

Inspección Hidrogeológica del afloramiento de agua y limo blanquecino, en la quebrada Chichahuaycco

Comunidad de Totora, Distrito de Oropesa Provincia de Antabamba, Región Apurímac

> Por: Fluquer Peña Laureano Carlos Benavente Escobar Wai Long Ng Cutipa

> > **SETIEMBRE 2011**

INSPECCIÓN HIDROGEOLÓGICA DEL AFLORAMIENTO DE AGUA Y LIMO BLANQUECINO, EN LA QUEBRADA CHICHAHUAYCCO.

Provincia de Antabamba, Región Apurímac

CONTENIDO

1.0	INTR	ODUCC	IÓN.		3
2.0	UBIC	ACIÓN `	Y AC	CESIBILIDAD	3
3.0	ACTI	VIDADE	S DE	SARROLLADAS	4
4.0	ASPE	ECTOS O	GEOI	MORFOLÓGICOS	6
5.0	ASPE	ECTOS		IATICOS	7
6.0	HIDR	OGRAF	ÍA DI	EL AREA	7
7.0	ASPE	ECTOS	GEOI	_ÓGICOS	7
	7.1	GRUPC	D YU	RA	7
	7.2	GRUPC	Ο ΤΑ	CAZA	8
	7.3	FORM/	ACIÓ	N ALPABAMBA	9
	7.4	GRUPC) BA	RROSO	10
	7.5	DEPÓS	SITOS	S CUATERNARIOS	11
8.0	ASPE	ECTOS I	DE G	EOLOGÍA ESTRUCTURAL	12
	8.1	FALLA	S NC)-SE	12
	8.2	FALLA	SE-0	D	12
9.0	ASPE	ECTOS H	HIDR	OGEOLÓGICOS	16
	9.1.	INVES	TIGA	CIONES HIDROGEOLÓGICAS EN EL ÁREA	16
		9.1.1.	IDE	NTIFICACIÓN DE FUENTES DE AGUAS	16
		9.1.2.	IDE	NTIFICACIÓN DE FUENTES DE LODOS	18
	9.2.	HIDRO	QUÍN	NICA DE LAS AGUAS SUBTERRÁNEAS Y LODOS	21
		9.2.1.	EST	ACIONES DE MUESTREO DE AGUAS Y LODOS	21
		9.2.2.	SEL	ECCIÓN DE LA SERIE ANALÍTICA	21
		9.2.3.	ANÁ	LISIS DE RESULTADOS – AGUAS	22
			a.	Parámetros Fisicoquímicos de las Aguas	23
			b.	Facies Hidroquímicas	25
			c.	Metales Traza	31
			d.	Metales Totales	32
		9.2.4.	ANÁ	LISIS DE RESULTADOS – LODOS	32
			a.	Análisis Físicoquímicos	33
			b.	Análisis de Rayos X	36
			c.	Análisis de PIMA	37
CON	ICLUS	IONES.			38
REC	OMEN	DACIO	NES.		39
REF	EREN	CIAS			40
ANE	XOS				41

INSPECCIÓN HIDROGEOLÓGICA DEL AFLORAMIENTO DE AGUA Y LIMO BLANQUECINO, EN LA QUEBRADA CHICHAHUAYCCO.

Provincia de Antabamba, Región Apurímac

1.0 INTRODUCCIÓN

Entre el 20 y 31 de julio del presente, se presentó un fenómeno inusual en la quebrada Chinchahuayco: surgencia de agua y lodo blanquecino. Fenómeno que puso en alerta a funcionarios del Proyecto de Exploración Millo, de la Compañía Minera Horizonte – CMH. La CMH con Carta S/N del 1 de agosto del presente, solicita a INGEMMET la evaluación de dicho fenómeno.

Luego de las respectivas coordinaciones, se designó a los Ingenieros Fluquer peña y Carlos Benavente, para realizar la evaluación solicitada en la provincia de Antabamba, región Apurímac.

Como parte del estudio, de investigación para la determinación del origen de la surgencia de lodos blanquecinos y aguas subterráneas, se ha realizado la evaluación hidrogeológica y estructural del área del proyecto Millo.

El presente informe describe el marco geológico – estructural, hidrogeológico e hidroquímico de la zona, con la finalidad de determinar la procedencia del lodo blanquecino, realizando análisis de la composición físico – química de las aguas subterráneas, las propiedades físicas y químicas de los lodos utilizados en las perforaciones de exploración y las propiedades de los lodos depositados en el punto de surgencia.

Los trabajos de campo se basan en la identificación de unidades lito estratigráficas, fallas mayores en el área de estudio, pruebas de campo y toma de muestras, para finalmente enviar estas al laboratorio, los que remitieron resultados para su consecuente interpretación. Asimismo se compilo la información de los trabajos en geología que realizaron los geólogos del Proyecto Millo.

