

[UTM – WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

CONTENIDO

INTRODUCCIÓN	9
CAPÍTULO 01: ASPECTOS GENERALES	11
1.1. Objetivo general	11
1.2. Objetivos Específicos	11
1.3. Finalidad	11
1.4. Justificación	12
1.5. Antecedentes	12
1.5.1. A nivel distrital	12
1.5.2. A nivel local (área de estudio)	18
1.6. Marco normativo	20
CAPÍTULO 02: CARACTERÍSTICAS GENERAL	LES DEL ÁREA DE ESTUDIO22
2.1. Ubicación	22
2.2. Vías de acceso	24
2.3. Características sociales	25
2.3.1. Población	25
2.4. Características económicas	27
2.4.1. Viviendas	27
2.4.2. Economía local	28
2.5. Características ambientales	28
	30
2.6.1. Pendiente	30
2.6.2. Geología local	32
2.6.3. Unidades geomorfológicas	42
2.6.4. Condiciones climáticas	54
CAPÍTULO 03: DETERMINACIÓN DEL PELIGR	RO 57
3.1. Metodología para la determinación del p	peligro57
3.2. Recopilación y análisis de la información	n58
3.3. Identificación de probable área de influe	encia58
3.4. Parámetro de evaluación	58
3.5. Susceptibilidad del territorio	63
3.5.1. Factores condicionantes	63
3.6. Análisis de elementos expuestos	69
3.6.1. Dimensión social	69

[UTM –	WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
3.6	2 Dime	onsión oconó	mica				60
3.7.							
3.8.							
3.9.							
_	•						
4.1.							
4.2.							
4.3.							
4.4.							
4.5.	Estratifi	cación de la v	vulnerabilida	ad			91
4.6.	Niveles	de vulnerabi	lidad				92
4.7.	Mapa d	e vulnerabilid	lad				92
CAPÍTI	JLO 05:	CÁLCULO D	EL RIESGO)			95
5.1.	Metodo	logía para el	cálculo del	riesgo			95
5.2.	Niveles	del riesgo					95
5.3.	Estratifi	cación del niv	vel de riesgo	o			96
5.4.	Mapa d	e riesgos					97
5.5.	Matriz c	le riesgos					98
5.6.	Cálculo	de efectos p	robables				98
CAPÍTI	JLO 06: (CONTROL D	EL RIESGO)			100
6.1.	Control	de riesgos					100
6.1	.1. Acep	otabilidad o to	lerancia de	l riesgo			100
6.2.	Medida	s de prevenci	ión y reducc	ción del riesgo	de desastres		103
CAPÍTI	JLO 07:	CONCLUSIO	NES Y REC	COMENDACIO	ONES		108
7.1.	Conclus	siones					108
7.2.							
REFER	ENCIAS	BIBLIOGRA	FICAS				111
ANEXC)S						112

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

ÍNDICE DE TABLAS

Tabla 1.	Afectación Fenómeno El Niño 1998 – distrito El Porvenir	13
Tabla 2.	Afectación Fenómeno El Niño Costero en el distrito de El Porvenir (2017)	14
Tabla 3.	Emergencias registradas en el SINPAD – distrito El Porvenir 2017	15
Tabla 4.	Afectación del FEN COSTERO en el distrito de El Porvenir (2017)	15
Tabla 5.	Afectación Ciclón YAKU 2023 – distrito de El Porvenir	16
Tabla 6.	Normas legales consideradas para la elaboración del Informe EVAR	20
Tabla 7.	Ubicación geográfica del área de estudio	22
Tabla 8.	Población identificada dentro del área de estudio	25
Tabla 9.	Tipo de discapacidad por familia	25
Tabla 10.	Grupo etario susceptible por familia	26
Tabla 11.	Participación en actividades de defensa civil	26
Tabla 12.	Insumos para emergencias	26
Tabla 13.	Número de viviendas dentro del área de estudio	27
Tabla 14.	Material de construcción predominante en muros	27
Tabla 15.	Estado de conservación de la vivienda	28
Tabla 16.	Ingreso promedio mensual por vivienda	28
Tabla 17.	Distancia de la vivienda a un agente contaminante	29
Tabla 18.	Disposición final de residuos sólidos	29
Tabla 19.	Participación en campañas de limpieza	29
Tabla 20.	Comparación de pares del parámetro altura de flujo de lodos	61
Tabla 21.	Normalización del parámetro altura de flujo de lodos	61
Tabla 22.	Índice y relación de consistencia de altura de parámetro flujo de lodos	61
Tabla 23.	Comparación de pares de los factores condicionantes	63
Tabla 24.	Normalización de los factores condicionantes	63
Tabla 25.	Índice y relación de consistencia de los factores condicionantes	63
Tabla 26.	Comparación de pares del factor unidades geomorfológicas	64
Tabla 27.	Normalización del factor unidades geomorfológicas	64
Tabla 28.	Índice y relación de consistencia del factor unidades geomorfológicas	64
Tabla 29.	Comparación de pares del factor unidades geológicas	65
Tabla 30.	Normalización del factor unidades geológicas	65
Tabla 31.	Índice y relación de consistencia del factor unidades geológicas	65
Tabla 32.	Comparación de pares del factor pendiente del terreno	66
Tabla 33.	Normalización del factor pendiente del terreno	66

[UTM – WG	S84] ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
Tabla 34.	Índice y relación c	le consister	ncia del factor p	endiente del te	erreno	66
Tabla 35.	Comparación de p	oares del pa	arámetro precip	itación diaria .		67
Tabla 36.	Normalización del	parámetro	precipitación d	iaria		67
Tabla 37.	Índice y relación c	le consister	ncia del paráme	tro precipitacio	ón diaria	67
Tabla 38.	Elementos expues	stos para la	dimensión eco	nómica		69
Tabla 39.	Estratificación del	nivel de pe	eligro en el área	de estudio		71
Tabla 40.	Niveles de peligro					72
Tabla 41.	Comparación de p	oares de los	s factores de vu	Inerabilidad so	ocial	76
Tabla 42.	Normalización de	los factores	s de vulnerabilio	dad social		76
Tabla 43.	Índice y relación c	le consister	ncia de los facto	ores de vulnera	abilidad socia	I76
Tabla 44.	Comparación de p	oares del fa	ctor habitantes	por vivienda		77
Tabla 45.	Normalización del	factor habi	tantes por vivie	nda		77
Tabla 46.	Índice y relación c	le consister	ncia del factor h	abitantes por	vivienda	77
Tabla 47.	Comparación de p	oares del fa	ctor personas c	on discapacid	ad	78
Tabla 48.	Normalización del	factor pers	onas con disca	pacidad		78
Tabla 49.	Índice y relación c	le consister	ncia del factor p	ersonas con d	liscapacidad .	78
Tabla 50.	Comparación de p	oares del fa	ctor grupo etari	o susceptible.		79
Tabla 51.	Normalización del	factor grup	oo etario suscep	otible		79
Tabla 52.	Índice y relación o	le consister	ncia del factor g	rupo etario su	sceptible	79
Tabla 53.	Comparación de p	oares del pa	arámetro partici	pación activida	ades DC	80
Tabla 54.	Normalización del	parámetro	participación a	ctividades DC		80
Tabla 55.	Índice y relación c	le consister	ncia del paráme	tro participacio	ón actividades	s DC 80
Tabla 56.	Comparación de p	oares del pa	arámetro insum	os para emerg	jencias	81
Tabla 57.	Normalización del	parámetro	insumos para e	emergencias		81
Tabla 58.	Índice y relación c	le consister	ncia del paráme	tro insumos pa	ara emergend	ias 81
Tabla 59.	Comparación de p	oares de los	s factores de vu	Inerabilidad ed	conómica	82
Tabla 60.	Normalización de	los factores	s de vulnerabilio	dad económica	a	82
Tabla 61.	Índice y relación c	le consister	ncia de los facto	ores de vulnera	abilidad econd	ómica82
Tabla 62.	Comparación de p	oares del pa	arámetro viviend	da en zona res	stringida	83
Tabla 63.	Normalización del	parámetro	vivienda en zoi	na restringida		83
Tabla 64.	Índice y relación o	le consister	ncia del paráme	tro vivienda er	n zona restrin	gida 83
Tabla 65.	Comparación de p	oares del pa	arámetro materi	al de construc	ción	84
Tabla 66.	Normalización del	parámetro	material de cor	nstrucción		84
Tabla 67.	Índice y relación c	le consister	ncia del paráme	tro material de	e construcciór	า84
Tabla 68.	Comparación de p	oares del pa	arámetro estado	de conservad	ción	85

[UTM – WG	S84] ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
Tabla 69.	Normalización de	el parámetro	estado de cons	servación		85
Tabla 70.	Índice y relación	de consisten	icia del paráme	tro estado de	conservación	85
Tabla 71.	Comparación de	pares del pa	rámetro ingres	o familiar men	sual	86
Tabla 72.	Normalización de	el parámetro	ingreso familia	r mensual		86
Tabla 73.	Índice y relación	de consisten	icia del paráme	tro ingreso fan	niliar mensua	l86
Tabla 74.	Comparación de	pares de los	factores de vu	Inerabilidad ar	nbiental	87
Tabla 75.	Normalización de	e los factores	de vulnerabilio	dad ambiental.		87
Tabla 76.	Índice y relación	de consisten	icia de los facto	res de vulnera	abilidad ambie	ental 87
Tabla 77.	Comparación de	pares del pa	rámetro distan	cia agente con	taminante	88
Tabla 78.	Normalización de	el parámetro	distancia agent	te contaminant	te	88
Tabla 79.	Índice y relación	de consisten	icia parámetro	distancia agen	te contamina	nte 88
Tabla 80.	Comparación de	pares del pa	rámetro dispos	sición residuos	sólidos	89
Tabla 81.	Normalización de	el parámetro	disposición res	iduos sólidos .		89
Tabla 82.	Índice y relación	de consisten	icia del paráme	tro disposición	residuos sóli	dos89
Tabla 83.	Comparación de	pares del pa	rámetro campa	añas de limpiez	za	90
Tabla 84.	Normalización de	el parámetro	campañas de l	impieza		90
Tabla 85.	Índice y relación	de consisten	icia del paráme	tro campañas	de limpieza	90
Tabla 86.	Estratificación de	el nivel de vul	Inerabilidad en	el área de esti	udio	91
Tabla 87.	Niveles de vulne	rabilidad				92
Tabla 88.	Niveles de riesgo	o				95
Tabla 89.	Estratificación de	el nivel de rie	sgo por flujo de	e lodos en el ái	rea de estudio	96
Tabla 90.	Matriz de riesgos	s por flujo de	lodos en el áre	a de estudio		98
Tabla 91.	Estimación de da	años y pérdid	las probables			98
Tabla 92.	Niveles de conse	ecuencia				100
Tabla 93.	Niveles de frecu	encia de ocu	rrencia			100
Tabla 94.	Matriz de consed	cuencia y daŕ	ios			101
Tabla 95.	Medidas cualitat	ivas de conse	ecuencia y dañ	0		101
Tabla 96.	Aceptabilidad y/o	tolerancia d	lel riesgo			102
Tabla 97.	Prioridad de inte	rvención				102
Tabla 98.	Propuesta de pro	oyecto de rec	ducción de riesç	go Nº 01		103
Tabla 99.	Propuesta de pro	oyecto de rec	ducción de riesç	go Nº 02		104
Tabla 100.	Cantidad de heri	amientas ma	anuales por cua	ıdrilla de diez p	ersonas	106

[UTM – WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

ÍNDICE DE FIGURAS

Figura 1.	Afectación Fenómeno El Niño en el distrito de El Porvenir (1998)	13
Figura 2.	Afectación Fenómeno El Niño Costero 2017 – distrito de El Porvenir	14
Figura 3.	Registro de emergencia por lluvias intensas – SINPAD 2023	17
Figura 4.	Afectación por presencia del Ciclón Yaku – El Porvenir 2023	17
Figura 5.	Ubicación y ruta de agua referencial de la quebrada "Víctor Raúl"	18
Figura 6.	Mapa de ubicación del área de estudio	23
Figura 7.	Vía de acceso terrestre al área de estudio	24
Figura 8.	Modelo Digital de Elevación del área de estudio	30
Figura 9.	Mapa de pendientes en el área de estudio	31
Figura 10.	Vista de la Granodiorita Centinela en el área de influencia	33
Figura 11.	Identificación del depósito deluvial en el área de influencia	34
Figura 12.	Vista del depósito eólico 1 en el área de influencia	35
Figura 13.	Vista del depósito aluvial 1 en el área de influencia	36
Figura 14.	Vista del depósito aluvial 2 en el área de influencia	37
Figura 15.	Vista del depósito eólico 2 (Qh-e2) en el área de influencia	38
Figura 16.	Identificación del depósito proluvio-aluvial en el área de influencia	39
Figura 17.	Identificación del depósito antrópico en el área de influencia	40
Figura 18.	Mapa de unidades geológicas en el área de estudio	41
Figura 19.	Identificación de vertiente o cauce 1 en el área de influencia	43
Figura 20.	Identificación de vertiente o cauce 2 en el área de influencia	44
Figura 21.	Identificación de Piedemonte deluvial en el área de estudio	45
Figura 22.	Identificación de la geoforma Terraza aluvial en área de influencia	46
Figura 23.	Identificación de Montaña en roca intrusiva en área de influencia	47
Figura 24.	Identificación de Loma en roca intrusiva en el área de influencia	48
Figura 25.	Identificación de Colina en roca intrusiva en área de estudio	49
Figura 26.	Identificación de cordón de arena en área de influencia	50
Figura 27.	Identificación de Manto de arena 1 en área de estudio	51
Figura 28.	Identificación de Manto de arena 2 en área de estudio	52
Figura 29.	Mapa de unidades geomorfológicas en el área de estudio	53
Figura 30.	Anomalía de la TSM (°C) en el Pacífico Ecuatorial (2016-2017)	55
Figura 31.	Ubicación del área de estudio en Mapa de Cuenca del río Moche	55
F <mark>l</mark> gura 32.	Diagrama para determinar el mapa de peligro ante flujo de lodos	57
Figura 33.	Marcas en las paredes de flujos de 31 a 50 cm	59

[UTM – WGS	684] E	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
Figura 34.	Marcas	en las par	edes de fluj	jos de 21 a 30 c	m		59
Figura 35.	Marcas	en las par	edes de fluj	jos de 11 a 20 c	m		60
Figura 36.	Marcas	en las par	edes de fluj	jos de 6 a 10 cm	າ		60
Figura 37.	Mapa de	el parámet	ro de evalu	ación en el área	de estudio		62
Figura 38.	Mapa de	el factor de	esencadena	ante precipitació	n diaria		68
Figura 39.	Mapa de	e elemento	s expuesto	os ante flujo de l	odos		70
Figura 40.	Mapa de	e peligro o	riginado po	r flujo de lodos e	en el área de	estudio	73
Figura 41.	Diagram	na para el a	análisis de	la vulnerabilidad	k		75
Figura 42.	Mapa de	e vulnerab	ilidad origin	ado por flujo de	lodos en el á	rea de estudi	o 93
Figura 43.	Diagram	na para ca	lcular el ries	sgo en el área d	e estudio		95
Figura 44.	Mapa de	el riesgo o	riginado po	r flujo de lodos e	en el área de	estudio	97

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L

INTRODUCCIÓN

El distrito de El Porvenir es uno de los doce distritos de la provincia de Trujillo, dentro del departamento de La Libertad; el mismo que, por sus características geológicas, geomorfológicas, y climatológicas (factores condicionantes), está expuesto a sufrir el impacto de diversos fenómenos naturales recurrentes como inundaciones, flujos de lodos, y deslizamientos, generalmente, como resultado de lluvias intensas (factor desencadenante), que aparecen durante los meses de verano de cada año.

La manifestación de estos peligros, a futuro, pueden desencadenar escenarios críticos de afectación a nivel social, económico y/o ambiental, especialmente, en aquellas zonas donde existe una ocupación informal del territorio (invasiones), viviendas frágiles con deficientes materiales constructivos, medios de vida expuestos, altos índices de pobreza, y falta de conocimiento en materia de gestión del riesgo de desastre; motivo por el cual se sustenta la necesidad de elaborar Informes de Evaluación de Riesgo (EVAR) con la finalidad de aportar al conocimiento y comprensión del riesgo existente, así como a la mitigación de los mismos, a través de la implementación de medidas estructurales y no estructurales dentro del territorio.

El presente Informe de Evaluación de Riesgo originado por Flujos de Lodos en las manzanas E, F, G de la P.I. Víctor Raúl Haya de La Torre IV Etapa, ubicado en el distrito de El Porvenir; ha sido elaborado con la finalidad de determinar los niveles de riesgo existentes ante este tipo de fenómenos, y de presentar una serie de medidas que contribuyan a la mitigación de los mismos, considerando, como escenario crítico, a la ocurrencia de precipitaciones diarias >13.88 mm/día, dentro del área de estudio. Finalmente, la presentación de este documento se justifica en la necesidad de dar cumplimiento a lo estipulado dentro de la Ley que crea el Sistema Nacional de Gestión del Riesgo de Desastres (Ley Nº 29664), su reglamento (D.S. Nº 048-2011-PCM), y los Lineamientos Técnicos del Proceso de Estimación del Riesgo de Desastres (R.M. Nº 334-2012-PCM), contribuyendo a una adecuada toma de decisiones, por parte de la población y sus autoridades, en materia de gestión del riesgo de desastres; promoviendo una adecuada cultura de prevención, a través de un ordenamiento territorial responsable, enfocado en la protección de la vida de las personas y de su

patrimonio expuesto a sufrir el impacto de eventos adversos, a nivel local.

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L

CAPÍTULO 01: ASPECTOS GENERALES

1.1. Objetivo general

Determinar el nivel del riesgo originado por flujo de lodos en las manzanas E, F, G de la P.I. Víctor Raúl Haya de La Torre IV Etapa, ubicada en el distrito de El Porvenir, de la provincia de Trujillo, del departamento La Libertad; así como las medidas necesarias que deberán ejecutarse para reducir el riesgo a futuro.

1.2. Objetivos Específicos

- Determinar los niveles de peligro, originados por flujo de lodos, en las manzanas E, F, G de la P.I. Víctor Raúl Haya de La Torre IV Etapa, elaborando su correspondiente mapa del peligro.
- Determinar los niveles de vulnerabilidad, originados por flujo de lodos, en las manzanas E, F, G de la P.I. Víctor Raúl Haya de La Torre IV Etapa, elaborando su correspondiente mapa de vulnerabilidad.
- Determinar los niveles del riesgo, originados por flujo de lodos, en las manzanas E, F, G de la P.I. Víctor Raúl Haya de La Torre IV Etapa, elaborando su respectivo mapa del riesgo.
- Evaluar la aceptabilidad o tolerabilidad del riesgo, originado por flujo de lodos,
 en las manzanas E, F, G de la P.I. Víctor Raúl Haya de La Torre IV Etapa.
- Proponer medidas estructurales y/o no estructurales para la reducción del riesgo originado por flujo de lodos en las manzanas E, F, G de la P.I. Víctor Raúl Haya de La Torre IV Etapa.

1.3. Finalidad

Desarrollar un importante instrumento de gestión del riesgo de desastres que permita a la población de las manzanas E, F, G de la P.I. Víctor Raúl Haya de la Torre IV Etapa, y a sus autoridades locales de la Municipalidad Distrital de El Porvenir, conocer el riesgo existente ante flujo de lodos dentro de su ámbito geográfico, brindando la información necesaria para establecer un mejor ordenamiento territorial, así como una adecuada y oportuna preparación ecomunitaria ante el impacto de este tipo de fenómenos a través del tiempo.

Ing. Bryan O. Custillo Cachay Valuador del riesgo de desastres R.J. Nº 067-2018-CENEPREDIJ

Página 11 de 116

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
[01111 11000-1		122000	1101111111	0101020	20117	

1.4. Justificación

Dar cumplimiento a lo estipulado en la normativa vigente del Sistema Nacional de Gestión del Riesgo de Desastres (Ley Nº 29664), su reglamento (D.S. Nº 048-2011-PCM), y a los lineamientos técnicos para la Estimación del Riesgo de Desastres (R.M. Nº 334-2012-PCM), promoviendo una adecuada cultura de prevención, ante este tipo de fenómenos, dentro del distrito de El Porvenir.

1.5. Antecedentes

1.5.1. A nivel distrital

El distrito de El Porvenir, por su ubicación geográfica en la parte occidental del departamento de La Libertad, y específicamente en la costa norte del territorio peruano, se encuentra expuesto a sufrir los estragos de diversos tipos de fenómenos de carácter hidrometeorológico, como es el caso del Fenómeno El Niño, que es uno de los principales causantes de inundaciones pluviales y/o movimientos en masa a nivel local.

Durante los últimos 50 años, el distrito de El Porvenir, ha recibido el impacto de Iluvias de gran intensidad siendo los más recordados el Fenómeno El Niño de 1982-1983, 1997-1998, y el Fenómeno Niño Costero en el 2017, donde se registraron lluvias calificadas como "Extremadamente Iluvioso", según la información emitida por el Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI), las cuales provocaron gran afectación a nivel social, económico y ambiental dentro de dicho distrito. A continuación, se detallan los eventos más importantes de los cuales se tiene información referencial, de suma importancia, para la elaboración del presente estudio:

FENÓMENO EL NIÑO 1997 – 1998:

Durante el verano de 1997 – 1998, se registraron lluvias extraordinarias de gran intensidad que alarmaron a toda la población del distrito El Porvenir. El día 9 de febrero de 1998 tuvo lugar una brusca avenida de agua y lodos en el cauce de la quebrada San Ildefonso, la misma que no pudo ser retenida por los dos diques de contención que habían sido construidos en la parte alta de dicha quebrada. Al día siguiente, las Iluvias intensas

Fig. Bryan O. Custillo Cochay Yaluador del riesgo de desastres R.I. N° 667-2019-CENEPREDIJ

Página 12 de 116

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

continuaban, lo que produjo una segunda avenida que atravesó las zonas con depósitos aluviales erosionables hasta llegar a la zona urbana del distrito, donde su cauce natural se encontraba ocupado y urbanizado en el sector Río Seco, llegando las aguas hasta el sector del Mampuesto, donde se ubica un cementerio que lleva el mismo nombre.

