара на	eauca.	NO el	contrada	_ ripo de Penesp	13F1 (#=10
2	Muestr	a		Ensi	ayo de (M	Penet TP 33	ración Es 9.133)	tándar	Brof		Descripción del Suelo (SU	JCS)
	Prof (r	m)] *	Tino	1er	2do	3er	Campo.	Caberal	(m)			SÍMBOL
	Tiorp		1100	101	200		campo	Gabera	1			E252
									2	Suelo superf	icial (topsoli) compuesto de limo arc	lloso
									-			
									-			
1	0.6 -1.0	15	Meb	6	8.	7		1.8				
										ARENA med	ia mal gradada, ligeramente Imosa,	
									-	gris a marró	n, ligeramente húmeda (SM)	
									_ 1.0	0.000-025-025		
									-	Dr = 69.23	3% (Arena Densa)	
	12.16		Alab		12	.0		1.0	-			
-	1.42 - 3.43		0160		12			1.0	-			
									1			
									-	6		
									-			

									_ 2.0	ARENA med	A media mal gradada, gris.	11 1 1 1
									-	ligeramente hümeda (SP)	humeda (SP)	
9	22.2.6	-	Mak		10			1.7	-	Dr = 72.9	1% (Arena Densa)	
<u>e</u>	2.2.2.0	° [INUBL?	÷.	16			39600	- Dr = 72.5			
									-			

									-			
									_			
									- 200			
									_ 3.0			
									-			
-	32.36	5	Mala	5	11	11		17		ARENA grue	sa a media, mal gradada, gris,	
200	1.8-0.0	30 L	222	್	1000	1200		255		hümeda (SP)	
										Dr = 65.48	3% (Arena Densa)	
									-			*****
									_	-		
									-			
									- 4.0			
									-			
5	4246	8	Mab	12	11	12		1.7	1			
				1								
									-	ARENA grue	sa, mai gradada, marron,	
									m	muy hümeda	(SP)	
									_ 5.0			
									-			
8	6050		Mark	**	- 14	10		4.7	-			
88	9.2.9.6	80	0180	- 22	10	12		355	-			
		-	_									The second se

Figura 45: Perfil estratigráfico de la muestra C9

	PU	CF	>							Perforación: Prof. Total:		P-3		
ovect	o: Est	udio Hi	idrolog	ico Ma	lanch	Ciudad:		Punta	Hermosa	Fecha de Início:	27/	02/2024		
iente:		S	G MON	TE		Prov/ Dp	oto:	Lin	na, Lima	Fecha de Fin:	27/	02/2024		
pedie	ente:	P	12024-1	I-G6		Altura (n	nsnm):	-	0	Perforista:	J. C	HOLAN		
menta	rics: Mar	tillo de	seguri	dad/mal	lacate	Napa Fr	eática:	No er	ncontrada	Tipo de Perf:	Esp/SP	T (Φ=10		
			Ene	auo da	Denet	ración Er	tindar	1	1		100000000000000000000000000000000000000			
	Muestra		Golp	(Mes por	TP 33	9.133)	Altura	Prof		Descripción del Su	elo (SUCS	5)		
No.	Prof (m)	Tipo	1er	2do	3er	campo	Cabezal	(m)				SÍMBOL		
								-				fit to		
								_	Suelo superfi	cial (topsoil) compuesto de	limo arcilloso	-		
								-						
								_						
1	0.6 -1.05	Mab	10	10	7		1.8	-	ARENA medi	a mal gradada, ligeramente	limosa,			
								-	gris a marrón	, ligeramente hümeda (SM	0	*****		
								10	Dr = 69.23	3% (Arena Densa)				
								- 1.0						
		-			-			2						
2	1.2 -1.65	Mab	8	9	8		1.8	1-						
								-						
								-						
								-	-					
								_ 2.0						
								-	ARENA medi	a mai gradada, gris,				
3	2.2.2.85	Mah	7		2		17	-	ligeramente I	hümeda (SP)				
9	2.2.2.00	In tal.	- 10	1.80	10		3945(1)	-	DI = 72.9	1% (Arena Densa)				
								-	-					
								-						
								-						
								-						
								3.0						
4	3.2-3.65	Mab	8	13	12		1.7	-	húmeda (SP	sa a media, mal gradada, gi 'i	18,			
								-	Dr = 65.4	8% (Arena Densa)				
								-		and the second second second				
									1					
								1						
								-						
								_ 4.0						
								-						
	42485	Mah		11	12		12							
4	4.2-4.00	IN AD	3		12		1.1							
								-						
								-		1. H 1992 (1993) (1993)				
								1.22	ARENA grue	sa, mai gradada, marron, (SP)				
								- 5.0	nay nameda	100 A				
								-						
6	5.2-5.65	Mab	5	11	12		1.7							
eta)			197		1000		0.000							
								1				*****		
								12	1	Els de conferre	64 G 10			