2.0 UBICACIÓN Y ACCESIBILIDAD

El área evaluada, se encuentra ubicada en el Distrito de Oropesa, Provincia de Antabamba, Región Apurímac (figura 1). Esta no se encuentra en zona de amortiguamiento, ni en Zona Natural Protegida (ZNP), por lo que los trabajos de exploración se desarrollan continuamente.

La ubicación geográfica del proyecto tiene las siguientes coordenadas (GeaDes, 2005).

Este:	768 515
Norte:	8 386 329
Zona:	18
Altitud Promedio:	4 900 m.s.n.m.
Datum:	P'SAD 56

La accesibilidad a la zona del proyecto desde la ciudad de Lima, tiene una distancia estimada de 1 806 kilómetros siguiendo la ruta del Cuadro 1.

Ruta	km	Vía	Duración
Lima – Cuzco	1 165	Aérea	1 h 10min
Cuzco – Abancay	198	Terrestre (Asfaltada)	4 hrs
Abancay – Chalhuanca	123	Terrestre (Asfaltada)	3 hrs
Chalhuanca - Izcuchaca	50	Terrestre (Asfaltada)	50 min
Izcuchaca – Huacullo	240	Terrestre (Asfaltada)	6 h
Huacullo - Proyecto Millo	30	Terrestre (Trocha Carrozable)	1h 10 min
Total	1 806		16h 10 min

Cuadro 1 Accesibilidad al proyecto Millo

Fuente: GeaDes, 2005.

3.0 ACTIVIDADES DESARROLLADAS

- Recopilación y evaluación de la información geológica relacionada al proyecto, proporcionada por el Proyecto Millo.
- Inspección geológica y cartografía estructural, del ámbito del proyecto y su posible relación con las surgencia de aguas subterráneas y lodo blanquecino.
- Inventario de fuentes que tengan relación con la surgencia de aguas y lodos.
- Toma de muestras para análisis de aguas en el punto de surgencia (Chi_1), en la fuente termal adyacente (Chi_2) y en la fuente termal Yumire (Chi_3), ubicada a 900 metros aproximadamente aguas debajo por la quebrada Chichahuaycco.
- Muestreo hidroquímico de lodos, en el punto de surgencia (Chi_1), y el la poza de lodos (Chi_3) para establecer comparaciones de sus propiedades.
- Preparación del presente reporte el cual incluye un plano geológico y estructural, figuras hidroquímicas, gráficos de representación hidroquímica, cuadros y análisis de resultados.

4.0 ASPECTOS GEOMORFOLÓGICOS

Morfológicamente, el área evaluada es de relieve montañoso y comprende un valle glaciar joven erosionado en forma de "U", desarrollado sobre rocas volcánicas que dominan gran parte del paisaje de la región.

Localmente resalta una depresión totalmente anegada, producto de los deshielos y de la surgencia de esporádicos manantiales. Se observa una terraza en la margen izquierda, donde se ubica el campamento del proyecto Millo.

El área se desarrolla sobre una morfología de ambiente glaciar, en el cual se formaron superficies accidentadas a onduladas y sobre una superficie subhorizontal conformada por materiales glaciarios y fluvioglaciarios, que cubren el basamento rocoso conformado por rocas volcánicas. En el entorno, se observa una colina relativamente ondulada, configurada sobre material volcánico, cubiertos parcialmente por materiales glaciarios. Al norte sobresalen laderas rocosas con pendientes fuertes a moderadas mayores a 25°, llegando a formar farallones rocosos (foto 1).

El valle, se extiende en dirección sureste a noreste, a 3 500 metros aguas abajo cambia de dirección, de este a oeste configurando un valle más angosto y en forma de "V". Lugar donde afloran las aguas termales de Yumire, utilizado en baños termales por los pobladores de la zona. Hacia el sector este, en la cabecera del valle, se observa afloramientos de rocas volcánicas más antiguas que sobresalen sobre la configuración topográfica. Al noroeste, aguas abajo, donde se monitoreo la fuente termal Yumire (chi_1), afloran areniscas cuarzosas, relacionadas a fallas paralelas a la quebrada, las mismas que condiciona la surgencia de la fuente termal Yumire.

Foto 1. Valle en forma de "U", rodeado por montañas, donde se ubica el Proyecto Millo.