El impacto de este evento trajo como consecuencia lo siguiente:

Tabla 1.Afectación Fenómeno El Niño 1998 – distrito El Porvenir

FAN	MILIAS	VIVIENDAS			
AFECTADAS DAMNIFICADAS		AFECTADAS	DESTRUIDAS	INHABITABLES	
14,651	2,000	2,682	400		
INFRAESTRU	CTURA PÚBLICA	SERVICIOS BÁSICOS			
VÍAS	II.EE.	AGUA	DESAGUE	LUZ	
60 %	04	80%	80%	80 %	
Afectadas	afectados	Afectado	Afectado	Afectado	

Fuente: Sub Gerencia de Defensa Civil de la Municipalidad Distrital de El Porvenir

Figura 1.Afectación Fenómeno El Niño en el distrito de El Porvenir (1998)

Fuente: Recorte periodístico del diario "La Industria"

Frig. Bryan O. Custillo Cachay (VALUADOR DEL RIESGO DE DESASTRES RJ. N° 067-2019-CEMEPREDIJ

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

FENÓMENO "EL NIÑO COSTERO" (2017):

Durante los meses de febrero y marzo, del año 2017, se registraron lluvias extraordinarias que alarmaron a la población del distrito de El Porvenir, debido a que estas generaron, principalmente, siete (07) avenidas de flujos de detritos (huaycos) en el cauce de la quebrada San Ildefonso, así como inundaciones puntuales en ciertos sectores urbano-rurales del distrito, trayendo como consecuencia daños a viviendas, servicios básicos, carreteras y medios de vida.

Tabla 2.Afectación Fenómeno El Niño Costero en el distrito de El Porvenir (2017)

PER	SONAS	VIVIENDAS			
AFECTADAS DAMNIFICADAS		AFECTADAS	DESTRUIDAS	INHABITABLES	
5,422	6,039	1,431	368	845	
INFRAESTRU	CTURA PÚBLICA	SERVICIOS BÁSICOS			
EE.SS.	II.EE.	AGUA	LUZ	TELEFONÍA	
03 afectados	01 colapsado 06 afectados	> 70% afectado	> 70% afectado	> 50% afectado	

Fuente: Sub Gerencia de Defensa Civil de la Municipalidad Distrital de El Porvenir

Figura 2.Afectación Fenómeno El Niño Costero 2017 – distrito de El Porvenir

Fuente: Sub Gerencia de Defensa Civil de la Municipalidad Distrital de El Porvenir

Ing. Bryan O. Custillo Cachay Evaluador del riesgo de desastres RJ. Nº 067-2018-CEMEPREDIJ

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
---------------	----------	--------	-----------	---------	------	-----

Asimismo, de los registros virtuales ingresados al Sistema de Información Nacional para la Respuesta y Rehabilitación – SINPAD, se ha obtenido la siguiente información:

Tabla 3.Emergencias registradas en el SINPAD – distrito El Porvenir 2017

	LISTADO DE EMERGENCIAS REGISTRADAS				
EVENTO	FECHA	HECHOS	DAÑO		
Lluvias intensas	22/03/2017	Se colapsó el dique mayor y disipadores ubicados en el cauce de la quebrada San Ildefonso, ingresando al canal vía en el sector Río Seco, y desplazándose por el distrito de Florencia de Mora y Trujillo.	Viviendas, vías de comunicación, y servicios básicos afectados.		
Lluvias intensas	01/02/2017	Se presentó la activación del dique mayor en la quebrada San Ildefonso – sector Río Seco, afectando a la población hacinada en los sectores: Pedro Ordoñez Lindo, sector Víctor Raúl, y Barrio 5E (Bethel).	Viviendas y vías de comunicación afectadas		

Fuente: SINPAD

Tabla 4.Afectación del FEN COSTERO en el distrito de El Porvenir (2017)

PER	SONAS		VIVIENDAS	
AFECTADAS	DAMNIFICADAS	AFECTADAS	DESTRUIDAS	INHABITABLES
7,052	6,039	1,820	368	
INFRAESTRU	CTURA PÚBLICA	SEF	RVICIOS BÁSI	cos
INSTITUCIONES EDUCATIVAS	ESTABLECIMIENTOS DE SALUD	AGUA	LUZ	TELEFONÍA
05 afectadas	02 afectados	> 70 % Afectado	> 70% Afectado	> 70 % Afectado

Fuente: Sub Gerencia de Defensa Civil de la Municipalidad Distrital de El Porvenir

ing. Bryan O. Castillo Cachay (VALUADOR DEL RIESGO DE DESASTRES R.J. N° 067-2018-CEMEPREDI)

Página 15 de 116

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

CICLÓN YAKU (2023):

El 10 de marzo, del año 2023, Trujillo se convirtió en una de las provincias más afectadas por la presencia del ciclón Yaku que intensificó las lluvias en el norte del país, provocando que se activen las tres (03) principales quebradas de la provincia: San Ildefonso, El León, y San Carlos; las mismas que condicionaron la presencia de flujos de detritos (huaycos) dentro de su cauce.

Aproximadamente, a las 20:00 hrs de ese mismo día, el distrito de El Porvenir recibió el impacto de un fuerte huayco proveniente de la quebrada San Ildefonso que discurrió, principalmente, por la Av. Hipólito Unanue, Calle Tomás Moscoso, Calle Gonzáles Prada, y Av. Atahualpa, afectando a toda la población hacinada dentro de ellas. Asimismo, las lluvias intensas generaron grandes aniegos en diferentes sectores del distrito, provocando que las vías queden intransitables y haya proliferación de bacterias, insectos y roedores.

Se sabe que, este evento trajo consigo un impacto negativo a la población del distrito, del cual se tiene registrada la siguiente información:

Tabla 5.Afectación Ciclón YAKU 2023 – distrito de El Porvenir

PER:	SONAS		VIVIENDAS	
AFECTADAS	DAMNIFICADAS	AFECTADAS	DESTRUIDAS	INHABITABLES
3,013	656			
DESAPARECIDOS	FALLECIDOS	938	40	161
1	0			
INFRAESTRUC	CTURA PÚBLICA	SE	RVICIOS BÁS	icos
VÍAS TERRESTRES	ESTABLECIMIENTOS DE SALUD	AGUA	LUZ	TELEFONÍA
> 3,500 mt. Afectadas	01 afectado	> 30% Afectado	> 30% Afectado	> 30 % Afectado

Fuente: Sub Gerencia de Defensa Civil de la Municipalidad Distrital de El Porvenir


Fig. Bryan O. Castillo Cachay Valuador del riesgo de desastres R.J. N. 967-2019-CEMEPREDIJ

Página 16 de 116

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Figura 3.Registro de emergencia por Iluvias intensas – SINPAD 2023

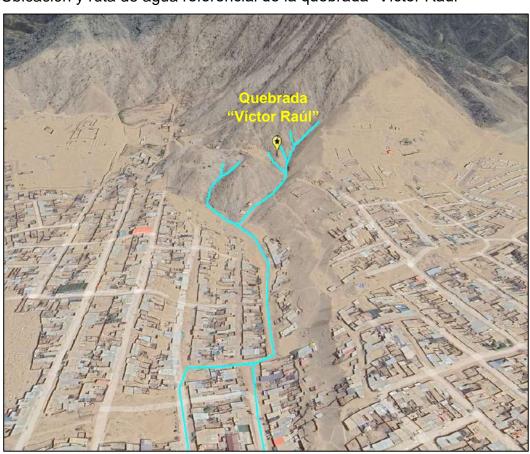
Fuente: EDAN PRELIMINAR - SINPAD INDECI 2023

Figura 4.Afectación por presencia del Ciclón Yaku – El Porvenir 2023

Fuente: Sub Gerencia de Defensa Civil de la Municipalidad Distrital de El Porvenir

[UTM – WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

1.5.2. A nivel local (área de estudio)


En base a relatos, anécdotas y entrevistas realizadas a pobladores de la P.I. Víctor Raúl Haya de la Torre IV Etapa, y al personal de la Sub Gerencia de Defensa Civil de la Municipalidad Distrital de El Porvenir, se ha obtenido la siguiente información referencial:

Quebrada "Víctor Raúl"

Los diversos huaycos o flujos de lodos que se han manifestado, como consecuencia de lluvias intensas, dentro de la P.I. Víctor Raúl Haya de la Torre IV Etapa, provienen de la activación de la quebrada "Víctor Raúl" (conocida así popularmente), la cual se ubica, aproximadamente, a 1 km. al norte del área de estudio, en el distrito de El Porvenir.

Figura 5.

Ubicación y ruta de agua referencial de la quebrada "Víctor Raúl"

Fuente: Comité de Gestión de la P.I. "Víctor Raúl Haya de la Torre IV Etapa"

Ing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES RJ. Nº 067-2019-CENEPREDIA

Página 18 de 116

[UTM – WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Fenómeno de El Niño 1997-1998

La Municipalidad Distrital de El Porvenir no cuenta con información oficial registrada de emergencias suscitadas dentro del área de estudio, ya que, en esos años, aún no se encontraba habitado por personas.

Fenómeno de El Niño Costero 2017

La Municipalidad Distrital de El Porvenir cuenta con un registro de afectación por lluvias intensas dentro del área de estudio, la cual ha sido obtenida por la Sub Gerencia de Defensa Civil, en el año 2017.

De esta información, se sabe que el impacto de lluvias intensas trajo consigo la siguiente afectación:

- Personas: 58 afectadas y 02 damnificadas

- Viviendas: 19 afectadas y 01 inhabitable

Es importante mencionar que esta afectación considera tanto el impacto de lluvias intensas, inundaciones pluviales y flujos de lodos (huaycos) dentro del área de estudio, ya que, según los relatos de algunos pobladores de la zona, durante el evento se generaron escorrentías en la quebrada Víctor Raúl como consecuencia de las lluvias intensas, las cuales poco a poco fueron acumulándose en la parte baja afectando a los sectores ubicados dentro de su cauce, como es el caso de la P.I. Víctor Raúl Haya de la Torre IV Etapa, donde llegó a tener una altura aproximada de 0.30 m., ingresando a cierto número de viviendas ubicadas en las manzanas "E" y "F".

Ciclón YAKU 2023

La Municipalidad Distrital de El Porvenir no cuenta con un registro de afectación por lluvias intensas, flujos de lodos (huaycos) o inundaciones, puesto que no se produjeron emergencias dentro del área de estudio.

Por otro lado, algunos pobladores mencionaron que durante las lluvias intensas de ese año, no hubo afectación a viviendas debido a que, la mayoría de ellas, habían sido construidas con material noble y las calles tenían una pendiente que permitió el libre recorrido de aguas pluviales.

Frig. Bryan O. Custillo Cachay Yaluador del riesgo de desastres RJ. Nº 067-2019-CEMEPREDIJ

Página 19 de 116

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
•	` ,		` '			

1.6. Marco normativo

El presente estudio ha sido elaborado con la finalidad de dar cumplimiento a las siguientes normas legales:

Tabla 6.Normas legales consideradas para la elaboración del Informe EVAR

Normas legales	Fecha de publicación	Descripción
LEY Nº 27972	27/05/2003	Ley Orgánica de Municipalidades
LEY N° 29664	11/02/2011	Ley que crea el Sistema Nacional de Gestión del Riesgo de Desastres - SINAGERD
D.S. Nº 048-2011-PCM	26/05/2011	Aprueba el reglamento de la ley del Sistema Nacional de Gestión del Riesgo de Desastres - SINAGERD
R.M. N° 334-2012-PCM	26/12/2012	Aprueba los lineamientos técnicos del proceso de Estimación del riesgo de desastres
R.M. Nº 220-2013-PCM	21/08/2013	Aprueba los lineamientos técnicos del proceso de reducción del riesgo de desastres
R.M. N° 222-2013-PCM	22/08/2013	Aprueba los lineamientos técnicos del proceso de Prevención del riesgo de desastres
R.J. N° 112-2014- CENEPRED/J	31/12/2014	Aprueba el "Manual para la Evaluación de Riesgos originados por Fenómenos Naturales", 2da Versión
D.S. N°022-2016-VIVIENDA	24/12/2016	Aprueba el reglamento de Acondicionamiento Territorial y Desarrollo Urbano Sostenible
D.S. N°020-2019-VIVIENDA	26/07/2019	Modifica el artículo 18 del Reglamento de Formalización de la Propiedad a cargo de COFOPRI, aprobado por D.S. 013-99-MTC

Fuente: Elaboración propia con información de Portal Web INDECI

Ing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES RJ. N° 067-2018-CENEPREDIJ

Página 20 de 116

CAPÍTULO

02

CARACTERÍSTICAS GENERALES

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
---------------	----------	--------	-----------	---------	------	-----

CAPÍTULO 02: CARACTERÍSTICAS GENERALES DEL ÁREA DE ESTUDIO

2.1. Ubicación

Las manzanas E, F, G de la P.I. Víctor Raúl Haya de la Torre IV Etapa, se encuentran ubicadas dentro del distrito El Porvenir, en la provincia de Trujillo, del departamento de La Libertad. Esta área de estudio conforma un total de 21,000.00 m² (2.10 Ha), aproximadamente, dentro del cual se han logrado identificar sesenta y nueve (69) viviendas, para fines del presente estudio.

Por otra parte, es importante mencionar (de forma referencial) que dicha área de estudio presenta los siguientes límites geográficos:

Por el Norte : Calle Luis Alberto Sánchez
 Por el Sur : Calle San Salazar Bondy

• Por el Este : Calle S/N

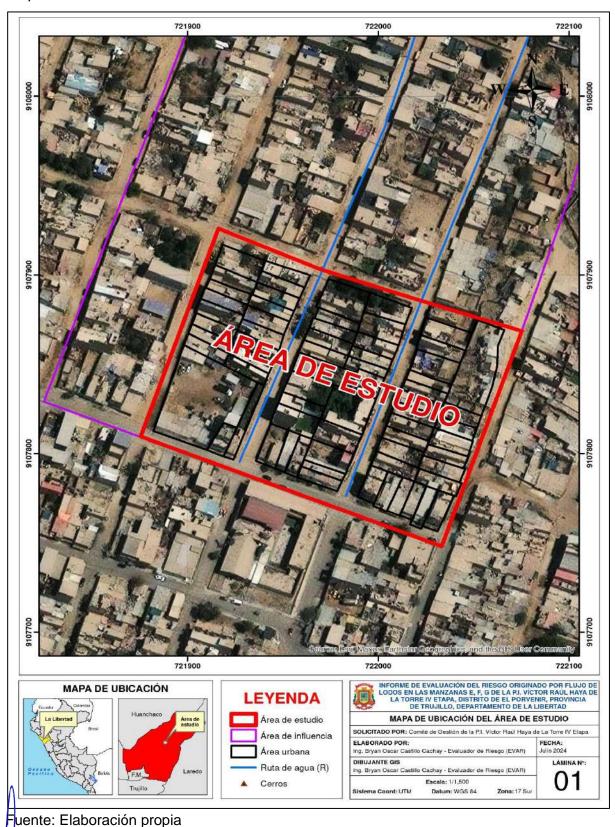
• Por el Oeste : I.E. 2200 Emilia y Victoria Barcia Bonifatti

Tabla 7.Ubicación geográfica del área de estudio

UBICACIÓN GEOGRÁFICA DEL ÁREA DE ESTUDIO					
Departamento	Provincia	Distrito	Localidad		
La Libertad	Trujillo	El Porvenir	P.I. Víctor Raúl Haya de la Torre IV Etapa		
ALTITUD	COORDENADAS UTM				
ALIIIUD	Este	Norte	Zona		
118 msnm	722000 m	9107825 m	17 L		
	COORDENADAS GEOGRÁFICAS				
Lati	tud	Lo	ongitud		
-8.066298°		-78.985541°			

Fuente: Elaboración propia con Google Earth Profesional 2024

Frig. Bryan O. Custillo Cachay Evaluador del riesgo de desastres RJ. Nº 067-2018-CEMEPREDIJ


Página 22 de 116

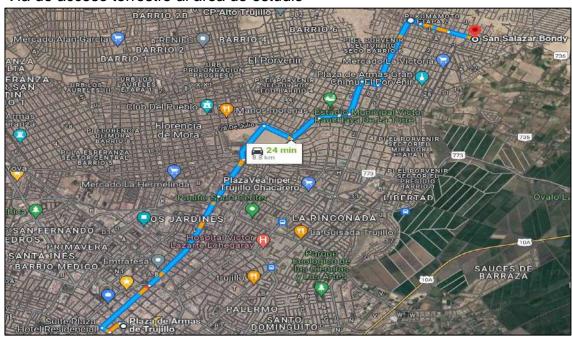
[UTM – WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Figura 6.

Mapa de ubicación del área de estudio

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L

2.2. Vías de acceso


Desde el Centro Histórico de Trujillo (distrito de Trujillo)

Tomando como punto de partida la Plaza de Armas de Trujillo, debemos dirigirnos por el Jr. San Martín con dirección hacia la Av. Miraflores. Luego se deberá continuar por la Prolongación Av. Miraflores y por la Av. R. de Castro (frente al cementerio "Jardines de la Paz") hasta su intersección con la Av. Las Ánimas donde se tendrá que girar en dirección al cruce con la Av. Atahualpa. Posteriormente, se deberá continuar por la Av. Atahualpa y la Av. Tomás Moscoso hasta su intersección con la Av. Riva Agüero, donde se deberá girar a la izquierda y recorrer dicho tramo hasta el cruce con la Av. Asencio Vergara, donde nuevamente se tendrá que girar a la derecha hasta el cruce con la Av. Sánchez Carrión Finalmente, se hará el recorrido por la Av. Sánchez Carrión hasta su cruce con la Av. Salazar Bondy, donde deberá hacerse un recorrido de 900 metros aproximadamente por dicha vía para llegar al área de estudio.

El tiempo de llegada es de 24 minutos aproximadamente.

La distancia de recorrido es de 8.8 km. aproximadamente.