Figura 46: Perfil estratigráfico de la muestra C3

10.2. Resultados de granulometría

DEPARTAMENTO DE INGENIERIA LABORATORIO DE MECANICA DE SUELOS

ENSAYOS DE CLASIFICACIÓN NTP 339.127, 339.128, 339.129, 339.131

	6% 2.65	W =	LL = NP	Porcentaje	Diametro	Porcentaje	I amiz ASTM
		04-	IP =	que pasa		100.0	3"
is sólidas	nuestra	nicos en	Ensayos quín			100.0	2*
Resultado	Unid.	1				100.0	1 1/2"
196	mg/kg		Cloruro			100.0	1*
458	mg/kg		Sulfato			100.0	3/4*
863	mg/kg	itales	Sales Solubles to			100.0	3/8"
8	1997-1997 (M	105				95.8	#4
			1			89.6	#10
						59.8	#20
			· · · · ·			30.2	#40
Mecánica de	Lab. de ?	Res	0=			21.0	#60
los	Such					15.5	#140
						14.3	#200

PI20241G6/1/GM/1 de 1

Figura 47: Resultados del ensayo de granulometría para el punto C8

DEPARTAMENTO DE INGENIERIA LABORATORIO DE MECANICA DE SUELOS

ENSAYOS DE CLASIFICACIÓN NTP 339.127, 339.128, 339.129, 339.131

Tamiz ASTM	Porcentaje que pasa	Diámetro en mm	Porcentaje que pasa		w	= 8%	
3"	100.0						
2°	100.0			Ensayos quím	nicos e	n muestra	is sólidas
1 1/2"	100.0					Unid.	Resultado
1*	100.0			Cloruro	-	mg/kg	74
3/4*	100.0	******		Sulfato		mg/kg	228
3/8"	100.0			Sales Solubles to	itaks	mg/kg	656
#4	95.8					0102-022	
#10	89.6						
#20	59.8						
#40	20.4						
#60	10.1			0 ==	R	esp. Lab. de l	Mecánica de
#140	3.9					Sue	los
#200	1.8						

PI20241G6/1/GM/1 de 1

Av. Universitaria 1891, San Miguel . Telefono 626 2000 Anexo 4651 . Fax 626 2837. suelos@puep.edu.pe

Figura 48: Resultados del ensayo de granulometría para el punto C9

DEPARTAMENTO DE INGENIERIA LABORATORIO DE MECANICA DE SUELOS

ENSAYOS DE CLASIFICACIÓN NTP 339.127, 339.128, 339.129, 339.131

Tamiz	Porcentaje	Diámetro	Porcentaje		w = 9.8%	
ASTM	que pasa	en mm	que pasa		Gs = 2.65	
3*	100.0					
2°	100.0				de de	
1 1/2"	100.0					
1*	100.0		S. 1999 (1			
3/4*	100.0	******				
3/8"	93.9		(
#4	83.7					
#10	67.5					
#20	41.B					
#40	17.8					
#60	10.2		2 	0.5	Resp. Lab. de Mecánica de	
#140	4.7				Suclos	
#200	2.4					

PI20241G6/1/GM/1 de 1

Av. Universitaria 1891, San Miguel . Telefono 626 2000 Anexo 4651 . Fax 626 2837. suelos@puep.edu.pe

Figura 49: Resultados del ensayo de granulometría para el punto C3

10.3. Panel fotográfico

Figura 50: Primera inspección en nuestra visita a campo – Quebrada Malanche.

Figura 51: Vista panorámica aguas abajo, desde puente de antigua Carretera Panamericana Sur.

Figura 52: Segunda visita y trabajos de reconocimiento de campo en quebrada Malanche – Punta Hermosa.

Figura 53. Excavación de calicatas y muestreo en el lecho de la Quebrada Malanche – Punta Hermosa.

Figura 54. Rastro de Huayco a velocidades importantes en el lecho de la Quebrada Malanche – Punta Hermosa.

Figura 55. Medición del ancho y altura del lecho natural de la Quebrada Malanche – Punta Hermosa.

Figura 56. Medición de la profundidad de la calicata en el lecho natural de la Quebrada Malanche – Punta Hermosa.

Figura 57. Visualización de la presencia de socavación en estructuras hidráulicas (puente), dentro del lecho natural de la Quebrada Malanche – Punta Hermosa.

Figura 58. Medición del ancho de la base, del puente Perteneciente a la antigua Panamericana Sur.

Figura 59. Toma de coordenadas en eje central para validación de modelo hidráulico según software en la Quebrada Malanche – Punta Hermosa.

Figura 60. Construcción de la calicata en el lecho natural de la Quebrada Malanche – Punta Hermosa, progresiva 6 + 500.

Figura 61. Visualización y presencia de muros naturales que forman puestes, dentro de la quebrada Malanche.

Figura 62. Visualización y presencia de muros naturales que forman puestes, dentro de la quebrada Malanche.

Figura 63. Visualización panorámica del punto de aforo de la quebrada Malanche.