5.0 ASPECTOS CLIMATICOS

La zona evaluada, se localiza entre las regiones Puna y Janca. Por estar en una zona inmediata a los nevados, el clima en la región Puna, se caracteriza por días fríos y noches frías. La temperatura media anual varía entre 0 °C y 7 °C, con temperaturas máximas en los meses de setiembre y abril, cuando se tienen por encima de los 15 °C. En esporádicas ocasiones y durante el día llega a 22 °C. Las mínimas absolutas, entre mayo y agosto, oscilan entre -9 °C y -25 ° C; esta última es la temperatura más baja registrada en el Perú (estación Sumbay, julio de 1961). El clima en la región Janca es excesivamente riguroso para el desarrollo de las actividades del hombre. Debido a la escasez de estaciones meteorológicas, los datos de temperatura se relacionan con los medidos por la expedición universitaria al cráter del volcán Misti, durante los días 2 y 3 de noviembre del año 1935 (GeaDes, 2005).

6.0 HIDROGRAFÍA DEL AREA

El área evaluada se localiza en la La quebrada Pucahuajo, que forma parte de la divisoria de aguas. La quebrada Chichahuaycco es la que recorre toda la zona de estudio, tiene su naciente en el nevado Huayunca, muy cercana a la laguna Antacocha, que se encuentra cercana al cerro Millo y de la laguna Sayhuacocha muy cercana al cerro Pintapata. La quebrada Chichahuaycco se encuentra totalmente anegada, producto de los deshielos de los glaciares. En esta depresión se tiene la presencia de una fuente termal de 28° C, muy cercana a esta se originó el fenómeno de surgencia de aguas subterráneas y lodo blanquecino.

7.0 ASPECTOS GEOLÓGICOS

Las unidades estratigráficas que afloran en el área evaluada, corresponden a rocas cretácicas y cenozoicas, siendo las rocas cenozoicas las que afloran en mayor parte del área.

7.1 GRUPO YURA

En el área de estudio, se identificaron las formaciones Murco y Acurquina, formaciones que representan la secuencia superior del Grupo Yura, descrita por Benavides (1962). La Formación Murco está constituida por una secuencia de areniscas blancas intercaladas con lutitas grises hacia la base, en la parte media, areniscas con estratificación oblicua y hacia el techo por una alternancia de lutitas con laminación paralela de color rojizo y lutitas de color verde, además de niveles delgados de arenisca de grano fino de color violáceo (foto 2).

Asimismo la secuencia inferior de la Formación Acurquina está constituida por calizas gris claras con nódulos de chert y venillas de calcita, limolitas de color rojizo y niveles delgados de areniscas, hacia la parte media es una secuencia netamente calcárea, cambiando hacia el techo a calizas de tipo mudstone.

Foto 2. Vista de la secuencia inferior limolítica de la Formación Acurquina.

Ambas formaciones corresponden a ambientes marinos de edad cretácea, medio a superior de acuerdo a la fauna encontrada en la zona de estudio por Palacios (1975) y que se correlaciona con lo descrito por Benavides (1962) al noreste de Arequipa.

Las secuencias finas de las formaciones Murco y Acurquina constituidas por lutitas y limolitas constituyen materiales impermeables, donde los niveles de infiltración de aguas son prácticamente nulos.

7.2 GRUPO TACAZA

El Grupo Tacaza, sobreyace en discordancia al Grupo Yura. Palacios, (1975) divide este grupo en tres secuencias, de acuerdo a su litología. La secuencia inferior se encuentra constituida por areniscas de grano medio a fino, de color gris y flujos piroclásticos que contienen minerales feldespáticos en proceso de epidotización, así como cuarzo, piroxenos y anfíboles. Estas cenizas presentan laminaciones paralelas finas (foto 3).

La secuencia intermedia, está compuesta por flujos piroclásticos de composición dacítica que contienen minerales de plagioclasas, feldespatos y biotitas, esporádicamente depositadas en lagunas extensas cercanas unas a otras.

Finalmente la secuencia superior está compuesta por andesitas con estructuras columnares y hacia el tope ignimbritas de composición riodacítica a dacítica, en bancos bien estratificados con arenas medias a finas, debido a una depositación en un ambiente lacustre.

Foto 3: Vista del Proyecto Minero Millo, las rocas con mayores dimensiones de afloramiento y que rodean al proyecto, pertenecen al Grupo Tacaza.

Por el ordenamiento interno de las facies del Grupo Tacaza y por su modo y ambiente de depositación, las rocas del Grupo Tacaza son permeables y en el caso de las lavas andesíticas de la secuencia superior presentan alta permeabilidad adquirida por las fracturas.