Figura 7.Vía de acceso terrestre al área de estudio

Fuente: Elaboración propia utilizando Google Maps 2024

Ing. Bryan O. Custilio Cochay EVALUADOR DEL RIESGO DE DESASTRES R.J. N° 067-2018-CENEPREDIJ

Página 24 de 116

[UTM – WGS84] ESTE (X) 722000 NOR	9107825 ZONA 17L
-----------------------------------	-------------------------

2.3. Características sociales

2.3.1. Población

Se realizó una encuesta en el área de estudio, con la finalidad de conocer la cantidad de población que se encuentra habitándola en la actualidad, así como la existencia de personas con discapacidad, los grupos etarios susceptibles por vivienda, la participación de la población en actividades de defensa civil, y los insumos que cuentan para emergencias; ya que todos estos aspectos han sido considerados relevantes para el cálculo de la vulnerabilidad social existente dentro del área de estudio. Es por ello que, de acuerdo a la información recopilada, se pudo obtener lo siguiente:

Tabla 8.Población identificada dentro del área de estudio

ÁREA DE ESTUDIO	POBLACIÓN TOTAL		
AREA DE ESTUDIO	Nº DE PERSONAS	Nº DE FAMILIAS	
Manzanas E, F, G de la P.I. Víctor Raúl Haya de La Torre IV Etapa	245	69	

Fuente: Equipo técnico responsable del Informe EVAR

Tabla 9.Tipo de discapacidad por familia

DISCAPACIDAD	PERSONAS	PORCENTAJE
Mental	0	0.00 %
Visual	0	0.00 %
Motora	1	1.45 %
Oral y/o auditiva	2	2.90 %
No tiene discapacidad	66	95.65 %
TOTAL	69	100.00 %

Fuente: Equipo técnico responsable del Informe EVAR

Ing. Bryan O. Castillo Cachay Evaluador del riesgo de desastres RJ. Nº 067-2019-Cenepredij

Página 25 de 116

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
---------------	----------	--------	-----------	---------	------	-----

Tabla 10.Grupo etario susceptible por familia

GRUPO ETARIO	FAMILIAS	PORCENTAJE
De 0 a 5 años y mayor de 70 años	0	0.00 %
De 6 a 12 años y de 55 a 70 años	39	56.52 %
De 13 a 18 años y de 40 a 54 años	18	26.09 %
De 19 a 25 años	12	17.39 %
De 26 a 39 años	0	0.00 %
TOTAL	69	100.00 %

Fuente: Equipo técnico responsable del Informe EVAR

Tabla 11.Participación en actividades de defensa civil

PARTICIPACIÓN	FAMILIAS	PORCENTAJE
Nunca	0	0.00 %
Solo con incentivos económicos	1	1.45 %
Pocas veces	24	34.78 %
Casi siempre	44	63.77 %
Siempre	0	0.00 %
TOTAL	69	100.00 %

Fuente: Equipo técnico responsable del Informe EVAR

Tabla 12.Insumos para emergencias

INSUMOS	FAMILIAS	PORCENTAJE
No tiene y tampoco quiere adquirirlos	0	0.00 %
Quiere adquirirlo con apoyo externo	1	1.45 %
Va a adquirirlos durante la emergencia	19	27.54 %
Cuenta solo con sacos terreros	27	39.13 %
Cuenta con sacos terreros y herramientas	22	31.88 %
TOTAL	69	100.00 %

Fuente: Equipo técnico responsable del Informe EVAR

Ing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES R.J. N. 067-2018-CENEPREDIJ

Página 26 de 116

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
---------------	----------	--------	-----------	---------	------	-----

2.4. Características económicas

2.4.1. Viviendas

Durante el llenado de encuestas en campo, se obtuvo información relevante del número de viviendas construidas, así como de su material de construcción predominante en muros, y su estado de conservación; ya que fueron considerados datos importantes para el cálculo de la vulnerabilidad económica existente dentro del área de estudio. Es por ello que, de esta actividad, se pudo obtener la siguiente información:

Tabla 13.Número de viviendas dentro del área de estudio

	Nº DE VIVIENDAS				
ÁREA DE ESTUDIO	MANZANAS			TOTAL	
	E	F	G	TOTAL	
Manzanas E, F, G de la P.I. Víctor Raúl Haya de La Torre IV Etapa	20	24	25	69	

Fuente: Equipo técnico responsable del Informe EVAR

Tabla 14.Material de construcción predominante en muros

MATERIAL DE CONSTRUCCIÓN	VIVIENDAS	PORCENTAJE
Estera o costal	0	0.00 %
Madera o triplay	0	0.00 %
Adobe	12	17.39 %
Bloque de cemento	0	0.00 %
Ladrillo	57	82.61 %
TOTAL	69	100.00 %

Fuente: Equipo técnico responsable del Informe EVAR

Ing. Bryan O. Custillo Cachay

VALUADOR DEL RIESGO DE DESASTRES

Página 27 de 116

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
•	` ,		` '			

Tabla 15.Estado de conservación de la vivienda

ESTADO	VIVIENDAS	PORCENTAJE
Muy malo	0	0.00 %
Malo	21	30.43 %
Regular	21	30.43 %
Bueno	27	39.14 %
Muy bueno	0	0.00 %
TOTAL	69	100.00 %

Fuente: Equipo técnico responsable del Informe EVAR

2.4.2. Economía local

Al aplicar la encuesta en campo, se pudo obtener información del ingreso familiar promedio por vivienda, siendo clasificada de la siguiente manera:

Tabla 16.Ingreso promedio mensual por vivienda

INGRESO	VIVIENDAS	PORCENTAJE
Menor a 1130	0	0.00 %
De 1131 a 1500	1	1.45 %
De 1501 a 2000	5	7.25 %
De 2000 a 4000	41	59.42 %
Mayor a 4000	22	31.88 %
TOTAL	69	100.00 %

Fuente: Equipo técnico responsable del Informe EVAR

2.5. Características ambientales

De las encuestas realizadas en campo, se han considerado tres aspectos a evaluar desde el enfoque ambiental: Distancia de la vivienda a un agente contaminante, disposición final de residuos sólidos, y participación en campañas de limpieza pública, logrando obtener lo siguiente:

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L

Tabla 17.Distancia de la vivienda a un agente contaminante

DISTANCIA	VIVIENDAS	PORCENTAJE
De 0 a 100 metros	0	0.00 %
De 101 a 150 metros	0	0.00 %
De 151 a 200 metros	0	0.00 %
De 201 a 250 metros	0	0.00 %
Más de 250 metros	69	100.00 %
TOTAL	69	100.00 %

Fuente: Equipo técnico responsable del Informe EVAR

Tabla 18.Disposición final de residuos sólidos

DISPOSICIÓN FINAL	VIVIENDAS	PORCENTAJE
A la intemperie	0	0.00 %
Quema y entierra	0	0.00 %
Botadero informal	0	0.00 %
Contenedor municipal	0	0.00 %
Camión recolector	69	100.00 %
TOTAL	69	100.00 %

Fuente: Equipo técnico responsable del Informe EVAR

Tabla 19.Participación en campañas de limpieza

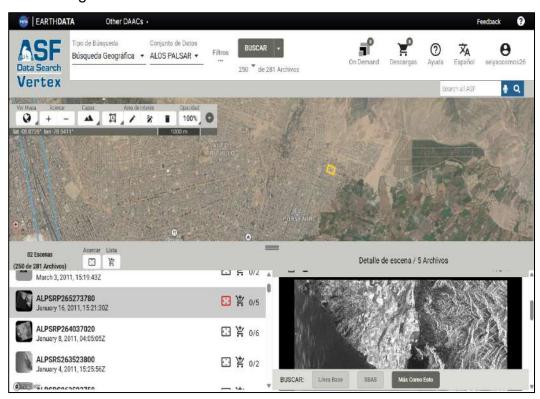
PARTICIPACIÓN	VIVIENDAS	PORCENTAJE
Nunca participa	0	0.00 %
Casi nunca participa	2	2.90 %
Pocas veces participa	2	2.90 %
Participa con incentivos	45	65.22 %
Siempre participa	20	28.98 %
TOTAL	69	100.00 %

Fuente: Equipo técnico responsable del Informe EVAR

Ing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES RJ. N. 067-2018-CENEPREDIJ

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
•	` ,		` '			

2.6. Condiciones físicas del territorio


2.6.1. Pendiente

La pendiente es el ángulo de inclinación del terreno que se expresa en grados o porcentajes. Este parámetro permite caracterizar los relieves dentro de un espacio geográfico e influye en la dinámica de los distintos peligros naturales que pueden presentarse en un determinado territorio como consecuencia de lluvias intensas, especialmente, en zonas consideradas como cauces de ríos o quebradas.

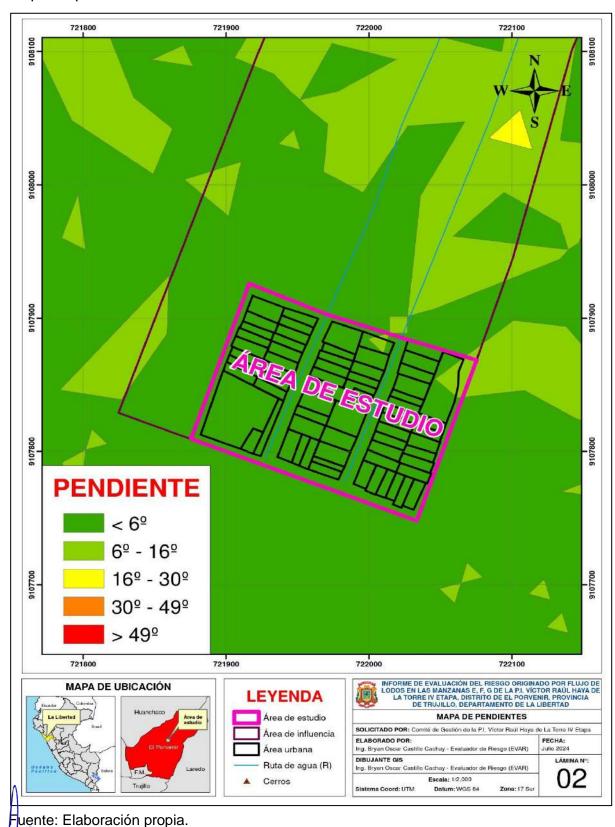
Para obtener las pendientes del terreno, se utilizó un Modelo Digital de Elevación (DEM), generado por el Satélite ALOS PALSAR, el cual fue descargado del geo servidor "Alaska Satellite Facility", y, posteriormente, procesado en el software Arc Gis, considerando un criterio de clasificación en base a grados de inclinación, a fin de conseguir ilustrar un mapa de pendientes en el área de estudio y sus alrededores.

Figura 8.

Modelo Digital de Elevación del área de estudio

Fuente: Geo servidor "Alaska Satellite Facility".

Ing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES RJ. N. 067-2019-CENEPREDIA


Página 30 de 116

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
---------------	----------	--------	-----------	---------	------	-----

Figura 9.

Mapa de pendientes en el área de estudio

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

2.6.2. Geología local

La geología es la ciencia que estudia la Tierra, los materiales que la componen, las estructuras y los procesos que actúan, sobre y debajo de su superficie, desde su origen hasta la actualidad. Asimismo, la litología como parte de la geología, estudia las características físicas de las rocas y depósitos que constituyen una formación geológica, es decir una unidad litoestratigráfica o unidad geológica (para el caso del presente estudio).

Es importante mencionar que, los tipos de afloramientos rocosos han sido originados por procesos de geodinámica interna (Tectónica de placas, epirogénesis, ascenso de magma, etc.) y por procesos de geodinámica externa (Meteorización, erosión, transporte y sedimentación de materiales provenientes de rocas preexistentes). Es por ello que, para entender el comportamiento dinámico de un determinado espacio geográfico, se requiere, en primer lugar, tener conocimiento de los procesos geológicos que se han ido presentando a lo largo de los años.

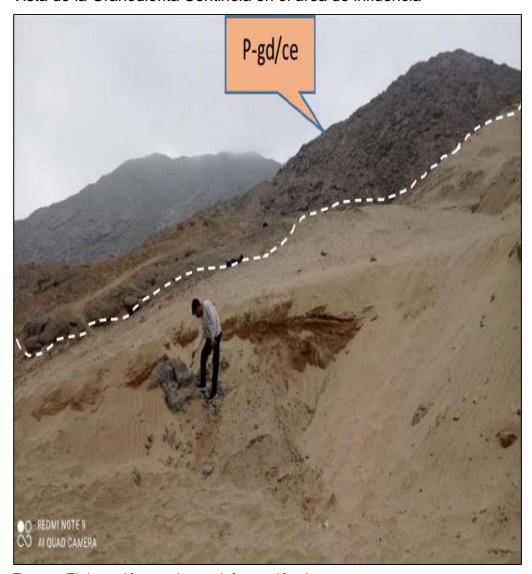
Bajo esa premisa, la geología local está enfocada en el reconocimiento y cartografiado de las unidades geológicas que afloran en las inmediaciones del área de estudio, por ello, se consideró información oficial obtenida del Instituto Geológico, Minero y Metalúrgico del Perú (INGEMMET), y el análisis realizado, en campo y laboratorio, por parte el equipo de geología responsable del presente estudio.

A continuación, se presentan las unidades geológicas identificadas en el área de influencia:

a) Granodiorita Centinela (P-gd/ce)

Granodioritas de color gris blanquecina asociados al volcánico Centinela, constituidas por cuarzo, ortosa, anfíbol y biotita, de textura fanerítica media a fina, equigranular, de color gris.

Estas unidades pertenecen al Paleógeno-Eoceno, y afloran al norte del área de estudio, conformando el 10.6 % del área cartografiada (área de influencia).


Ing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES R.J. N. 667-2014-CENEPREDIJ

Página 32 de 116

[UTM – WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Figura 10.
Vista de la Granodiorita Centinela en el área de influencia

Fuente: Elaboración propia con información de campo.

b) Depósito deluvial (Qh-de)

Conformado por fragmentos meteorizados de granodioríticos, transportados regularmente algunos metros de su roca de origen, en matriz arenosa gruesa de color beigs.

Este depósito presenta de 50 a 60 cm de espesor, siendo identificados en las laderas de las montañas intrusivas cotas arriba del área de estudio, cubriendo el 4% del ámbito área de influencia.

Ing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES RJ. N° 067-2018-CENEPREDIJ

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Figura 11.

Identificación del depósito deluvial en el área de influencia

Fuente: Elaboración propia con información de campo.

c) Depósito eólico 1 (Qh-e1)

Conformado por mantos y cordones de arena finas a medias, semicompactas, con lentes superiores de gravilla y arena gruesa, de color beigs oscuro.

Estos depósitos presentan espesores variados menores a 60 cm, 5 m y menores a 25 m, ocupando el 32% del área cartografiada (área de influencia).

Ing. Bryan O. Custillo Cachay Evaluador del riesgo de desastres RJ. Nº 067-2019-CEMEPREDIJ

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Figura 12.
Vista del depósito eólico 1 en el área de influencia

Fuente: Elaboración propia con información de campo.

d) Depósito aluvial 1 (Qh-al1)

Conformado por arenas limosas con escasas gravas subangulosas de origen intrusivo, de color beigs oscuro a crema.

Estos depósitos conforman terrazas aluviales antiguas, presentando espesores de 0.60 a 1.20 m. aproximadamente, y cubriendo el 0.1% del área de influencia.

Ing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES R.J. N° 667-2019-CENEPREDIJ

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Figura 13.
Vista del depósito aluvial 1 en el área de influencia

Fuente: Elaboración propia con información de campo.

e) Depósito aluvial 2 (Qh-al2)

Estos tipos de depósitos están conformados por gravas y bloques subangulosos y subredondeados de origen intrusivo, en arenas gruesas de color gris. Estos depósitos presentan de 35 a 40 cm de espesor, y cuando son bloques superan los 45 cm de diámetro, cubriendo el 0.5% del área de influencia.

Ing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES R.J. N. 067-2019-CENEPREDIJ

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Figura 14.
Vista del depósito aluvial 2 en el área de influencia

Fuente: Elaboración propia con información de campo.

f) Depósito eólico 2 (Qh-e2)

Este tipo de depósitos cuaternarios se encuentran compuestos por arenas finas, de color gris a color pardo claro, transportado por los vientos. Asimismo, estos depósitos conforman mantos de arenas recientes y sueltas, de 0.60 a 30 m de espesor, cubriendo el 28% del área de influencia.

Ing. Bryan O. Cistilio Cachay EVALUADOR DEL RIESGO DE DESASTRES R.J. N. 667-2019-CENEPREDIA

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

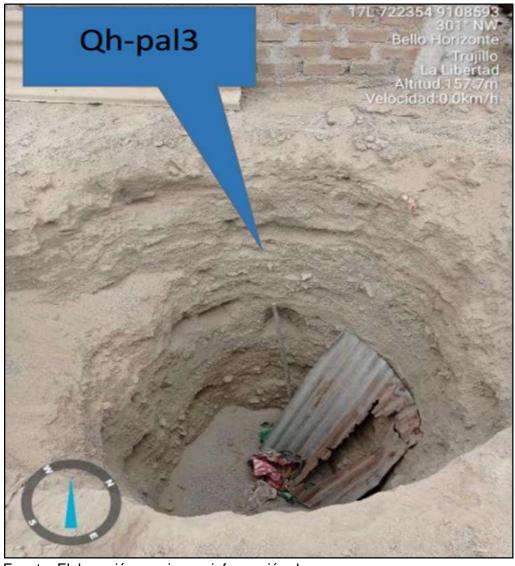
Figura 15.

Vista del depósito eólico 2 (Qh-e2) en el área de influencia

Fuente: Elaboración propia con información de campo.

g) Depósito proluvio-aluvial (Qh-pal3)

Depósito Cuaternario conformado por gravillas subangulosas de origen granodiorítico angulosas, mal distribuidas en matriz areno-limosa de 1.20, 0.80 a 0.40 m de espesor, de color gris parduzco. Estas gravillas van disminuyendo conforme en las cotas y pendientes bajas, ubicándose en los lechos de la quebrada Víctor Raúl y otras aledañas, cubriendo el 22% del área de influencia.


Ing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES R.J. N° 667-2018-CENEPREDIJ

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Figura 16.

Identificación del depósito proluvio-aluvial en el área de influencia

Fuente: Elaboración propia con información de campo.

Adicional a la identificación de las unidades geológicas, dentro del área de influencia, se decidió analizar al depósito antrópico como Unidad antrópica, pues el hombre también es parte de la naturaleza y estos depósitos son susceptibles a ser erosionados por los flujos evaluados.

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

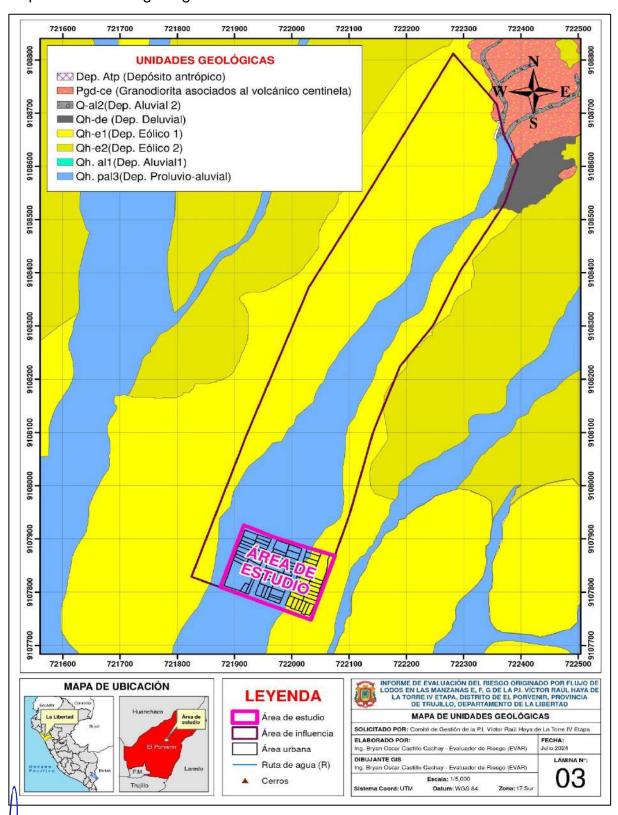
h) Depósito antrópico (Dep-Atp)

Conformado por materiales controlados y no controlados depositados por la actividad humana, siendo los primeros, rellenos alóctonos de cantera compactados y no compactados que se encuentran dispuestos sobre una rasante natural de terreno, mientras que los segundos son materiales de escombros o rellenos no controlados constituidos por concreto, ladrillos, en mezcla de arenas, arcilla y limos, compilados en el suelo con residuos sólidos como plástico y hasta basura. En la zona de estudio los materiales que más predominan son los no controlados cubriendo parte de los cauces aluviales, terrazas aluviales y depósitos eólicos, con más de 2.50 m de espesor, ubicados en zonas muy distantes a la P.I. Víctor Raúl Haya de la Torre IV Etapa, y cubriendo el 2.8 % del área de influencia.

Figura 17.

Identificación del depósito antrópico en el área de influencia

Fuente: Elaboración propia con información de campo.


Ing. Bryan O. Custilio Cachay Evaluador del riesgo de desastres RJ. Nº 067-2018-Cemepred/J

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
---------------	----------	--------	-----------	---------	------	-----

Figura 18.

Mapa de unidades geológicas en el área de estudio

[UTM – WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

2.6.3. Unidades geomorfológicas

La geomorfología estudia las diferentes formas de relieve de la superficie terrestre (geoformas) y los procesos que las generan. Este relieve es el resultado de la interacción de fuerzas endógenas y exógenas. La primera actúa como creadora de grandes elevaciones y depresiones producidas fundamentalmente por movimientos en masa de componente vertical, mientras que la segunda actúa como desencadenante de una continua denudación que tiende a rebajar el relieve originado, llamado proceso de geodinámica externa que se agrupan en la cadena de meteorización, erosión, transporte y sedimentación. Además, el estudio de geomorfología se efectúa en un sistema proceso-respuesta, siendo, el primero, el agente creador (origen) y, el segundo, la geoforma resultante.

Es así que, en base al trabajo de campo realizado por el equipo de geólogos responsables del presente informe, se han identificado las siguientes unidades geomorfológicas dentro del área de estudio:

2.6.3.1. Unidad de Vertientes:

Es una superficie inclinada que nace en las partes altas (picos, bordes de cerros, mesetas) y terminan en zonas llanas (pies de montañas, valles o cauce), por donde desciende agua y material sedimentario.

a) Vertiente o Cauce 1 (Ca-1)

Geoforma de surco o lecho aluvial antiguo diseñada por escorrentías superficiales estacionales de avenidas fuertes de material proluvio-aluvial, temporalmente, en periodos de lluvias intensas como las registradas en el Fenómeno El Niño de los años 1982-1983 y 1997-1998. Estas unidades se encuentran disecando mantos de arena donde se han ubicado varios asentamientos humanos, identificando gravas menores a 5 cm de naturaleza intrusiva en matriz arenosa limosa, semi consolidada, de color gris cremoso. Este cauce de la quebrada Víctor Raúl presenta anchos de 8 m hasta 30 m, y desniveles de 0.60 a 1.20 m, ocupando el 22% del área de influencia.

Ing. Bryan O. Custillo Cachay YALUADOR DEL RIESGO DE DESASTRES RJ. N° 067-2018-CENEPREDIJ

Página 42 de 116

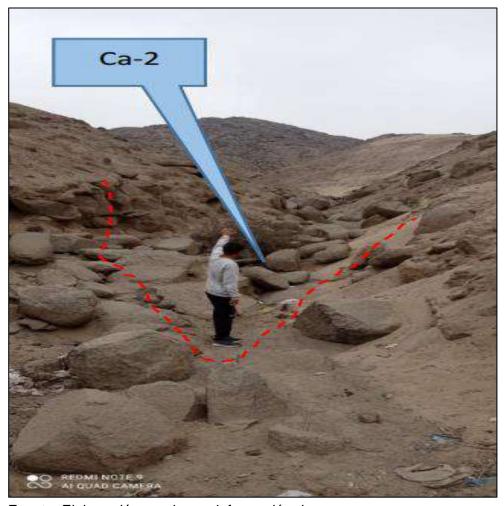
[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Figura 19. Identificación de vertiente o cauce 1 en el área de influencia

Fuente: Elaboración propia con información de campo.

b) Vertiente o Cauce 2 (Ca-2)

Geoforma de surco o lecho aluvial diseñada por una escorrentía superficial estacionales recientes que se activan en periodos de lluvias intensas como las del fenómeno de El Niño del año 2017, conformadas por bloques, gravas y arenas limosas menores a 30 - 45 cm de tamaño, de compacidad suelta a semi consolidada, se han reconocido que surcan las laderas de montañas en roca intrusiva hasta llegar a los cauces proluvio-aluviales principales.


Actualmente estas geoformas presentan desniveles de 0.50 a 1.80 m y anchos de 1.5 a 3 m, se encuentran secas, y, al mismo tiempo, ocupan el 0.5 % del área cartografiada

Ing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES RJ. N. 067-2019-CENEPREDIA

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Figura 20. Identificación de vertiente o cauce 2 en el área de influencia

Fuente: Elaboración propia con información de campo.

c) Piedemonte deluvial (Ve-de)

Geoforma acarreada por gravedad o por pequeñas escorrentías que discurren por estas laderas en periodos de lluvias intensas como las del fenómeno de El Niño Costero 2017, conformadas por gravillas angulosas en arenas limosas menores a 5 cm, o cascajos de erosión tipo cascaras de cebolla propia de los intrusivos de 10 cm de tamaño, de compacidad suelta. Estas geoformas se han reconocido sobre laderas de montañas en roca intrusiva hasta llegar a los cauces proluvio-aluviales principales, presentando desniveles de 0.50m de espesor, y ocupando el 4 % del área de influencia.

Ing. Bryan O. Cestillo Cachay
EVALUADOR DEL RIESGO DE DESASTRES
RJ. Nº 667-2014-CENEPREDIJ

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Figura 21.

Identificación de Piedemonte deluvial en el área de estudio

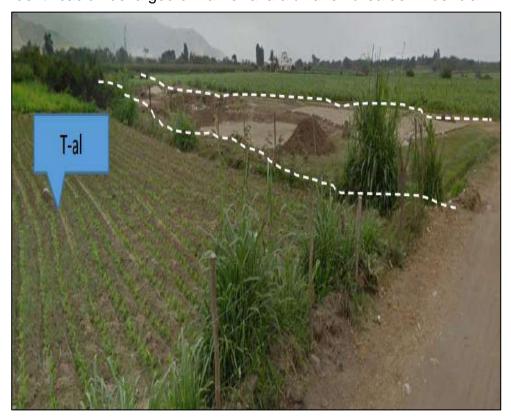
Fuente: Elaboración propia con información de campo.

2.6.3.2. Unidad de Planicies:

Geomorfológicamente es una superficie llana a onduladas de terreno, es de origen depositacional comprenden terrazas, terrazas indiferenciadas, llanuras y planicies aluviales susceptibles muchas veces a ser inundadas y erosionadas según el caudal de las avenidas de flujos.

a) Terraza aluvial (T-al)

Geoforma de origen depositacional, formada por flujos aluviales antiguos que han descendido como conos aluviales formando terrazas indiferenciadas, conformadas por escasas gravas en matriz areno limoso de color parduzco, presentando vastas extensiones con desniveles de 80 cm, donde se desarrollan actividades agrícolas. Esta geoforma ocupa el 0.1 % del área de influencia.


Fra. Bryan O. Castillo Cachay
EVALUADOR DEL RIESGO DE DESASTRES
RJ. Nº 067-2010-CENEPREDIJ

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Figura 22.

Identificación de la geoforma Terraza aluvial en área de influencia

Fuente: Elaboración propia con información de campo.

2.6.3.3. Unidad de Montañas:

Son elevaciones de la corteza terrestre de origen tectónico o magmáticos, es decir se forman por procesos endógenos como orogenia y epirogénesis o por procesos magmáticos, estos altos estructurales pasan los 300 m de altura.

a) Montaña en roca intrusiva (RM-ri)

Comprenden elevaciones originadas por procesos endógenos de intrusión y orogenia andina conformado por roca granodiorítica. Estas geoformas se identificaron en las partes altas donde nace la quebrada Víctor Raúl, así como al norte, noreste y noroeste de la zona de estudio, presentando elevaciones de más de 340 m de altura y ocupando el 5.3% del área de influencia.

Fing. Bryan O. Custillo Cachay Evaluador del riesgo de desastres R.J. N. 667-2018-CEMEPREDIJ

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Figura 23.

Identificación de Montaña en roca intrusiva en área de influencia

Fuente: Elaboración propia con información de campo.

2.6.3.4. Unidad de Loma:

Formada por proceso de depositación y denudación (sedimentaria), tectónicos o magmáticos. Son pequeñas elevaciones de forma alargadas con cimas planas a sub redondeadas menores a 200 m de altura y con drenaje lateral en el sentido a sus laderas.

a) Loma en roca intrusiva (RC-ri)

Geoforma originada por procesos mixtos, en este caso por emplazamiento magmático y tectónico, siendo a su vez denudacional hasta llegar a diseñar cimas semi onduladas y bases alargadas. Estas unidades se identificaron a 393 m al sureste del área de estudio, presentando elevaciones menores a 12 m de altura que ocupan, aproximadamente, el 2.3 % del área de influencia.

Fing. Bryan O. Custillo Cachay Evaluador del riesgo de desastres RJ. Nº 067-2019-CEMEPREDIJ

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Figura 24.

Identificación de Loma en roca intrusiva en el área de influencia

Fuente: Elaboración propia con información de campo.

2.6.3.5. Unidad de colina:

Este tipo de unidad geomorfológica se encuentra formada por un proceso de depositación y denudación (sedimentaria), tectónicos o magmáticos. Se presentan como pequeñas elevaciones que tienen una forma cónica, con cimas redondeadas menores a 200 m de altura y también con un drenaje radial.

a) Colina en roca intrusiva (RC-ri)

Esta geoforma ha sido originada por procesos mixtos, en este caso, por emplazamiento magmático y tectónico, siendo denudacional hasta llegar a diseñar cimas redondeadas y bases cónicas. Estas geoformas se llegaron a identificar en las partes altas, al norte del área de estudio, presentando elevaciones menores a 57 m. de altura y ocupando, aproximadamente, el 2.3 % del área de influencia.

Ing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES RJ. N. 067-2019-CENEPREDIJ

[UTM – WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Figura 25.

Identificación de Colina en roca intrusiva en área de estudio

Fuente: Elaboración propia – Trabajo de campo.

2.6.3.6. Geoformas eólicas:

Son geoformas depositadas por el accionar de las corrientes eólicas (vientos) que vienen de oeste a este.

a) Sub unidad de Cordón de arena (Cd-a)

Geoforma compuesta a partir de la acumulación de arena transportada por la actividad eólica, generalmente, localizada en ambientes desérticos y costeros, siendo identificada en ambos márgenes de la quebrada Víctor Raúl, con 25 m. de espesor, semicompacta, de color gris parduzco, con una intercalación a tope de un estrato de 20 a 45 cm de gravilla angulosa en matriz arenosa limosa gruesa, y, sobre ellas también se encuentra la sub unidad de Manto de arena 2, en sectores donde se encuentran hacinados varias posesiones informales, ocupando el 17 % del área de influencia.

Ing. Bryan O. Castillo Cachay EVALUADOR DEL RIESGO DE DESASTRES RJ. N° 067-2019-CEMEPREDIJ

[UTM – WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

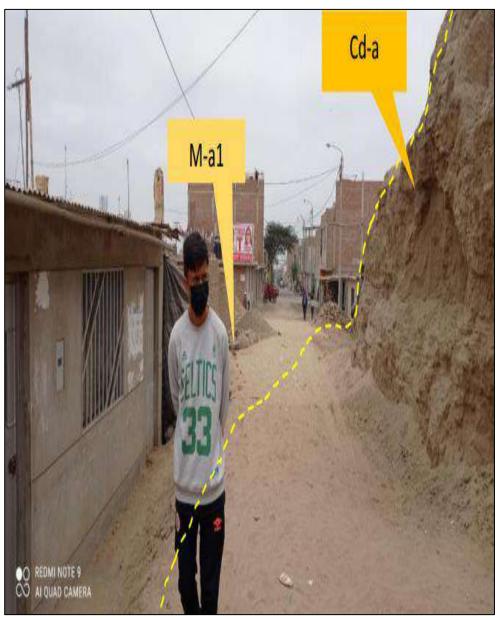
Figura 26.

Identificación de cordón de arena en área de influencia

Fuente: Elaboración propia con información de campo.

b) Sub unidad de manto de arena 1 (M-a1)

Geoforma de origen depositacional, conformada por una capa de arena fina antigua semicompacta, que es transportada por la acción eólica sobre la superficie terrestre. Estas unidades presentan entre 0.60 m a 2.50 m de espesor, ocupando el 15 % del área de influencia.


Ing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES R.J. N° 067-2018-CENEPREDIJ

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Figura 27.

Identificación de Manto de arena 1 en área de estudio

Fuente: Elaboración propia con información de campo.

c) Sub unidad de manto de arena 2 (M-a2)

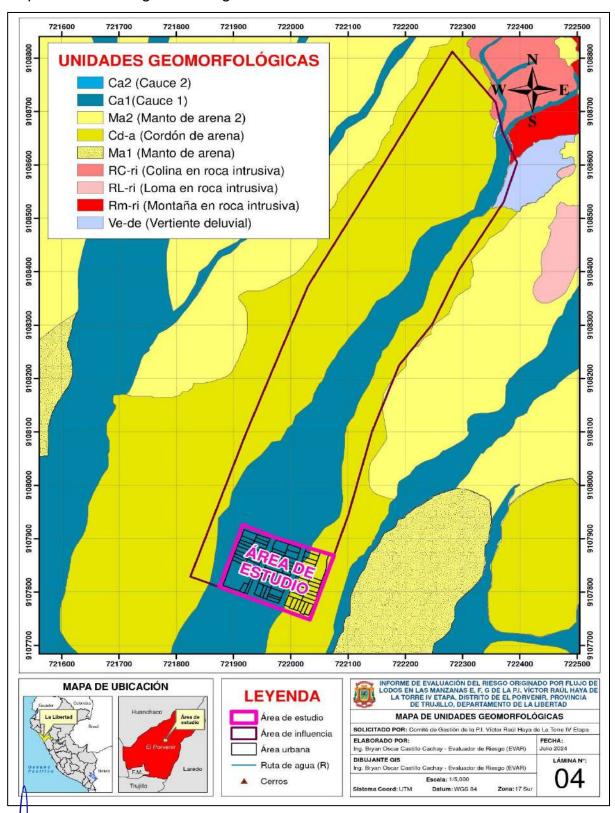
Es una geoforma de origen depositacional, compuesto por una capa de arena fina transportada por la acción eólica sobre las laderas de montañas. Estas geoformas se encuentran sobre cordón de arena y mantos de arena 1, presentando de 60 cm a 30 m de espesor, y ocupando el 30.8 % del área de influencia.

Fing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES R.J. N° 067-2018-CENEPREDIA

[UTM – WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Figura 28. Identificación de Manto de arena 2 en área de estudio

Fuente: Elaboración propia con información de campo.


Fing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES RJ. N° 067-2018-CEMEPRED/J

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
---------------	----------	--------	-----------	---------	------	-----

Figura 29.

Mapa de unidades geomorfológicas en el área de estudio

Fuente: Elaboración propia con información de campo

[UTM – WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

2.6.4. Condiciones climáticas

En el distrito de El Porvenir, los veranos son cortos, calurosos, húmedos y nublados; los inviernos son largos, cómodos y parcialmente nublados y está seco durante todo el año. Durante el transcurso del año, la temperatura varía de 17 °C a 26 °C y rara vez es menor a 15 °C o mayor a 29 °C. Según datos de la web del Servicio Nacional de Meteorología e Hidrología del Perú, la estación meteorológica convencional de "Trujillo", registró que durante el evento de El Niño 2017 el mes de marzo fue el más lluvioso, donde se registró una precipitación máxima acumulada de 28.7 mm.

a) Precipitaciones Intensas

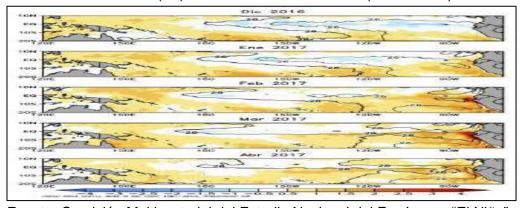
Corresponden a todas aquellas precipitaciones vinculadas a eventos extremos o de máximas avenidas, como es el caso de los eventos El Niño y Niño Costero. Cabe mencionar que, en el verano del año 2017, se presentaron condiciones océano-atmosféricas anómalas que establecieron la presencia de "El Niño Costero 2017", con el incremento abrupto de la Temperatura Superficial del Mar (TSM) cuyos valores superaron los 26°C en varios puntos de la zona norte del mar peruano, según la información emitida por el ENFEN. Asimismo, la TSM presentó valores sobre su normal histórica, siendo más intensa en los meses de febrero y marzo del año 2017; situación que, complementado a los vientos del norte y la Zona de convergencia Intertropical, favorecieron una alta concentración de humedad atmosférica, propiciando un comportamiento anómalo de las lluvias que afectaron gran parte de la franja costera del Perú.

b) Hidrografía

El área de estudio se encuentra ubicada en el margen derecho y parte media de la "Cuenca del río Moche" (costa norte del Perú), perteneciente a la vertiente del Pacífico, que drena un área total de 2708 km², por donde las quebradas estacionales surcan la planicie aluvial de noreste a suroeste uniéndose al río Moche atravesando el distrito de Laredo.

Trg. Bryan O. Custillo Cachay Yaluador del riesgo de desastres R.J. N° 067-2019-CEMEPREDIJ

Página 54 de 116



[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Asimismo, esta cuenca comprende parte de las provincias de Trujillo, Otuzco, Santiago de Chuco y Julcán, donde altitudinalmente se extiende desde el nivel del mar hasta las cumbres de la Cordillera Occidental de los Andes (aproximadamente a 4000 m.s.n.m.). Por otra parte, esta cuenca limita por el noroeste con la Intercuenca hidrográfica 137719 y por el sur con la Intercuenca 137715.

Figura 30.

Anomalía de la TSM (°C) en el Pacífico Ecuatorial (2016-2017)

Fuente: Comisión Multisectorial del Estudio Nacional del Fenómeno "El Niño"

Figura 31.

Ubicación del área de estudio en Mapa de Cuenca del río Moche

Fuente: Elaboración propia con información del SIGRID

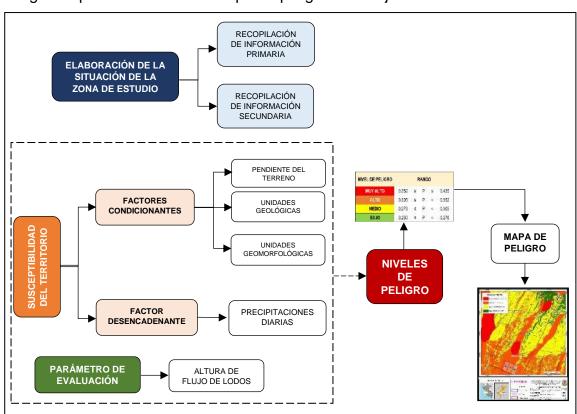
Ing. Bryan O. Custillo Cachay Yaluador del riesgo de desastres RJ. N. 067-2018-CEMEPREDU

capítulo 03

DETERMINACIÓN DEL PELIGRO

[UTM – WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

CAPÍTULO 03: DETERMINACIÓN DEL PELIGRO


3.1. Metodología para la determinación del peligro

Para determinar el nivel de peligrosidad originado por flujo de lodos, se utilizó la metodología establecida en el "Manual para la Evaluación de Riesgos Originados por fenómenos naturales – 2º versión" (elaborada por el Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres - CENEPRED). Asimismo, para la elaboración del Mapa de peligro originado por flujo de lodos, en el área de estudio, se consideraron dos (02) aspectos importantes:

- La información emitida por entidades técnico-científicas como el Servicio Nacional de Meteorología e Hidrología (SENAMHI), el Instituto Geológico Minero y Metalúrgico (INGEMMET), y la Autoridad Nacional del Agua (ANA).
- 2. El estudio geológico y geomorfológico, realizado en campo, por el equipo profesional responsable de la elaboración del presente Informe de EVAR.

Figura 32.

Diagrama para determinar el mapa de peligro ante flujo de lodos

Fuente: Elaboración propia en base al Manual EVAR 2da versión

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
[01111 11000-1		122000	1101111111	0101020	20117	

3.2. Recopilación y análisis de la información

Se ha descargado y recopilado valiosa información de repositorios y/o bibliotecas virtuales que manejan las diferentes entidades técnico-científicas, a nivel nacional, vinculadas al estudio de flujo de lodos, como es el caso del Instituto Geológico, Minero y Metalúrgico del Perú (INGEMMET), el Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI), y la Autoridad Nacional del Agua (ANA), la cual fue complementada con la información de campo realizada por el equipo profesional responsable del estudio geológico y geomorfológico del área de estudio, y la información local alcanzada tanto por la Municipalidad Distrital de El Porvenir, como por la población de la P.I. Víctor Raúl Haya de la Torre IV Etapa, durante la etapa de diagnóstico del territorio.

Posteriormente, el análisis y procesamiento de toda la información recopilada, fue realizada a través de tres (03) softwares de computadora: Google Earth, ArcGIS, y Microsoft Office.

3.3. Identificación de probable área de influencia

El área de influencia está definida como el espacio geográfico donde se produce el impacto del peligro, la cual, generalmente, considera un área más grande a la delimitada por el sector a evaluar (área de estudio); por ello, para llevar a cabo un mejor análisis de la dinámica de impacto del tsunami, se identificó un área de influencia de 22 Hectáreas (220,000 m²), aproximadamente.

3.4. Parámetro de evaluación

Durante el trabajo de campo, se identificaron marcas en las paredes de las viviendas las cuales dejan evidencia del impacto de flujos de lodos (o huaycos) dentro del área de influencia, durante temporadas de lluvias intensas. Es así que, para el presente estudio, se ha considerado como parámetro de evaluación a la ALTURA DE FLUJO DE LODOS, con la finalidad de medir la intensidad con la que estos eventos se podrían presentar, a futuro, dentro del área de estudio, por lo que se clasificó el parámetro en cinco (05) rangos o descriptores: Muy alta (31 a 50 cm), Alta (21 a 30 cm), Media (11 a 20 cm), Baja (6 a 10 cm) y, Muy baja (≤ 5 cm).

Ing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES R.J. Nº 067-2019-CENEPREDIJ

[UTM – WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Figura 33.Marcas en las paredes de flujos de 31 a 50 cm

Fuente: Trabajo de campo

Figura 34.Marcas en las paredes de flujos de 21 a 30 cm

Fuente: Trabajo de campo

[UTM – WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Figura 35.

Marcas en las paredes de flujos de 11 a 20 cm

Fuente: Trabajo de campo

Figura 36.Marcas en las paredes de flujos de 6 a 10 cm

Fuente: Trabajo de campo

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
---------------	----------	--------	-----------	---------	------	-----

Tabla 20.Comparación de pares del parámetro altura de flujo de lodos

Altura de flujo de lodos	31 a 50 cm	21 a 30 cm	11 a 20 cm	6 a 10 cm	≤ 5 cm
31 a 50 cm	1.000	2.000	3.000	4.000	6.000
21 a 30 cm	0.500	1.000	2.000	3.000	4.000
11 a 20 cm	0.333	0.500	1.000	2.000	3.000
6 a 10 cm	0.250	0.333	0.500	1.000	2.000
≤ 5 cm	0.167	0.250	0.333	0.500	1.000
SUMA	2.250	4.083	6.833	10.500	16.000
1/SUMA	0.444	0.245	0.146	0.095	0.063

Fuente: Elaboración propia

Tabla 21.Normalización del parámetro altura de flujo de lodos

Altura de flujo de lodos	31 a 50 cm	21 a 30 cm	11 a 20 cm	6 a 10 cm	≤ 5 cm	Vector priorización
31 a 50 cm	0.444	0.490	0.439	0.381	0.375	0.426
21 a 30 cm	0.222	0.245	0.293	0.286	0.250	0.259
11 a 20 cm	0.148	0.122	0.146	0.190	0.188	0.159
6 a 10 cm	0.111	0.082	0.073	0.095	0.125	0.097
≤ 5 cm	0.074	0.061	0.049	0.048	0.063	0.059

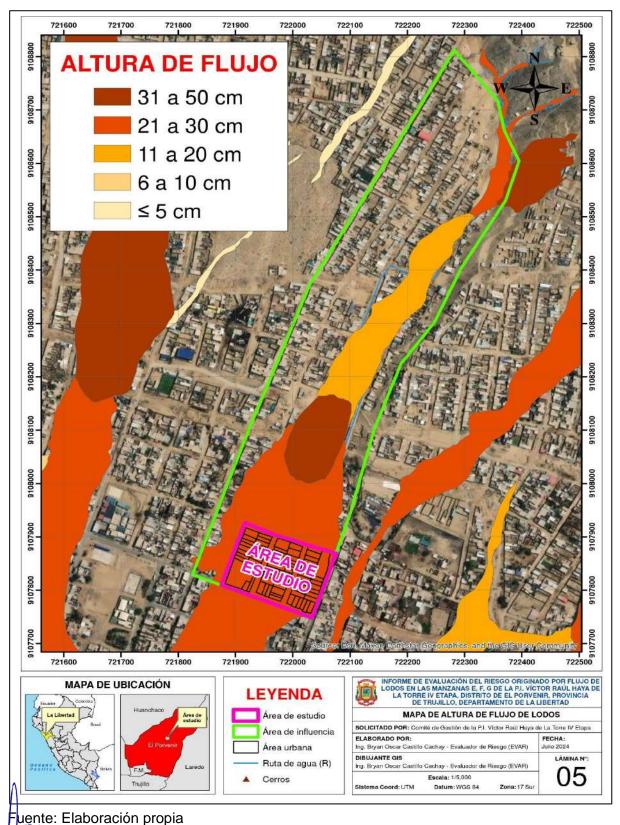
Fuente: Elaboración propia

Tabla 22. Índice y relación de consistencia de altura de parámetro flujo de lodos

Índice de Consistencia	0.012
Relación de Consistencia < 0.1	0.011

Fuente: Elaboración propia

Fing. Bryan O. Custillo Cachay Evaluador del riesgo de desastres RJ. Nº 067-2014-Cenepred/J


Página 61 de 116

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Figura 37.

Mapa del parámetro de evaluación en el área de estudio

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
---------------	----------	--------	-----------	---------	------	-----

3.5. Susceptibilidad del territorio

3.5.1. Factores condicionantes

FACTORES CONDICIONANTES

Tabla 23.Comparación de pares de los factores condicionantes

FACTORES CONDICIONANTES	Unidades Geomorfológicas	Unidades Geológicas	Pendiente
Unidades Geomorfológicas	1,000	2,000	3,000
Unidades Geológicas	0,500	1,000	2,000
Pendiente	0,333	0,500	1,000
SUMA	1,833	3,500	6,000
1/SUMA	0,545	0,286	0,167

Fuente: Elaboración propia

Tabla 24.Normalización de los factores condicionantes

FACTORES CONDICIONANTES	Unidades Geomorfológicas	Unidades Geológicas	Pendiente	Vector Priorización
Unidades Geomorfológicas	0,545	0,571	0,500	0,539
Unidades Geológicas	0,273	0,286	0,333	0,297
Pendiente	0,182	0,143	0,167	0,164

Fuente: Elaboración propia

Tabla 25. Índice y relación de consistencia de los factores condicionantes

Índice de Consistencia	0,005
Relación de Consistencia < 0.04	0,009

Fuente: Elaboración propia

Fing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES R.J. N° 067-2018-CENEPREDIJ

Página 63 de 116

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

UNIDADES GEOMORFOLÓGICAS

Tabla 26.Comparación de pares del factor unidades geomorfológicas

UNIDADES GEOMORFOLÓGICAS	Cauce 2 y vertiente deluvial	Cauce 1	Manto de arena 1 y Cordón de arena	Manto de arena 2	Montaña, Colina y Loma en roca intrusiva
Cauce 2 y vertiente deluvial	1,000	2,000	3,000	4,000	5,000
Cauce 1	0,500	1,000	2,000	3,000	4,000
Manto de arena 1 y Cordón de arena	0,333	0,500	1,000	2,000	3,000
Manto de arena 2	0,250	0,333	0,500	1,000	2,000
Montaña, Colina y Loma en roca intrusiva	0,200	0,250	0,333	0,500	1,000
SUMA	2,283	4,083	6,833	10,500	15,000
1/SUMA	0,438	0,245	0,146	0,095	0,067

Fuente: Elaboración propia

Tabla 27.Normalización del factor unidades geomorfológicas

UNIDADES GEOMORFO- LÓGICAS	Cauce 2 y vertiente deluvial	Cauce 1	Manto de arena 1 y Cordón de arena	Manto de arena 2	Montaña, Colina y Loma en roca intrusiva	Vector Priorización
Cauce 2 y vertiente deluvial	0,438	0,490	0,439	0,381	0,333	0.416
Cauce 1	0,219	0,245	0,293	0,286	0,267	0.262
Manto de arena 1 y Cordón de arena	0,146	0,122	0,146	0,190	0,200	0.161
Manto de arena 2	0,109	0,082	0,073	0,095	0,133	0.099
Montaña, Colina y Loma en roca intrusiva	0,088	0,061	0,049	0,048	0,067	0.062

Fuente: Elaboración propia

Tabla 28. Índice y relación de consistencia del factor unidades geomorfológicas

Índice de Consistencia	0.017
Relación de Consistencia < 0.1	0.015

Fuente: Elaboración propia

Ing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES RJ. N. 067-2019-CENEPREDIJ

Página 64 de 116

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

UNIDADES GEOLÓGICAS

Tabla 29.Comparación de pares del factor unidades geológicas

UNIDADES GEOLÓGICAS	Depósito aluvial 2 y Depósito deluvial	Depósito aluvial 1 y Proluvio aluvial	Depósito eólico 1	Depósito antrópico y Depósito eólico 2	Granodiorita centinela
Depósito aluvial 2 y Depósito deluvial	1,000	2,000	3,000	5,000	6,000
Depósito aluvial 1 y Proluvio aluvial	0,500	1,000	2,000	3,000	5,000
Depósito eólico 1	0,333	0,500	1,000	2,000	3,000
Depósito antrópico y Depósito eólico 2	0,200	0,333	0,500	1,000	2,000
Granodiorita centinela	0,167	0,200	0,333	0,500	1,000
SUMA	2,200	4,033	6,833	11,500	17,000
1/SUMA	0,455	0,248	0,146	0,087	0,059

Fuente: Elaboración propia

Tabla 30.Normalización del factor unidades geológicas

UNIDADES GEOLÓGICAS	Depósito aluvial 2 y Depósito deluvial	Depósito aluvial 1 y Proluvio aluvial	Depósito eólico 1	Depósito antrópico y Depósito eólico 2	Granodiorita centinela	Vector Priorización
Depósito aluvial 2 y Depósito deluvial	0,455	0,496	0,439	0,435	0,353	0,435
Depósito aluvial 1 y Proluvio aluvial	0,227	0,248	0,293	0,261	0,294	0,265
Depósito eólico 1	0,152	0,124	0,146	0,174	0,176	0,154
Depósito antrópico y Depósito eólico 2	0,091	0,083	0,073	0,087	0,118	0,090
Granodiorita centinela	0,076	0,050	0,049	0,043	0,059	0,055

Fuente: Elaboración propia

Tabla 31. Índice y relación de consistencia del factor unidades geológicas

Índice de Consistencia	0.011
Relación de Consistencia < 0.1	0.010

Fuente: Elaboración propia

Ing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES RJ. N. 067-2014-CEMEPREDIJ

Página 65 de 116

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

PENDIENTE DEL TERRENO

Tabla 32.Comparación de pares del factor pendiente del terreno

PENDIENTE	49° - 89°	30°- 49°	16° - 30°	6° - 16°	< 6°
49° - 89°	1,000	2,000	3,000	4,000	5,000
30° - 49°	0,500	1,000	2,000	3,000	4,000
16° - 30°	0,333	0,500	1,000	2,000	3,000
6° - 16°	0,250	0,333	0,500	1,000	2,000
< 6°	0,200	0,250	0,333	0,500	1,000
SUMA	2,283	4,083	6,833	10,500	15,000
1/SUMA	0,438	0,245	0,146	0,095	0,067

Fuente: Elaboración propia

Tabla 33.Normalización del factor pendiente del terreno

PENDIENTE	49° - 89°	30°- 49°	16° - 30°	6° - 16°	< 6°	Vector Priorización
49° - 89°	0.438	0.490	0.439	0.381	0.333	0.416
30° - 49°	0.219	0.245	0.293	0.286	0.267	0.262
16° - 30°	0.146	0.122	0.146	0.190	0.200	0.161
6° - 16°	0.109	0.082	0.073	0.095	0.133	0.099
< 6°	0.088	0.061	0.049	0.048	0.067	0.062

Fuente: Elaboración propia

Tabla 34. Índice y relación de consistencia del factor pendiente del terreno

Índice de Consistencia	0.017	
Relación de Consistencia < 0.1	0.015	

Fuente: Elaboración propia

Ing. Bryan O. Castilio Cachay EVALUADOR DEL RIESGO DE DESASTRES RJ. N° 067-2018-CENEPREDIJ

Página 66 de 116

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L

3.5.2. Factor desencadenante

El factor desencadenante considerado para este estudio es Precipitación diaria, el cual ha sido clasificado en cinco (05) descriptores para el análisis del proceso jerárquico de SAATY:

PRECIPITACIÓN DIARIA

Tabla 35.Comparación de pares del parámetro precipitación diaria

PRECIPITACIÓN DIARIA	> 13.8 mm	7.2 - 13.8 mm	4.5 - 7.2 mm	1.5 - 4.5 mm	0 - 1.5 mm
> 13.8 mm	1,000	2,000	3,000	4,000	5,000
7.2 - 13.8 mm	0,500	1,000	2,000	3,000	4,000
4.5 - 7.2 mm	0,333	0,500	1,000	2,000	3,000
1.5 - 4.5 mm	0,250	0,333	0,500	1,000	2,000
0 - 1.5 mm	0,200	0,250	0,333	0,500	1,000
SUMA	2,283	4,083	6,833	10,500	15,000
1/SUMA	0,438	0,245	0,146	0,095	0,067

Fuente: Elaboración propia

Tabla 36.Normalización del parámetro precipitación diaria

PRECIPITACIÓN DIARIA	> 13.8 mm	7.2 - 13.8 mm	4.5 - 7.2 mm	1.5 - 4.5 mm	0 - 1.5 mm	Vector Priorización
> 13.8 mm	0,438	0,490	0,439	0,381	0,333	0,416
7.2 - 13.8 mm	0,219	0,245	0,293	0,286	0,267	0,262
4.5 - 7.2 mm	0,146	0,122	0,146	0,190	0,200	0,161
1.5 - 4.5 mm	0,109	0,082	0,073	0,095	0,133	0,099
0 - 1.5 mm	0,088	0,061	0,049	0,048	0,067	0,062

Fuente: Elaboración propia

Tabla 37. Índice y relación de consistencia del parámetro precipitación diaria

Índice de Consistencia	0.017	
Relación de Consistencia < 0.1	0.015	

Fuente: Elaboración propia

ing. Bryan O. Custillo Cachay Valuador del riesgo de desastres RJ. N° 067-2018-CEMEPREDIJ

Página 67 de 116

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Figura 38.

Mapa del factor desencadenante precipitación diaria

uente: Elaboración propia

[UTM – WGS84] ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
------------------------	--------	-----------	---------	------	-----

3.6. Análisis de elementos expuestos

Los elementos expuestos más importantes que se encuentran dentro de las manzanas E, F y G de la P.I. Víctor Raúl Haya de la Torre IV Etapa, son:

3.6.1. Dimensión social

La población total susceptible a poder sufrir afectación, como consecuencia de la manifestación de un flujo de lodos es de 245 personas.

3.6.2. Dimensión económica

Durante el recorrido de campo se logró identificar una serie de elementos expuestos ante flujo de lodos, conformados por infraestructuras que se mencionan a continuación:

Tabla 38.Elementos expuestos para la dimensión económica

Elemento expuesto	Cantidad
Viviendas	69 unidades
Red de alcantarillado	750 metros lineales
Postes de luz	60 unidades
Vías no asfaltadas	750 metros lineales

Fuente: Elaboración propia

3.6.3. Dimensión ambiental

Al realizar el trabajo de campo, se observaron algunos puntos de acopio de basura y/o desmonte en las afueras de algunas viviendas que, con el tiempo y el clima, podría acelerar su descomposición natural y convertirse en potenciales focos infecciosos que elevarían el nivel de riesgo por contaminación en el sector, más aún, tomando en cuenta que la humedad y el calor, atraen al mosquito portador del dengue, lo que podría representar una seria amenaza a la salud de todas las personas que se encuentren viviendo dentro de este ámbito geográfico.

Ing. Bryan O. Custillo Cachay

Página 69 de 116

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
---------------	----------	--------	-----------	---------	------	-----

Figura 39.

Mapa de elementos expuestos ante flujo de lodos

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L

3.7. Definición de escenario

En base a los registros históricos de precipitaciones máximas diarias acumuladas y registradas por el Servicio Nacional de Meteorología e Hidrología (SENAMHI), por medio de su estación meteorológica "TRUJILLO", se ha elegido un escenario crítico en donde el área de estudio recibe el impacto de un flujo de lodos que mantiene una altura de 31 a 50 cm, como consecuencia de una precipitación diaria que supera los 13.8 mm.

3.8. Estratificación del nivel de peligro

Tabla 39.Estratificación del nivel de peligro en el área de estudio.

NIVEL DE PELIGRO	DESCRIPCIÓN	RANGO			
MUY ALTO	Predomina una precipitación diaria superior a 13.8 mm., que genera una altura de flujo de lodos de 31 a 50 cm., con unidades geomorfológicas de "Cauce 2" y "Vertiente deluvial", unidades geológicas de "Depósito aluvial 2" y "Depósito deluvial", y dentro de una zona que presenta una pendiente de 49° - 89° de inclinación	0.262	≤ P	≤	0.422
ALTO	Predomina una precipitación diaria superior a 13.8 mm., que genera una altura de flujo de lodos de 31 a 50 cm., con unidad geomorfológica de "Cauce 1", unidades geológicas de "Depósito aluvial 1" y "Proluvio aluvial", y dentro de una zona que presenta una pendiente de 30° - 49° de inclinación.	0.159	≤ P	<	0.262
MEDIO	Predomina una precipitación diaria superior a 13.8 mm., que genera una altura de flujo de lodos de 31 a 50 cm., con unidades geomorfológicas de "Manto de arena 1" y "Cordón de arena", unidad geológica de "Depósito eólico, y dentro de una zona que presenta una pendiente de 16º - 30º de inclinación 1".	0.096	≤ P	<	0.159
ВАЈО	Predomina una precipitación diaria superior a 13.8 mm., que genera una altura de flujo de lodos de 31 a 50 cm., con unidades geomorfológicas de "Manto de arena 2" y "Montaña, Colina y Loma en roca intrusiva", unidades geológicas de "Depósito antrópico", "Depósito eólico 2", y "Granodiorita centinela", y dentro de una zona que presenta una pendiente menor a 16°	0.060	≤ P	<	0.096

Fuente: Elaboración propia

Fing. Bryan O. Custilio Cachay Valuador del riesgo de desastres RJ. N° 067-2018-CEMEPREDIJ

Página 71 de 116

[UTM – WGS84] ESTE (X) 722000 NORTE (Y) 9107825	ZONA 17L
---	-----------------

3.9. Niveles de peligro

En el siguiente cuadro se muestran los niveles de peligro y sus respectivos rangos obtenidos a través del proceso de análisis jerárquico SATTY.

Tabla 40.Niveles de peligro

NIVEL DE PELIGRO	RANGO					
MUY ALTO	0.262	≤	Р	≤	0.422	
ALTO	0.159	≤	Р	<	0.262	
MEDIO	0.096	≤	Р	<	0.159	
BAJO	0.060	≤	Р	<	0.096	

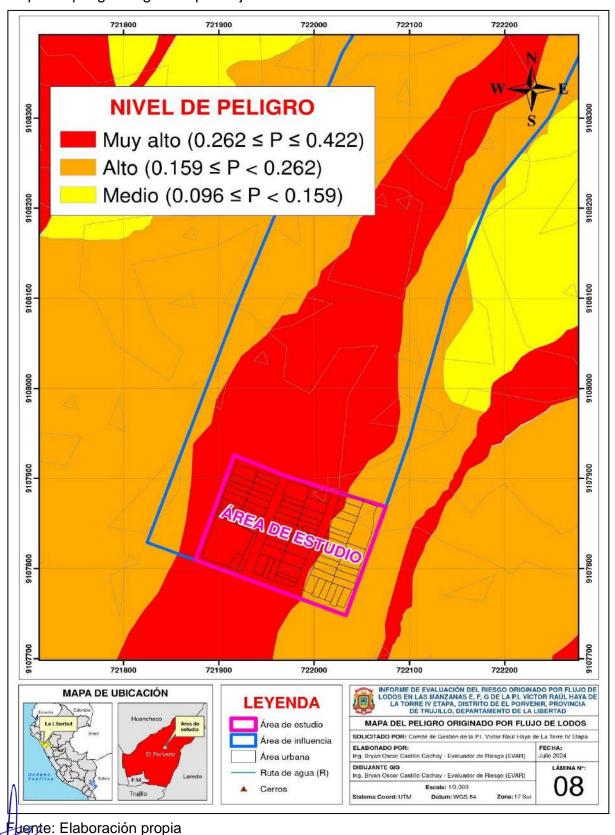
Fuente: Elaboración propia

3.10. Mapa de peligro

Este mapa se obtuvo mediante el geoprocesamiento de información geográfica haciendo uso del programa Arc Gis, superponiendo las capas de los factores condicionantes y desencadenantes, con sus respectivos valores obtenidos del análisis jerárquico (metodología de SAATY), según el "Manual de Evaluación de Riesgo originado por fenómenos naturales, 2da versión" (elaborado y publicado por el Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres – CENEPRED), hasta obtener los niveles del peligro mediante fórmulas matemáticas.

A continuación, se muestra el MAPA DE PELIGRO ORIGINADO POR FLUJO DE LODOS en las manzanas E, F, G de la P.I. Víctor Raúl Haya de la Torre IV Etapa, ubicado en el distrito de El Porvenir, de la provincia de Trujillo, del departamento de La Libertad.

ing. Bryan O. Custilio Cachay Yaluador del riesgo de desastres R.I. N. 667-2019-CENEPREDU


Página 72 de 116

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Figura 40.

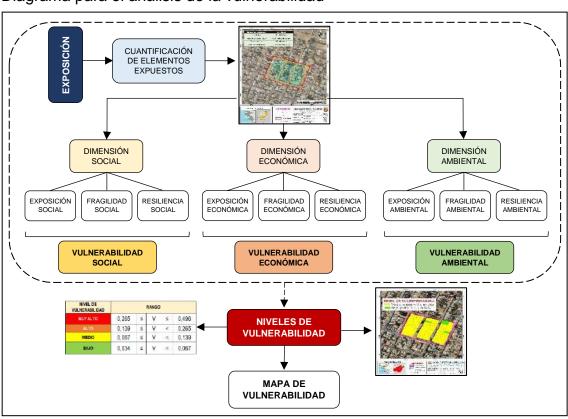
Mapa de peligro originado por flujo de lodos en el área de estudio

CAPÍTULO

04

ANÁLISIS DE VULNERABILIDAD

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
---------------	----------	--------	-----------	---------	------	-----


CAPÍTULO 04: ANÁLISIS DE VULNERABILIDAD

4.1. Metodología para el análisis de vulnerabilidad

El análisis de vulnerabilidad de los elementos expuestos ante flujo de lodos se realizó bajo el enfoque del proceso de análisis jerárquico, establecido en el Manual para Evaluación de Riesgos Originados por Fenómenos de Origen Natural – 2da versión, los cuales han sido estructurados de la siguiente manera:

Figura 41.

Diagrama para el análisis de la vulnerabilidad

Fuente: Elaboración propia en base al Manual EVAR 2da versión

Para determinar los niveles de vulnerabilidad, presentes en el área de estudio, se ha decido trabajar con las dimensiones social, económica y ambiental, identificando factores de exposición, fragilidad y resiliencia, en cada una de ellas, para un análisis más exhaustivo de las condiciones actuales que se encuentran dentro de su ámbito geográfico.

Ing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES R.J. N. 067-2018-CENEPREDIJ

Página 75 de 116

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L

4.2. Vulnerabilidad en la dimensión social

Para el análisis de la vulnerabilidad en esta dimensión, se trabajó con los factores de exposición, fragilidad y resiliencia, utilizando los siguientes parámetros:

FACTORES DE VULNERABILIDAD SOCIAL

Tabla 41.Comparación de pares de los factores de vulnerabilidad social

DIMENSIÓN SOCIAL	Exposición Social	Fragilidad Social	Resiliencia Social
Exposición Social	1,000	2,000	3,000
Fragilidad Social	0,500	1,000	2,000
Resiliencia Social	0,333	0,500	1,000
SUMA	1,833	3,500	6,000
1/SUMA	0,545	0,286	0,167

Fuente: Elaboración propia

Tabla 42.Normalización de los factores de vulnerabilidad social

DIMENSIÓN SOCIAL	Exposición Social	Fragilidad Social	Resiliencia Social	Vector Priorización
Exposición Social	0,545	0,571	0,500	0,539
Fragilidad Social	0,273	0,286	0,333	0,297
Resiliencia Social	0,182	0,143	0,167	0,164

Fuente: Elaboración propia

Tabla 43. Índice y relación de consistencia de los factores de vulnerabilidad social

Índice de Consistencia	0,005
Relación de Consistencia < 0.04	0,009

Fuente: Elaboración propia

Ing. Bryan O. Custilio Cochay EYALUADOR DEL RIESGO DE DESASTRES R.J. N° 067-2018-CENEPREDIA

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

EXPOSICIÓN SOCIAL: HABITANTES POR VIVIENDA

Tabla 44.Comparación de pares del factor habitantes por vivienda

HABITANTES POR VIVIENDA	Más de 7 habitantes	De 6 a 7 habitantes	De 4 a 5 habitantes	De 2 a 3 habitantes	Solo una persona
Más de 7 habitantes	1,000	3,000	5,000	7,000	9,000
De 6 a 7 habitantes	0,333	1,000	4,000	6,000	8,000
De 4 a 5 habitantes	0,200	0,250	1,000	3,000	6,000
De 2 a 3 habitantes	0,143	0,167	0,333	1,000	3,000
Solo una persona	0,111	0,125	0,167	0,333	1,000
SUMA	1,787	4,542	10,500	17,333	27,000
1/SUMA	0,560	0,220	0,095	0,058	0,037

Fuente: Elaboración propia

Tabla 45.Normalización del factor habitantes por vivienda

HABITANTES POR VIVIENDA	Más de 7 habitantes	De 6 a 7 habitantes	De 4 a 5 habitantes	De 2 a 3 habitantes	Solo una persona	Vector priorización
Más de 7 habitantes	0,560	0,661	0,476	0,404	0,333	0,487
De 6 a 7 habitantes	0,187	0,220	0,381	0,346	0,296	0,286
De 4 a 5 habitantes	0,112	0,055	0,095	0,173	0,222	0,131
De 2 a 3 habitantes	0,080	0,037	0,032	0,058	0,111	0,063
Solo una persona	0,062	0,028	0,016	0,019	0,037	0,032

Fuente: Elaboración propia

Tabla 46. Índice y relación de consistencia del factor habitantes por vivienda

Índice de Consistencia	0,083
Relación de Consistencia < 0.1	0,074

Fuente: Elaboración propia

Ing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES RJ. N. 067-2014-CENEPREDIJ

Página 77 de 116

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

FRAGILIDAD SOCIAL: PERSONAS CON DISCAPACIDAD

Tabla 47.Comparación de pares del factor personas con discapacidad

PERSONAS CON DISCAPACIDAD	Mental	Visual	Motora	Oral o auditiva	No tiene discapacidad
Mental	1,000	3,000	5,000	7,000	9,000
Visual	0,333	1,000	4,000	6,000	8,000
Motora	0,200	0,250	1,000	3,000	6,000
Oral o auditiva	0,143	0,167	0,333	1,000	4,000
No tiene discapacidad	0,111	0,125	0,167	0,250	1,000
SUMA	1,787	4,542	10,500	17,250	28,000
1/SUMA	0,560	0,220	0,095	0,058	0,036

Fuente: Elaboración propia

Tabla 48.Normalización del factor personas con discapacidad

PERSONAS CON DISCAPACIDAD	Mental	Visual	Motora	Oral o auditiva	No tiene discapacidad	Vector priorización
Mental	0,560	0,661	0,476	0,406	0,321	0,485
Visual	0,187	0,220	0,381	0,348	0,286	0,284
Motora	0,112	0,055	0,095	0,174	0,214	0,130
Oral o auditiva	0,080	0,037	0,032	0,058	0,143	0,070
No tiene discapacidad	0,062	0,028	0,016	0,014	0,036	0,031

Fuente: Elaboración propia

Tabla 49. Índice y relación de consistencia del factor personas con discapacidad

Índice de Consistencia	0,099
Relación de Consistencia < 0.1	0,089

Fuente: Elaboración propia

Ing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES RJ. N. 067-2019-CENEPREDIJ

Página 78 de 116

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

FRAGILIDAD SOCIAL: GRUPO ETARIO SUSCEPTIBLE

Tabla 50.Comparación de pares del factor grupo etario susceptible

GRUPO ETARIO SUSCEPTIBLE	De 0 a 5 años y mayor de 70 años	De 6 a 12 años y de 55 a 70 años	De 13 a 18 años y de 40 a 54 años	De 19 a 25 años	De 26 a 39 años
De 0 a 5 años y mayor de 70 años	1,000	3,000	5,000	7,000	9,000
De 6 a 12 años y de 55 a 70 años	0,333	1,000	3,000	5,000	7,000
De 13 a 18 años y de 40 a 54 años	0,200	0,333	1,000	3,000	6,000
De 19 a 25 años	0,143	0,200	0,333	1,000	3,000
De 26 a 39 años	0,111	0,143	0,167	0,333	1,000
SUMA	1,787	4,676	9,500	16,333	26,000
1/SUMA	0,560	0,214	0,105	0,061	0,038

Fuente: Elaboración propia

Tabla 51.Normalización del factor grupo etario susceptible

GRUPO ETARIO SUSCEPTIBLE	De 0 a 5 años y mayor de 70 años	De 6 a 12 años y de 55 a 70 años	De 13 a 18 años y de 40 a 54 años	De 19 a 25 años	De 26 a 39 años	Vector priorización
De 0 a 5 años y mayor de 70 años	0,560	0,642	0,526	0,429	0,346	0,500
De 6 a 12 años y de 55 a 70 años	0,187	0,214	0,316	0,306	0,269	0,258
De 13 a 18 años y de 40 a 54 años	0,112	0,071	0,105	0,184	0,231	0,141
De 19 a 25 años	0,080	0,043	0,035	0,061	0,115	0,067
De 26 a 39 años	0,062	0,031	0,018	0,020	0,038	0,034

Fuente: Elaboración propia

Tabla 52. Índice y relación de consistencia del factor grupo etario susceptible

Índice de Consistencia	0,066
Relación de Consistencia < 0.1	0,060

Fuente: Elaboración propia

Ing. Bryan O. Cistilio Cachay EVALUADOR DEL RIESGO DE DESASTRES RJ. N. 067-2019-CENEPREDIA

Página 79 de 116

[UTM – WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

RESILIENCIA SOCIAL: PARTICIPACIÓN EN ACTIVIDADES DE DEFENSA CIVIL

Tabla 53.Comparación de pares del parámetro participación actividades DC

PARTICIPACIÓN EN ACTIVIDADES DE DEFENSA CIVIL	Nunca	Solo con incentivos económicos	Pocas veces	Casi siempre	Siempre
Nunca	1,000	3,000	4,000	6,000	8,000
Solo con incentivos económicos	0,333	1,000	2,000	4,000	6,000
Pocas veces	0,250	0,500	1,000	2,000	4,000
Casi siempre	0,167	0,250	0,500	1,000	3,000
Siempre	0,125	0,167	0,250	0,333	1,000
SUMA	1,875	4,917	7,750	13,333	22,000
1/SUMA	0,533	0,203	0,129	0,075	0,045

Fuente: Elaboración propia

Tabla 54.Normalización del parámetro participación actividades DC

PARTICIPACIÓN EN ACTIVIDADES DE DEFENSA CIVIL	Nunca	Solo con incentivos económicos	Pocas veces	Casi siempre	Siempre	Vector priorización
Nunca	0,533	0,610	0,516	0,450	0,364	0,495
Solo con incentivos económicos	0,178	0,203	0,258	0,300	0,273	0,242
Pocas veces	0,133	0,102	0,129	0,150	0,182	0,139
Casi siempre	0,089	0,051	0,065	0,075	0,136	0,083
Siempre	0,067	0,034	0,032	0,025	0,045	0,041

Fuente: Elaboración propia

Tabla 55. Índice y relación de consistencia del parámetro participación actividades DC

Índice de Consistencia	0,033
Relación de Consistencia < 0.1	0,030

Fuente: Elaboración propia

Ing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES R.J. N. 067-2019-CENEPREDIJ

Página 80 de 116

[UTM – WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

RESILIENCIA SOCIAL: INSUMOS PARA EMERGENCIAS

Tabla 56.Comparación de pares del parámetro insumos para emergencias

INSUMOS PARA EMERGENCIAS	No tiene y tampoco quiere adquirirlos	Quiere adquirirlo con apoyo externo	Va a adquirirlos durante la emergencia	Cuenta solo con sacos terreros	Cuenta con sacos terreros y herramientas
No tiene y tampoco quiere adquirirlos	1,000	3,000	5,000	7,000	9,000
Quiere adquirirlo con apoyo externo	0,333	1,000	3,000	5,000	7,000
Va a adquirirlos durante la emergencia	0,200	0,333	1,000	3,000	5,000
Cuenta solo con sacos terreros	0,143	0,200	0,333	1,000	2,000
Cuenta con sacos terreros y herramientas	0,111	0,143	0,200	0,500	1,000
SUMA	1,787	4,676	9,533	16,500	24,000
1/SUMA	0,560	0,214	0,105	0,061	0,042

Fuente: Elaboración propia

Tabla 57.Normalización del parámetro insumos para emergencias

INSUMOS PARA EMERGENCIAS	No tiene y tampoco quiere adquirirlos	Quiere adquirirlo con apoyo externo	Va a adquirirlos durante la emergencia	Cuenta solo con sacos terreros	Cuenta con sacos terreros y herramientas	Vector priorización
No tiene y tampoco quiere adquirirlos	0,560	0,642	0,524	0,424	0,375	0,505
Quiere adquirirlo con apoyo externo	0,187	0,214	0,315	0,303	0,292	0,262
Va a adquirirlos durante la emergencia	0,112	0,071	0,105	0,182	0,208	0,136
Cuenta solo con sacos terreros	0,080	0,043	0,035	0,061	0,083	0,060
Cuenta con sacos terreros y herramientas	0,062	0,031	0,021	0,030	0,042	0,037

Fuente: Elaboración propia

Tabla 58. Índice y relación de consistencia del parámetro insumos para emergencias

Índice de Consistencia	0,047
Relación de Consistencia < 0.1	0,042

Fuente: Elaboración propia

Ing. Bryan O. Cistilio Cachay EVALUADOR DEL RIESGO DE DESASTRES RJ. N. 067-2019-CENEPREDIA

Página 81 de 116

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
•	` ,		` '			

4.3. Vulnerabilidad en la dimensión económica

Para el análisis de la vulnerabilidad en esta dimensión, se trabajó con los factores de exposición, fragilidad y resiliencia, utilizando los siguientes parámetros:

FACTORES DE VULNERABILIDAD ECONÓMICA

Tabla 59.Comparación de pares de los factores de vulnerabilidad económica

DIMENSIÓN ECONÓMICA	Exposición Económica	Fragilidad Económica	Resiliencia Económica
Exposición Económica	1,000	2,000	3,000
Fragilidad Económica	0,500	1,000	2,000
Resiliencia Económica	0,333	0,500	1,000
SUMA	1,833	3,500	6,000
1/SUMA	0,545	0,286	0,167

Fuente: Elaboración propia

Tabla 60.

Normalización de los factores de vulnerabilidad económica

DIMENSIÓN ECONÓMICA	Exposición Económica	Fragilidad Económica	Resiliencia Económica	Vector priorización
Exposición Económica	0,545	0,571	0,500	0,539
Fragilidad Económica	0,273	0,286	0,333	0,297
Resiliencia Económica	0,182	0,143	0,167	0,164

Fuente: Elaboración propia

Tabla 61.

Índice y relación de consistencia de los factores de vulnerabilidad económica

Índice de Consistencia	0,005
Relación de Consistencia < 0.04	0,009

Fuente: Elaboración propia

ing. Bryan O. Castillo Cachay Valuador del riesgo de desastres RJ. N. 067-2018-CENEPREDIJ

Página 82 de 116

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

EXPOSICIÓN ECONÓMICA: VIVIENDA EN ZONA RESTRINGIDA

Tabla 62.Comparación de pares del parámetro vivienda en zona restringida

VIVIENDA EN ZONA RESTRINGIDA	Faja marginal delimitada por la ANA	Zona de Reglamentación Especial de Riesgo	Zonas no urbanizables	Áreas inundables con antecedentes de afectación	Áreas inundables sin antecedentes de afectación
Faja marginal delimitada por la ANA	1,000	3,000	5,000	7,000	9,000
Zona de Reglamentación Especial de Riesgo	0,333	1,000	3,000	5,000	7,000
Zonas no urbanizables	0,200	0,333	1,000	3,000	5,000
Áreas inundables con antecedentes de afectación	0,143	0,200	0,333	1,000	3,000
Áreas inundables sin antecedentes de afectación	0,111	0,143	0,200	0,333	1,000
SUMA	1,787	4,676	9,533	16,333	25,000
1/SUMA	0,560	0,214	0,105	0,061	0,040

Fuente: Elaboración propia

Tabla 63.Normalización del parámetro vivienda en zona restringida

VIVIENDA EN ZONA RESTRINGIDA	Faja marginal delimitada por la ANA	Zona de Reglamentación Especial de Riesgo	Zonas no urbanizables	Áreas inundables con antecedentes de afectación	Áreas inundables sin antecedentes de afectación	Vector priorización
Faja marginal delimitada por la ANA	0,560	0,642	0,524	0,429	0,360	0,503
Zona de Reglamentación Especial de Riesgo	0,187	0,214	0,315	0,306	0,280	0,260
Zonas no urbanizables	0,112	0,071	0,105	0,184	0,200	0,134
Áreas inundables con antecedentes de afectación	0,080	0,043	0,035	0,061	0,120	0,068
Áreas inundables sin antecedentes de afectación	0,062	0,031	0,021	0,020	0,040	0,035

Fuente: Elaboración propia

Tabla 64. Índice y relación de consistencia del parámetro vivienda en zona restringida

Índice de Consistencia	0,061
Relación de Consistencia < 0.1	0,054

Fuente: Elaboración propia

Ing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES RJ. N. 067-2018-CENEPREDIA

Página 83 de 116

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

FRAGILIDAD ECONÓMICA: MATERIAL DE CONSTRUCCIÓN EN MUROS

Tabla 65.Comparación de pares del parámetro material de construcción

MATERIAL DE CONSTRUCCIÓN EN MUROS	Estera o costal	Madera o triplay	Adobe	Bloque de cemento	Ladrillo
Estera o costal	1,000	3,000	5,000	8,000	9,000
Madera o triplay	0,333	1,000	4,000	6,000	8,000
Adobe	0,200	0,250	1,000	4,000	6,000
Bloque de cemento	0,125	0,167	0,250	1,000	2,000
Ladrillo	0,111	0,125	0,167	0,500	1,000
SUMA	1,769	4,542	10,417	19,500	26,000
1/SUMA	0,565	0,220	0,096	0,051	0,038

Fuente: Elaboración propia

Tabla 66.Normalización del parámetro material de construcción

MATERIAL DE CONSTRUCCIÓN EN MUROS	Estera o costal	Madera o triplay	Adobe	Bloque de cemento	Ladrillo	Vector priorización
Estera o costal	0,565	0,661	0,480	0,410	0,346	0,492
Madera o triplay	0,188	0,220	0,384	0,308	0,308	0,282
Adobe	0,113	0,055	0,096	0,205	0,231	0,140
Bloque de cemento	0,071	0,037	0,024	0,051	0,077	0,052
Ladrillo	0,063	0,028	0,016	0,026	0,038	0,034

Fuente: Elaboración propia

Tabla 67. Índice y relación de consistencia del parámetro material de construcción

Índice de Consistencia	0,078
Relación de Consistencia < 0.1	0,070

Fuente: Elaboración propia

Ing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES RJ. N° 067-2018-CENEPREDIJ

Página 84 de 116

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

FRAGILIDAD ECONÓMICA: ESTADO DE CONSERVACIÓN DE LA VIVIENDA

Tabla 68.Comparación de pares del parámetro estado de conservación

ESTADO DE CONSERVACIÓN DE LA VIVIENDA	Muy malo	Malo	Regular	Bueno	Muy bueno
Muy malo	1,000	3,000	5,000	7,000	9,000
Malo	0,333	1,000	3,000	5,000	7,000
Regular	0,200	0,333	1,000	4,000	6,000
Bueno	0,143	0,200	0,250	1,000	3,000
Muy bueno	0,111	0,143	0,167	0,333	1,000
SUMA	1,787	4,676	9,417	17,333	26,000
1/SUMA	0,560	0,214	0,106	0,058	0,038

Fuente: Elaboración propia

Tabla 69.Normalización del parámetro estado de conservación

ESTADO DE CONSERVACIÓN DE LA VIVIENDA	Muy malo	Malo	Regular	Bueno	Muy bueno	Vector priorización
Muy malo	0,560	0,642	0,531	0,404	0,346	0,496
Malo	0,187	0,214	0,319	0,288	0,269	0,255
Regular	0,112	0,071	0,106	0,231	0,231	0,150
Bueno	0,080	0,043	0,027	0,058	0,115	0,064
Muy bueno	0,062	0,031	0,018	0,019	0,038	0,034

Fuente: Elaboración propia

Tabla 70. Índice y relación de consistencia del parámetro estado de conservación

Índice de Consistencia	0,080
Relación de Consistencia < 0.1	0,072

Fuente: Elaboración propia

Ing. Bryan O. Custilio Cochay EVALUADOR DEL RIESGO DE DESASTRES R.J. N° 067-2018-CENEPREDIJ

Página 85 de 116

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

RESILIENCIA ECONÓMICA: INGRESO FAMILIAR MENSUAL

Tabla 71.Comparación de pares del parámetro ingreso familiar mensual

INGRESO FAMILIAR MENSUAL	Menor a 1130	De 1131 a 1500	De 1501 a 2000	De 2000 a 4000	Mayor a 4000
Menor a 1130	1,000	3,000	5,000	7,000	9,000
De 1131 a 1500	0,333	1,000	3,000	6,000	8,000
De 1501 a 2000	0,200	0,333	1,000	4,000	7,000
De 2000 a 4000	0,143	0,167	0,250	1,000	3,000
Mayor a 4000	0,111	0,125	0,143	0,333	1,000
SUMA	1,787	4,625	9,393	18,333	28,000
1/SUMA	0,560	0,216	0,106	0,055	0,036

Fuente: Elaboración propia

Tabla 72.Normalización del parámetro ingreso familiar mensual

INGRESO FAMILIAR MENSUAL	Menor a 1130	De 1131 a 1500	De 1501 a 2000	De 2000 a 4000	Mayor a 4000	Vector priorización
Menor a 1130	0,560	0,649	0,532	0,382	0,321	0,489
De 1131 a 1500	0,187	0,216	0,319	0,327	0,286	0,267
De 1501 a 2000	0,112	0,072	0,106	0,218	0,250	0,152
De 2000 a 4000	0,080	0,036	0,027	0,055	0,107	0,061
Mayor a 4000	0,062	0,027	0,015	0,018	0,036	0,032

Fuente: Elaboración propia

Tabla 73. Índice y relación de consistencia del parámetro ingreso familiar mensual

Índice de Consistencia	0,086
Relación de Consistencia < 0.1	0,078

Fuente: Elaboración propia

Ing. Bryan O. Cistilio Cachay EVALUADOR DEL RIESGO DE DESASTRES R.J. N. 067-2019-CENEPREDIJ

Página 86 de 116

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
•	` ,		` '			

4.4. Vulnerabilidad en la dimensión ambiental

Para el análisis de la vulnerabilidad en esta dimensión, se trabajó con los factores de exposición, fragilidad y resiliencia, utilizando los siguientes parámetros:

FACTORES DE VULNERABILIDAD AMBIENTAL

Tabla 74.Comparación de pares de los factores de vulnerabilidad ambiental

DIMENSIÓN AMBIENTAL	Exposición Ambiental	Fragilidad Ambiental	Resiliencia Ambiental
Exposición Ambiental	1,000	2,000	3,000
Fragilidad Ambiental	0,500	1,000	2,000
Resiliencia Ambiental	0,333	0,500	1,000
SUMA	1,833	3,500	6,000
1/SUMA	0,545	0,286	0,167

Fuente: Elaboración propia

Tabla 75.

Normalización de los factores de vulnerabilidad ambiental

DIMENSIÓN AMBIENTAL	Exposición Ambiental	Fragilidad Ambiental	Resiliencia Ambiental	Vector priorización
Exposición Ambiental	0,545	0,571	0,500	0,539
Fragilidad Ambiental	0,273	0,286	0,333	0,297
Resiliencia Ambiental	0,182	0,143	0,167	0,164

Fuente: Elaboración propia

Tabla 76.

Índice y relación de consistencia de los factores de vulnerabilidad ambiental

Índice de Consistencia	0,005
Relación de Consistencia < 0.04	0,009

Fuente: Elaboración propia

Ing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES R.J. N. 667-2019-CENEPREDIJ

Página 87 de 116

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

EXPOSICIÓN AMBIENTAL: DISTANCIA A UN AGENTE CONTAMINANTE

Tabla 77.Comparación de pares del parámetro distancia agente contaminante

DISTANCIA A UN AGENTE CONTAMINANTE	Menor a 100 metros	De 101 a 150 metros	De 151 a 200 metros	De 201 a 250 metros	Mayor a 250 metros
Menor a 100 metros	1,000	3,000	5,000	7,000	9,000
De 101 a 150 metros	0,333	1,000	3,000	5,000	7,000
De 151 a 200 metros	0,200	0,333	1,000	3,000	5,000
De 201 a 250 metros	0,143	0,200	0,333	1,000	4,000
Mayor a 250 metros	0,111	0,143	0,200	0,250	1,000
SUMA	1,787	4,676	9,533	16,250	26,000
1/SUMA	0,560	0,214	0,105	0,062	0,038

Fuente: Elaboración propia

Tabla 78.Normalización del parámetro distancia agente contaminante

DISTANCIA A UN AGENTE CONTAMINANTE	Menor a 100 metros	De 101 a 150 metros	De 151 a 200 metros	De 201 a 250 metros	Mayor a 250 metros	Vector priorización
Menor a 100 metros	0,560	0,642	0,524	0,431	0,346	0,500
De 101 a 150 metros	0,187	0,214	0,315	0,308	0,269	0,258
De 151 a 200 metros	0,112	0,071	0,105	0,185	0,192	0,133
De 201 a 250 metros	0,080	0,043	0,035	0,062	0,154	0,075
Mayor a 250 metros	0,062	0,031	0,021	0,015	0,038	0,034

Fuente: Elaboración propia

Tabla 79. Índice y relación de consistencia parámetro distancia agente contaminante

Índice de Consistencia	0,078
Relación de Consistencia < 0.1	0,070

Fuente: Elaboración propia

Ing. Bryan O. Cistilio Cachay EVALUADOR DEL RIESGO DE DESASTRES RJ. N° 067-2018-CENEPREDIJ

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

FRAGILIDAD AMBIENTAL: DISPOSICIÓN DE RESIDUOS SÓLIDOS

Tabla 80.Comparación de pares del parámetro disposición residuos sólidos

DISPOSICIÓN DE RESIDUOS SÓLIDOS	A la intemperie	Quema y entierra	Botadero informal	Contenedor municipal	Camión recolector
A la intemperie	1,000	2,000	4,000	6,000	8,000
Quema y entierra	0,500	1,000	3,000	5,000	7,000
Botadero informal	0,250	0,333	1,000	4,000	6,000
Contenedor municipal	0,167	0,200	0,250	1,000	3,000
Camión recolector	0,125	0,143	0,167	0,333	1,000
SUMA	2,042	3,676	8,417	16,333	25,000
1/SUMA	0,490	0,272	0,119	0,061	0,040

Fuente: Elaboración propia

Tabla 81.Normalización del parámetro disposición residuos sólidos

DISPOSICIÓN DE RESIDUOS SÓLIDOS	A la intemperie	Quema y entierra	Botadero informal	Contenedor municipal	Camión recolector	Vector priorización
A la intemperie	0,490	0,544	0,475	0,367	0,320	0,439
Quema y entierra	0,245	0,272	0,356	0,306	0,280	0,292
Botadero informal	0,122	0,091	0,119	0,245	0,240	0,163
Contenedor municipal	0,082	0,054	0,030	0,061	0,120	0,069
Camión recolector	0,061	0,039	0,020	0,020	0,040	0,036

Fuente: Elaboración propia

Tabla 82. Índice y relación de consistencia del parámetro disposición residuos sólidos

Índice de Consistencia	0,066
Relación de Consistencia < 0.1	0,059

Fuente: Elaboración propia

Ing. Bryan O. Cistilio Cachay EVALUADOR DEL RIESGO DE DESASTRES RJ. N° 067-2018-CENEPREDIJ

Página 89 de 116

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

RESILIENCIA AMBIENTAL: CAMPAÑAS DE LIMPIEZA PÚBLICA

Tabla 83.Comparación de pares del parámetro campañas de limpieza

CAMPAÑAS DE LIMPIEZA PÚBLICA	Nunca participa	Casi nunca participa	Pocas veces participa	Participa con incentivos	Siempre participa
Nunca participa	1,000	3,000	5,000	7,000	9,000
Casi nunca participa	0,333	1,000	4,000	6,000	8,000
Pocas veces participa	0,200	0,250	1,000	4,000	6,000
Participa con incentivos	0,143	0,167	0,250	1,000	3,000
Siempre participa	0,111	0,125	0,167	0,333	1,000
SUMA	1,787	4,542	10,417	18,333	27,000
1/SUMA	0,560	0,220	0,096	0,055	0,037

Fuente: Elaboración propia

Tabla 84.Normalización del parámetro campañas de limpieza

CAMPAÑAS DE LIMPIEZA PÚBLICA	Nunca participa	Casi nunca participa	Pocas veces participa	Participa con incentivos	Siempre participa	Vector priorización
Nunca participa	0,560	0,661	0,480	0,382	0,333	0,483
Casi nunca participa	0,187	0,220	0,384	0,327	0,296	0,283
Pocas veces participa	0,112	0,055	0,096	0,218	0,222	0,141
Participa con incentivos	0,080	0,037	0,024	0,055	0,111	0,061
Siempre participa	0,062	0,028	0,016	0,018	0,037	0,032

Fuente: Elaboración propia

Tabla 85. Índice y relación de consistencia del parámetro campañas de limpieza

Índice de Consistencia	0,097
Relación de Consistencia < 0.1	0,087

Fuente: Elaboración propia

Ing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES RJ. N° 067-2010-CENEPREDIJ

Página 90 de 116

[UTM – WGS84] ESTE (X) 722000 NOR	9107825 ZONA 17L
-----------------------------------	-------------------------

4.5. Estratificación de la vulnerabilidad

Tabla 86.Estratificación del nivel de vulnerabilidad en el área de estudio

NIVEL DE VULNERABILIDAD	DESCRIPCIÓN	RANGO
MUY ALTO	Presencia de más de 7 habitantes por vivienda, con personas que tienen discapacidad mental y se encuentran dentro de un grupo etario susceptible de 0 a 5 años y mayor de 70 años, que nunca participan en actividades de defensa civil y no tienen ni quieren adquirir insumos para emergencias; con vivienda ubicada en zona de faja marginal delimitada por la ANA, que tiene muros construidos de estera o costal, los cuales presentan un estado de conservación muy malo, donde el ingreso familiar promedio es menor a 1330 soles. Además, su vivienda se ubica a menos de 100 metros de distancia de un agente contaminante, donde su disposición de residuos sólidos es a la intemperie, y nunca participa en campañas de limpieza pública.	0,274 ≤ V ≤ 0,490
ALTO	Presencia de 6 a 7 habitantes por vivienda, con personas que tienen discapacidad visual y se encuentran dentro de un un grupo etario susceptible de 6 a 12 años y de 55 a 70 años, que participan solo con incentivos económicos en actividades de defensa civil y quieren adquirir insumos para emergencias con apoyo externo; con vivienda ubicada en Zona de Reglamentación Especial de Riesgo, que tiene muros construidos de madera o triplay, los cuales presentan un estado de conservación malo, donde el ingreso familiar promedio es de 1131 a 1500 soles. Además, su vivienda se ubica de 101 a 150 metros de distancia un agente contaminante, donde su disposición de residuos sólidos es quemar y enterrar, y casi nunca participa en campañas de limpieza pública.	0,136 ≤ V < 0,274
MEDIO	Presencia de 4 a 5 habitantes por vivienda, con personas que tienen discapacidad motora y se encuentran dentro de un grupo etario susceptible de 13 a 18 años y de 40 a 54 años, que han participado pocas veces en actividades de defensa civil y van a adquirir insumos durante emergencias; con vivienda ubicada en zonas no urbanizables, que tiene muros construidos de adobe, los cuales presentan un estado de conservación regular, donde el ingreso familiar promedio es de 1501 a 2000 soles. Además, su vivienda se ubica de 151 a 200 metros de distancia un agente contaminante, donde su disposición de residuos sólidos es en un botadero informal, y pocas veces participa en campañas de limpieza pública.	0,066 ≤ V < 0,136
ВАЈО	Presencia de 2 a 3 habitantes o persona sola por vivienda, con discapacidad oral o auditiva, o sin discapacidad, que se encuentran dentro de un grupo etario susceptible de 19 a 25 años o de 26 a 39 años, que han participado casi siempre o siempre en actividades de defensa civil, y que cuenta solo con sacos terreros o sacos terreros y herramientas como insumos durante emergencias; con vivienda ubicada en zonas inundables con o sin antecedentes de afectación, que tiene muros construidos de bloque de cemento o ladrillo, los cuales presentan un estado de conservación bueno o muy bueno, donde el ingreso familiar promedio es de 2000 a 4000 soles o mayor a 4000 soles. Además, su vivienda se ubica de 201 a 250 metros o mayor a 250 metros de distancia un agente contaminante, donde su disposición de residuos sólidos es en un contenedor municipal o camión recolector, y participa con incentivos o siempre participa en campañas de limpieza pública.	0,034 ≤ V < 0,066

Fuente: Elaboración propia

ing, Bryan O. Custilio Cachay Evaluador del riesgo de desastres RJ. N. 067-2018-CENEPREDIJ

Página 91 de 116

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
---------------	----------	--------	-----------	---------	------	-----

4.6. Niveles de vulnerabilidad

En el siguiente cuadro se muestran los niveles de vulnerabilidad y sus respectivos rangos obtenidos a través del proceso de análisis jerárquico.

Tabla 87.Niveles de vulnerabilidad

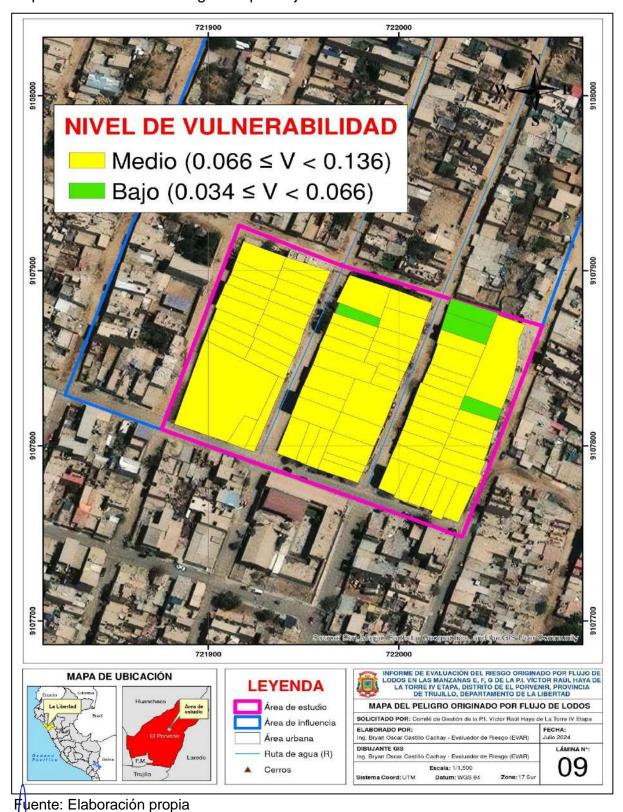
NIVEL DE VULNERABILIDAD		F	RANC	30	
MUY ALTO	0,274	≤	V	≤	0,490
ALTO	0,136	≤	V	<	0,274
MEDIO	0,066	≤	V	<	0,136
BAJO	0,034	≤	V	<	0,066

Fuente: Elaboración propia

4.7. Mapa de vulnerabilidad

Este mapa se obtuvo mediante el procesamiento de información geográfica haciendo uso del programa Arc-Gis, donde primero se tuvo que sistematizar, en Microsoft Excel, la información recopilada de cada formato de encuesta aplicada en campo, para posteriormente obtener los valores y niveles de vulnerabilidad mediante el análisis jerárquico correspondiente a la metodología de SAATY, según el "Manual de Evaluación de Riesgo V2", elaborada por el CENEPRED. En la siguiente figura se muestra el mapa de vulnerabilidad por flujo de lodos en las manzanas E, F, y G de la P.I. Víctor Raúl Haya de la Torre IV Etapa, ubicado en el distrito de El Porvenir, provincia de Trujillo, departamento de La Libertad.

Ing. Bryan O. Custillo Cachay EVALUADOR DEL MESGO DE DESASTRES RJ. Nº 067-2018-CEMEPREDIJ


Página 92 de 116



[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

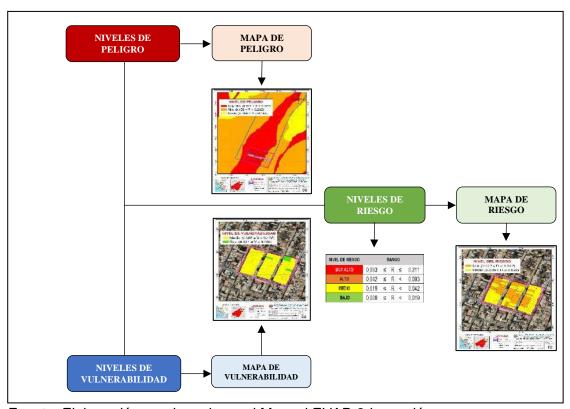
Figura 42.

Mapa de vulnerabilidad originado por flujo de lodos en el área de estudio

CAPÍTULO

05

CÁLCULO DEL RIESGO



[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
---------------	----------	--------	-----------	---------	------	-----

CAPÍTULO 05: CÁLCULO DEL RIESGO

5.1. Metodología para el cálculo del riesgo

Figura 43.Diagrama para calcular el riesgo en el área de estudio

Fuente: Elaboración propia en base al Manual EVAR 2da versión

5.2. Niveles del riesgo

Los niveles del riesgo originado por flujo de lodos, se detallan a continuación:

Tabla 88.Niveles de riesgo

NIVEL DE RIESGO	RANGO				
MUY ALTO	0.072	≤	R	≤	0.207
ALTO	0.022	≤	R	<	0.072
MEDIO	0.006	≤	R	<	0.022
BAJO	0.002	≤	R	<	0.006

Fuente: Elaboración propia

ing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES RJ. N. 067-2019-CENEPREDIJ

Página 95 de 116

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
---------------	----------	--------	-----------	---------	------	-----

5.3. Estratificación del nivel de riesgo

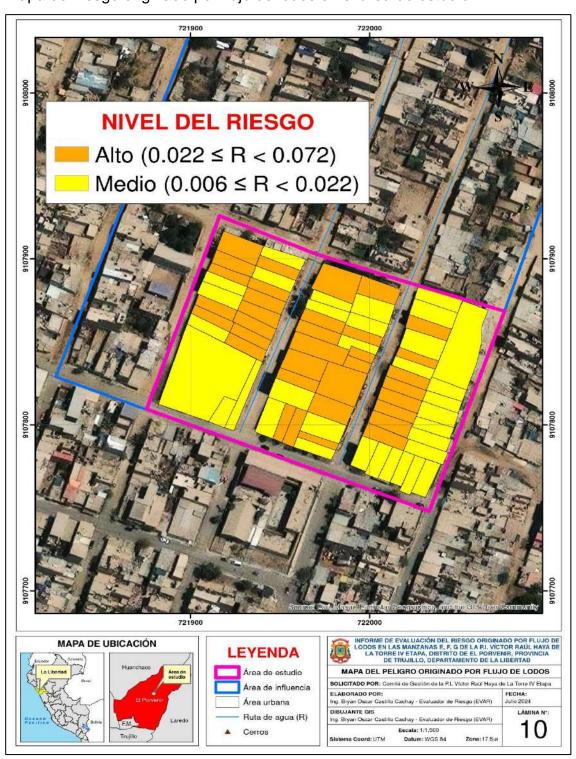
Tabla 89.Estratificación del nivel de riesgo por flujo de lodos en el área de estudio

NIVEL DE RIESGO	DESCRIPCIÓN	RANGO
MUY ALTO	Predomina una precipitación diaria superior a 13.8 mm., que genera una altura de flujo de lodos de 31 a 50 cm., con unidades geomorfológicas de "Cauce 2" y "Vertiente deluvial", unidades geológicas de "Depósito aluvial 2" y "Depósito deluvial", y dentro de una zona que presenta una pendiente de 49° - 89° de inclinación, con presencia de más de 7 habitantes por vivienda, con personas que tienen discapacidad mental y se encuentran dentro de un grupo etario susceptible de 0 a 5 años y mayor de 70 años, que nunca participan en actividades de defensa civil y no tienen ni quieren adquirir insumos para emergencias; con vivienda ubicada en zona de faja marginal delimitada por la ANA, que tiene muros construidos de estera o costal, los cuales presentan un estado de conservación muy malo, donde el ingreso familiar promedio es menor a 1330 soles. Además, su vivienda se ubica a menos de 100 metros de distancia de un agente contaminante, donde su disposición de residuos sólidos es a la intemperie, y nunca participa en campañas de limpieza pública.	0.072 ≤ R ≤ 0.207
ALTO	Predomina una precipitación diaria superior a 13.8 mm., que genera una altura de flujo de lodos de 31 a 50 cm., con unidad geomorfológica de "Cauce 1", unidades geológicas de "Depósito aluvial 1" y "Proluvio aluvial", y dentro de una zona que presenta una pendiente de 30° - 49° de inclinación con Presencia de 6 a 7 habitantes por vivienda, con personas que tienen discapacidad viace encuentran dentro de un grupo etario susceptible de 6 a 12 años y de 55 a 70 años, que participan solo con incentivos económicos en actividades de defensa civil y quieren adquirir insumos para emergencias con apoyo externo; con vivienda ubicada en Zona de Reglamentación Especial de Riesgo, que tiene muros construidos de madera o triplay, los cuales presentan un estado de conservación malo, donde el ingreso familiar promedio es de 1131 a 1500 soles. Además, su vivienda se ubica de 101 a 150 metros de distancia un agente contaminante, donde su disposición de residuos sólidos es quemar y enterrar, y casi nunca participa en campañas de limpieza pública.	0.022 ≤ R < 0.072
MEDIO	Predomina una precipitación diaria superior a 13.8 mm., que genera una altura de flujo de lodos de 31 a 50 cm., con unidades geomorfológicas de "Manto de arena 1" y "Cordón de arena", unidad geológica de "Depósito eólico, y dentro de una zona que presenta una pendiente de 16º - 30º de inclinación 1"; con presencia de 4 a 5 habitantes por vivienda, con personas que tienen discapacidad motora y se encuentran dentro de un grupo etario susceptible de 13 a 18 años y de 40 a 54 años, que han participado pocas veces en actividades de defensa civil y van a adquirir insumos durante emergencias; con vivienda ubicada en zonas no urbanizables, que tiene muros construidos de adobe, los cuales presentan un estado de conservación regular, donde el ingreso familiar promedio es de 1501 a 200 soles. Además, su vivienda se ubica de 151 a 200 metros de distancia un agente contaminante, donde su disposición de residuos sólidos es en un botadero informal, y pocas veces participa en campañas de limpieza pública.	0.006 ≤ R < 0.022
ВАЈО	Predomina una precipitación diaria superior a 13.8 mm., que genera una altura de flujo de lodos de 31 a 50 cm., con unidades geomorfológicas de "Manto de arena 2" y "Montaña, Colina y Loma en roca intrusiva", unidades geológicas de "Depósito antrópico", "Depósito eólico 2", y "Granodiorita centinela", y dentro de una zona que presenta una pendiente menor a 16º de inclinación; con presencia de 2 a 3 habitantes o persona sola por vivienda, con discapacidad oral o auditiva, o sin discapacidad, que se encuentran dentro de un grupo etario susceptible de 19 a 25 años o de 26 a 39 años, que han participado casi siempre o siempre en actividades de defensa civil, y que cuenta solo con sacos terreros o sacos terreros y herramientas como insumos durante emergencias; con vivienda ubicada en zonas inundables con o sin antecedentes de afectación, que tiene muros construidos de bloque de cemento o ladrillo, los cuales presentan un estado de conservación bueno o muy bueno, donde el ingreso familiar promedio es de 2000 a 4000 soles o mayor a 4000 soles. Además, su vivienda se ubica de 201 a 250 metros o mayor a 250 metros de distancia un agente contaminante, donde su disposición de residuos sólidos es en un contenedor municipal o camión recolector, y participa con incentivos o siempre participa en campañas de limpieza pública.	0.002 ≤ R < 0.006

Fuente: Elaboración propia

Fing. Bryan O. Custillo Cachay Evaluador del riesgo de desastres R.J. N. 067-2918-CENEPREDIJ

Página 96 de 116



[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

5.4. Mapa de riesgos

Figura 44.

Mapa del riesgo originado por flujo de lodos en el área de estudio

Fuente: Elaboración propia

[UTM – WGS84] ESTE (X) 722000	NORTE (Y) 9107825	ZONA 17L
-------------------------------	-------------------	----------

5.5. Matriz de riesgos

Tabla 90.Matriz de riesgos por flujo de lodos en el área de estudio

PMA	0,422	0,028	0,058	0,116	0,207
PA	0,262	0,017	0,036	0,072	0,129
PM	0,159	0,010	0,022	0,044	0,078
РВ	0,096	0,006	0,013	0,026	0,047
		0,066	0,136	0,274	0,490
		VB	VM	VA	VMA

Fuente: Elaboración propia

5.6. Cálculo de efectos probables

Se ha estimado el cálculo de probables daños y pérdidas que podrían presentarse como consecuencia del impacto de un flujo de lodos dentro del área de estudio, como consecuencia de precipitaciones que superen los 13.88 mm. diarios (extremadamente lluvioso).

Tabla 91.Estimación de daños y pérdidas probables

	PÉRDIDAS PROBABLES								
\DO\	Descripción	Unidad de medida	Cantidad	Costo Unitario (S/)	Costo Total (S/)				
ESTIMADO	Viviendas de material rústico	Unidad	12	15,000.00	180,000.00				
ES		ABLES							
CÁLCULO	Viviendas de material noble	Unidad	57	5,000.00	285,000.00				
CÁLC	Vías no asfaltadas	Metro L.	750	1000.00	750,000.00				
	Red de agua y desague	Metro L.	750	500.00	375,000.00				
		S/ 1'590,000.00							

Fuente: Elaboración propia

Los efectos probables en el escenario más crítico de afectación (daños y pérdidas materiales), ascienden a un monto referencial de **Un millón quinientos** noventa mil con 00/100 soles (S/ 1'590,000.00).

Ing. Bryan O. Custillo Cachay EVALUADOR DEL RIESGO DE DESASTRES R.J. Nº 067-2019-CEMEPREDIJ

CAPÍTULO

06

CONTROL DEL RIESGO

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L

CAPÍTULO 06: CONTROL DEL RIESGO

6.1. Control de riesgos

6.1.1. Aceptabilidad o tolerancia del riesgo

En esta etapa, nos apoyaremos en las tablas de niveles de consecuencias, niveles de frecuencia de ocurrencia, y de nivel de consecuencia y daños, las cuales se encuentran en el Manual para la Evaluación de Riesgos originados por Fenómenos Naturales - 2da Versión, elaborado por el CENEPRED.

Tabla 92.Niveles de consecuencia

Valor	Niveles	Descripción
4	Muy alto	Las consecuencias debido al impacto de un flujo de lodos en la zona, son catastróficas.
3	Alto	Las consecuencias debido al impacto de un flujo de lodos en la zona, pueden ser gestionadas con apoyo externo.
2	Medio	Las consecuencias debido al impacto de un flujo de lodos en la zona, son gestionadas con los recursos disponibles.
1	Bajo	Las consecuencias debido al impacto de un flujo de lodos en la zona, pueden ser gestionadas sin dificultad.

Fuente: Elaboración propia

Tabla 93.Niveles de frecuencia de ocurrencia

Valor	Niveles	Descripción
4	Muy alto	Puede ocurrir en la mayoría de las circunstancias.
3	Alto	Puede ocurrir en periodos de tiempo medianamente largos según circunstancias.
2	Medio	Puede ocurrir en periodos de tiempo largos según las circunstancias.
1	Bajo	Puede ocurrir en circunstancias excepcionales.

Fuente: Elaboración propia

trig. Bryan O. Custillo Cachay Valuador del riesgo de desastres R.J. N° 067-2018-CENEPREDIJ

Página 100 de 116

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
---------------	----------	--------	-----------	---------	------	-----

Con esta información, se determinó el nivel de consecuencia y daños que traería consigo un flujo de lodos dentro el área de estudio, mediante el uso de la siguiente matriz:

Tabla 94.Matriz de consecuencia y daños

CONSECUENCIAS	NIVEL	ZONA DE CONSECUENCIAS Y DAÑOS			
MUY ALTO	4	Alto	Alto	Muy alto	Muy alto
ALTO	3	Medio	Alto	Alto	Muy alto
MEDIO		Madia	MEDIO	Alto	Alto
BAJO	1	Bajo	Medio	Medio	Alto
	Nivel	1	2	3	4
	FRECUENCIA	BAJO	MEDIO	ALTO	MUY ALTO

Fuente: Elaboración propia

El nivel de consecuencia y daño es NIVEL 2: MEDIO

Tabla 95.Medidas cualitativas de consecuencia y daño

VALOR	NIVELES	DESCRIPCIÓN
4	Muy alto	Muerte de personas, enorme pérdida y bienes financieros.
3	Alto	Pérdida de la capacidad de producción, pérdida de bienes y financieras importantes.
2	Medio	Requiere tratamiento médico en las personas, pérdidas de bienes y financieras altas.
1	Bajo	Tratamiento de primeros auxilios a las personas, pérdida de bienes y financieras altas.

Fuente: Elaboración propia con información del Manual EVAR 2da versión.

La medida cualitativa de consecuencia y daño es de NIVEL 2: MEDIO

Ing. Bryan O. Custillo Cachay EVALUADOR DEL RIESGO DE DESASTRES RJ. N° 067-2018-CEMEPREDIJ

Página 101 de 116

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
---------------	----------	--------	-----------	---------	------	-----

Tabla 96.Aceptabilidad y/o tolerancia del riesgo

VALOR	NIVELES	DESCRIPCIÓN
4	Inadmisible	Se debe aplicar inmediatamente medidas de control físico y de ser posible transferir inmediatamente recursos económicos para reducir los riesgos.
3	Inaceptable	Se deben desarrollar actividades INMEDIATAS y PRIORITARIAS para el manejo de riesgos.
2	Tolerable	Se deben desarrollar actividades para el manejo de riesgos.
1	Aceptable	El riesgo no presenta un peligro significativo.

Fuente: Elaboración propia con información del Manual EVAR 2da versión

La tolerancia del riesgo, evidencia: RIESGO TOLERABLE

Tabla 97.Prioridad de intervención

VALOR	DESCRIPTOR	NIVEL DE PRIORIZACIÓN
4	Inadmisible	I
3	Inaceptable	II
2	Tolerable	III
1	Aceptable	IV

Fuente: Manual EVAR 2da versión

INTERPRETACIÓN:

De lo anterior, el nivel de consecuencia y daño es de NIVEL 2: MEDIO, mientras que la aceptabilidad o tolerancia del riesgo es de NIVEL 2: TOLERABLE, lo que significa que deberán ejecutarse medidas para el manejo de riesgos, a nivel local, que involucre la participación tanto de la autoridad local (municipalidad) como de la misma población, con un NIVEL DE PRIORIZACIÓN III.

Ing. Bryan O. Castillo Cachay EVALUADOR DEL RIESGO DE DESASTRES RJ. N° 067-2018-CENEPREDIJ

Página 102 de 116

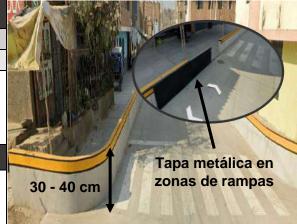
[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

6.2. Medidas de prevención y reducción del riesgo de desastres

MEDIDAS ESTRUCTURALES

A continuación, se presentan dos (02) propuestas, o alternativas de obras, diferentes que la Municipalidad Distrital de El Porvenir podría ejecutar para reducir el riesgo originado por flujo de lodos dentro del área de estudio.

Tabla 98.


Propuesta de proyecto de reducción de riesgo Nº 01

NOMBRE DEL PROYECTO "CONSTRUCCIÓN DE SARDINELES PERALTADOS DE PROTECCIÓN"

UBICACION							
Dunto	Coord	lenadas UTN	1				
Punto	Este	Norte	Zona				
1	721895.00	9107866.00					
2	721948.00	9107844.00	471				
3	722002.00	9107826.00	17 L				
4	722056.00	9107808.00					

Brindar protección a las veredas, así como a viviendas cercanas a zonas de discurrimiento de flujos de lodos.

DESCRIPCIÓN DEL PROYECTO (Referencial)

Este proyecto comprende la construcción de sardineles peraltados de concreto armado, de una altura de 30 a 40 cm, con la finalidad de brindar protección a las viviendas ubicadas frente a las calles de las manzanas E, F y G, dentro del área de estudio; evitando el ingreso descontrolado de agua y sedimentos, provenientes de la Quebrada Víctor Raúl, durante la temporada de lluvias intensas o extraordinarias. Asimismo, estas estructuras deberán considerar rampas en ciertos puntos de la calle, tanto para el libre y fácil tránsito peatonal (cruce de una calle a otra) como para aquellas casas que tienen cochera, considerando también que estas rampas deberán ser cubiertas por una estructura metálica corrediza que las proteja de las inundaciones, con una altura igual que la del sardinel, la cual se podrá manipular fácilmente para tenerlas cerradas durante lluvias y abiertas durante el resto del año.

VENTAJAS	DESVENTAJAS
Ejecución a corto plazoEconómico	- Limita la transitabilidad peatonal al momento de cruzar de una vereda a otra
BENEFICIARIO	NATURALEZA DEL PROYECTO
Población residente ubicada dentro del área de estudio	EstructuralPreventivo y de reducción de riesgo.

Fuente: Elaboración propia

Ing. Bryan O. Custillo Cachay EVALUADOR DEL RIESGO DE DESASTRES R.J. N° 067-2018-CENEPREDIJ

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Tabla 99.

Propuesta de proyecto de reducción de riesgo Nº 02

NOMBRE DEL PROYECTO

"CONSTRUCCIÓN DE VEREDAS ALTAS"

UBICACIÓN								
Dunto	Coord	lenadas UTM	1					
Punto	Este	Norte	Zona					
1	721895.00	9107866.00						
2	721948.00	9107844.00	471					
3	722002.00	9107826.00	17 L					
4	722056.00	9107808.00						

OBJETIVO

Otorgar protección a viviendas cercanas a zonas de discurrimiento de flujos de lodos (huaycos) evitando inundaciones.

DESCRIPCIÓN DEL PROYECTO (Referencial)

Este proyecto comprende la construcción de veredas altas de concreto simple, a una altura de 30 a 40 cm, con la finalidad de brindar protección a las viviendas ubicadas frente a las calles de las manzanas E, F y G, dentro del área de estudio; evitando el ingreso descontrolado de agua y sedimentos, provenientes de la Quebrada Víctor Raúl, durante la temporada de lluvias intensas o extraordinarias.

Asimismo, estas estructuras deberán considerar rampas en ciertos puntos de la calle, tanto para el libre y fácil tránsito peatonal (cruce de una calle a otra) como para aquellas familias que tienen personas con discapacidad o cochera dentro de sus casas que requieren de este tipo de elementos para su ingreso y salida.

VENTAJAS	DESVENTAJAS
- Ejecución a corto plazo - Económico	- Limita la transitabilidad peatonal al cruzar de una vereda a la otra.
BENEFICIARIO	NATURALEZA DEL PROYECTO
Población residente ubicada dentro del área de estudio	- Estructural - Preventivo y de reducción de riesgo.

Fuente: Elaboración propia

Ing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES RJ. N. 067-2018-CENEPREDIJ

Página 104 de 116

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

MEDIDAS NO ESTRUCTURALES

A continuación, se presentan algunas medidas no estructurales que la Municipalidad Distrital de El Porvenir deberá ejecutar para reducir el riesgo originado por flujo de lodos dentro del área de estudio.

- 1. Realizar la limpieza de calles que se encuentran dentro de las manzanas E, F, G de la P.I. Víctor Raúl Haya de La Torre IV Etapa, retirando todo el material de construcción (desmonte) y cúmulos de basura depositados en ellas, con la finalidad de dar libre discurrimiento a los flujos de lodos (huaycos) o aguas pluviales provenientes de la quebrada Víctor Raúl, evitando su acumulación e ingreso excesivo en calles y viviendas.
- 2. La Municipalidad Distrital de El Porvenir deberá conformar un Comité Comunitario ante Emergencias y Desastres, dentro de las manzanas E, F, G de la P.I. Víctor Raúl Haya de La Torre IV Etapa, con el objetivo de capacitarlos en temas de gestión del riesgo de desastres, aumentando así la capacidad de respuesta de la población para hacer frente a futuros fenómenos que puedan presentarse dentro de dicho sector.

Se deberá priorizar charlas, o talleres, en los siguientes temas:

- Primeros Auxilios, para la atención oportuna de personas que hayan sufrido lesiones durante el impacto de flujos de lodos (huaycos) u otro tipo de fenómenos que se presenten dentro del sector.
- Plan Familiar de Emergencia, para conocer la importancia de la Mochila de Emergencia, y el manejo de los números de emergencia de las entidades de primera respuesta a nivel de la provincia de Trujillo (Bomberos, Cruz Roja, SAMU, Policía Nacional del Perú, entre otros).
- Evaluación de Daños y Análisis de Necesidades EDAN, para el registro inmediato de los daños que puedan presentarse como consecuencia de una emergencia o desastre dentro de su sector, acelerando los procedimientos de ayuda humanitaria por parte de la Municipalidad Distrital de El Porvenir, la Municipalidad Provincial de Trujillo, y el Gobierno Regional de La Libertad.

Ing. Bryan O. Castillo Cachay
EVALUADOR DEL RIESGO DE DESASTRES
R.J. N° 067-2019-CENEPREDIJ

Página 105 de 116

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
•	` ,		` '			

3. La Municipalidad Distrital de El Porvenir deberá implementar al Comité Comunitario ante Emergencias y Desastres con herramientas manuales y sacos terreros, a fin de que la misma población la utilice, oportunamente, para reducir la cantidad de daños que ocasionaría un flujo de lodos, a sus viviendas y/o medios de vida expuestos al fenómeno.

La cantidad de herramientas sugerida se detalla en la siguiente tabla:

Tabla 100.Cantidad de herramientas manuales por cuadrilla de diez personas

DESCRIPCIÓN DEL BIEN	CANTIDAD		
Pala tipo cuchara	02 unidades		
Pala tipo corte/recta	02 unidades		
Pico de punta	01 unidad		
Barreta hexagonal 1 ¼ x 1.80 m	01 unidad		
Comba de 16 libras	01 unidad		
Carretilla estándar 03 pies cúbicos	01 unidad		

Fuente: Elaboración propia con información del Manual EDAN PERU 2024

Ing. Bryan O. Custilio Cachay

YALUADOR DEL RIESGO DE DESASTRES

D. N. 667-2019-CEMEPBEDU

CAPÍTULO

07

CONCLUSIONES Y RECOMENDACIONES

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
---------------	----------	--------	-----------	---------	------	-----

CAPÍTULO 07: CONCLUSIONES Y RECOMENDACIONES

7.1. Conclusiones

 Según el Mapa de peligro originado por flujo de lodos, en las manzanas E, F, G de la P.I. Víctor Raúl Haya de la Torre, se obtuvo el siguiente resultado:

- PELIGRO MUY ALTO = 1.49 Ha - PELIGRO ALTO = 0.60 Ha

Según el Mapa de vulnerabilidad originado por flujo de lodos, en las manzanas E, F,
 G de la P.I. Víctor Raúl Haya de la Torre, se obtuvo el siguiente resultado:

VULNERABILIDAD MEDIA = 65 viviendas
 VULNERABILIDAD BAJA = 04 viviendas

Asimismo, se identificaron otros elementos expuestos en los alrededores como: 750 metros de vías no asfaltadas, 750 metros de red de agua y desague, y 45 postes de alumbrado público.

 Según el Mapa de Riesgo originado por flujo de lodos, en las manzanas E, F, G de la P.I. Víctor Raúl Haya de la Torre, se obtuvo el siguiente resultado:

RIESGO ALTO = 35 viviendasRIESGO MEDIO = 34 viviendas

- 4. Los montos de posibles daños y pérdidas, a consecuencia de un flujo de lodos, dentro de las manzanas E, F, G de la P.I. Víctor Raúl Haya de la Torre, ascienden a Un millón quinientos noventa mil con 00/100 soles (S/ 1'590,000.00).
- 5. Se ha determinado que la aceptabilidad y/o tolerancia del riesgo es de NIVEL 2: TOLERABLE, lo que significa que deberán ejecutarse medidas para el manejo de riesgos a nivel local, que involucre la participación tanto de la autoridad local (municipalidad) como de la misma población.
- 6. Las medidas que se recomiendan ejecutar (según la sección 6.2.), para la reducción del riesgo ante flujos de lodos, son las siguientes:

Ing. Bryan O. Custilio Cachay EVALUADOR DEL RIESGO DE DESASTRES RJ. N° 067-2018-CENEPREDIJ

Página 108 de 116

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Medidas estructurales:

 Construir sardineles peraltados o veredas altas en calles ubicadas frente a las Mz. E, F y G del área de estudio (según pág.

Medidas estructurales:

- Realizar la limpieza de calles que se encuentran dentro de las manzanas
 E, F, G de la P.I. Víctor Raúl Haya de La Torre IV Etapa, retirando todo el
 material de construcción (desmonte) y cúmulos de basura depositados en
 ellas, con la finalidad de dar libre discurrimiento a los flujos de lodos
 (huaycos) o aguas pluviales provenientes de la quebrada Víctor Raúl,
 evitando su acumulación e ingreso excesivo en calles y viviendas.
- La Municipalidad Distrital de El Porvenir deberá conformar un Comité
 Comunitario ante Emergencias y Desastres, dentro de las manzanas E,
 F, G de la P.I. Víctor Raúl Haya de La Torre IV Etapa, con el objetivo de
 capacitarlos en temas de gestión del riesgo de desastres, aumentando así
 la capacidad de respuesta de la población para hacer frente a futuros
 fenómenos que puedan presentarse dentro de dicho sector.
 - Se deberá priorizar charlas, o talleres, en: Primeros Auxilios, Plan Familiar de Emergencia, Evaluación de Daños y Análisis de Necesidades EDAN.
- La Municipalidad Distrital de El Porvenir deberá implementar al Comité
 Comunitario ante Emergencias y Desastres con herramientas manuales y
 sacos terreros, a fin de que la misma población la utilice, oportunamente,
 para reducir la cantidad de daños que ocasionaría un flujo de lodos, a sus
 viviendas y/o medios de vida expuestos al fenómeno.

Frig. Bryan O. Custillo Cachay Yaluador del riesgo de desastres R.J. Nº 067-2019-Cenepredij

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L

7.2. Recomendaciones

Se recomienda que la Municipalidad Distrital de El Porvenir ejecute las medidas estructurales y no estructurales detalladas en el presente informe (sección 6.2.), y, que además, realice lo siguiente:

- Incluir la ejecución de las medidas estructurales y no estructurales, en su Plan de Prevención y Reducción del Riesgo de Desastres, y Plan de Acción ante emergencias por flujo de lodos, respectivamente.
- 2. Ejecutar, anualmente, trabajos de limpieza y descolmatación en el cauce de la quebrada "Víctor Raúl", (considerando la ruta de agua referencial delimitada dentro de los diferentes mapas del presente estudio), que inicia frente al AA.HH. Tierra Prometida, y pasa por la P.I. Víctor Raúl Haya de la Torre IV ETAPA, con la finalidad de dar libre discurrimiento a las aguas o flujos provenientes de dicha quebrada, durante la temporada de lluvias intensas.
- 3. Sumar esfuerzos conjuntos con la población del área de estudio, con la intención de gestionar la implementación de las medidas estructurales y no estructurales, recomendadas para la reducción del riesgo de desastre ante flujo de lodos en el área de estudio.

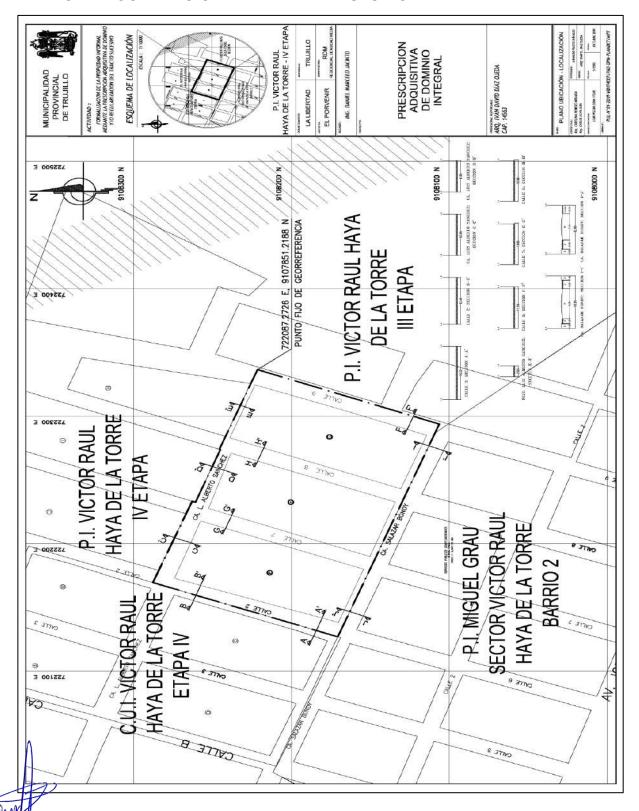
Fing. Bryan O. Custillo Cachay Yaluador del riesgo de desastres R.J. Nº 667-2014-CENEPREDI

[UTM – WGS84] ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L
------------------------	--------	-----------	---------	------	-----

REFERENCIAS BIBLIOGRAFICAS

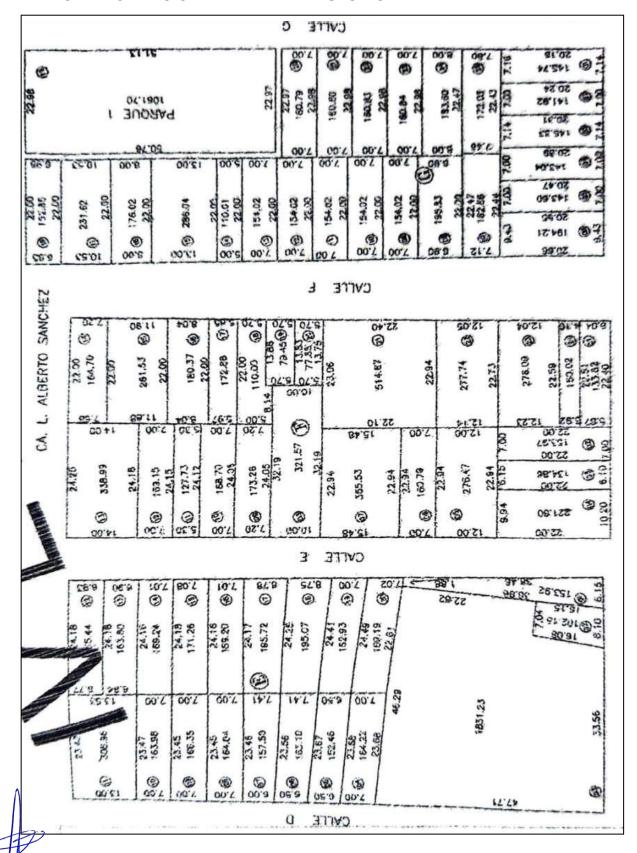
- Centro Nacional de Estimación Prevención y Reducción del Riesgo de Desastre.
 (2015). Manual para la Evaluación de Riesgos originado por fenómenos naturales
 2da versión, Lima: CENEPRED.
- Instituto Geológico, Minero y Metalúrgico (2013), Mapa Geológico del cuadrángulo de Trujillo 17-f, Lima: INGEMMET.
- Instituto Geográfico Nacional del Perú (2019). Carta Nacional del departamento de La Libertad, Lima: IGN.
- Cárdenas D. (2002). Mapa de peligros de la ciudad de Trujillo y zonas aledañas, Trujillo: Universidad Nacional de Trujillo.
- Instituto Nacional de Estadística e Informática (2017). Resultados Definitivos de los Censos Nacionales 2016, Lima: INEI.

Fig. Bryan O. Custillo Cachay Valuador del riesgo de desastres R.J. N° 667-2019-CEMEPREDIJ


Página 111 de 116

[UTM - WGS84]	ESTE (X)	722000	NORTE (Y)	9107825	ZONA	17L

ANEXOS


Anexo 1.PLANO DE LOCALIZACIÓN DEL ÁREA DE ESTUDIO

[UTM – WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Anexo 3.PLANO DE LOTIZACIÓN DEL ÁREA DE ESTUDIO

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Anexo 4.PANEL FOTOGRÁFICO DEL TRABAJO REALIZADO EN CAMPO

Descripción:

Equipo profesional realiza visita a la quebrada Víctor Raúl, e inmediaciones, con la finalidad de realizar su estudio geológico que determine el nivel de peligrosidad existente ante flujo de lodos (huaycos) dentro y fuera del área de estudio.

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Descripción:

Equipo técnico aplicando la encuesta de campo para obtener información actualizada de la población con respecto a la vulnerabilidad existente ante flujo de odos (huaycos) dentro del área de estudio.

[UTM - WGS84] ESTE (X) 722000 NORTE (Y) 9107825 ZONA 17L

Descripción:

Equipo técnico realizando el cálculo de probables daños y pérdidas material ante la manifestación de un flujo de lodos (huayco) dentro del área de estudio, así como la identificación de medidas de reducción de riesgo estructurales y no estructurales.