7.3 FORMACIÓN ALPABAMBA

Descrita por Caldas (1993) al norte del área de estudio. Se encuentra en discordancia sobre el Grupo Tacaza y en algunos sectores sobreyace a la Formación Arcurquina. Litológicamente está constituida por flujos piroclásticos de composición riolítica, latítica y dacítica que fueron depositadas en ambientes lacustres, es por ello la estratificación paralela (foto 4). En su composición mineralógica se observan principalmente feldespatos caolinizados y ferro-magnesianos, que otorgan a las rocas un color rojizo.

Los flujos piroclásticos de la Formación Alpabamba, depositada en ambientes lacustres, presentan buena estratificación, estructuras sedimentarias paralelas y ripples. Los granos de estas facies se encuentran bien clasificados e interestratificados con areniscas finas a medias de color gris claro y depósitos de caída (cenizas volcánicas).

En la parte superior de la secuencia, se encuentran brechas volcánicas oscuras, de composición andesítica a dacítica, donde los feldespatos caolinizados y ferro-magnesianos son los minerales principales en su composición.

Foto 4: Secuencias blanquesinas de la Formación Alpabamba que sobreyacen en discordancia sobre la Formación Arcurquina.

El ordenamiento interno de estas secuencias, otorgan a esta formación características impermeables, sobre todo donde las secuencias lacustres se encuentran bien estratificadas.

7.4 GRUPO BARROSO

Wilson (1962) y Mendívil (1965), reconocieron el Grupo Barroso en el sur del Perú. Palacios (1975) divide y describe dos secuencias del Grupo Barroso de la siguiente manera: El Grupo Barroso inferior se constituye en una secuencia oscura, donde la parte superior ha sido afectado por la acción erosiva de los procesos glaciares. Litológicamente está compuesta por una alternancia de flujos piroclásticos y lavas. Los flujos piroclásticos son de color gris y compuesto mineralógicamente por plagioclasas, cuarzo, biotita y algunos minerales ferro-magnesianos. Al tope de esta secuencia se tiene un nivel correspondiente a un flujo piroclástico de color blanco y sobreyaciendo concordantemente a la serie inferior.

El Grupo Barroso superior está compuesta por series lávicas que se extiende en forma continua y que se ha derramado siguiendo una morfología pre existente, sobre peneplanicies de ligeras pendientes, de allí la horizontalidad de las capas. Estas rocas son mayormente oscuras y de composición andesítica variando a basalto y en otras a dacitas, mineralógicamente los minerales principales son las plagioclasas y otros como la augita y la horblenda.

En la secuencia superior, se observa disyuncion columnar (foto 5), estructuras que tiene gran permeabilidad debido a sus fracturas verticales.

Foto 5: Disyuncion columnar en la secuencia superior del Grupo Barroso, dichas estructuras son buenos conductores del agua subterránea por medio de sus fracturas.

El volcánico Sencca, es una unidad reconocida regionalmente en el sur del Perú. Cubre en discordancia angular a las facies volcánicas más antiguas, rellenando una superficie post Tacaza. Litológicamente constituye una secuencia de flujos piroclásticos generalmente de composición ácida. En el área de estudio, la Formación Sencca aflora en discordancia sobre el Grupo Barroso, y está compuesto por flujos piroclásticos de composición riolítica a dacítica de granos finos y estratificados en capas delgadas. En la parte superior de la Formación se observan flujos piroclásticos poco consolidados de composición dacítica, teniendo como principal mineral la horblenda, biotitas y cuarzo subeuhedral. Los flujos piroclasticos en estos materiales son finos, por lo tanto tienen características impermeables.

7.5 DEPÓSITOS CUATERNARIOS

Formados por los depósitos originados por los glaciares (morrenas) o indirectamente, a través de las corrientes originadas por los deshielos (fluvioglaciares).

Las morrenas están constituidas por conglomerados, arenas, arcillas y bloques ocasionales y se presentan en forma alargada (morrenas laterales) y/o en forma de media luna (morrenas frontales).

Los depósitos fluvio glaciares se localizan en las zonas más bajas del área, en los valles jóvenes y están constituidos por arenas, arcillas, materiales con bloques y fragmentos acarreados por las corrientes de deshielo. Por estos materiales surgió el agua subterránea y lodos, objeto de la presente evaluación.

8.0 ASPECTOS DE GEOLOGÍA ESTRUCTURAL

En el área de estudio se identificaron dos sistemas principales de estructuras tectónicas: las fallas NO-SE y las fallas E-O. Considerando un análisis somero sobre su cinemática de dichas estructuras, interpretamos, la identificación de dos tipos de movimientos diferentes que a continuación describimos.

8.1 FALLAS NO-SE

Son estructuras longitudinales, con dirección del valle principal, son los de mayor longitud y constituyen fallas regionales que cruzan toda el área del Proyecto Minero Millo. Entre la estructura más resaltante se tiene la falla Chichayhuayco, que se distingue mejor en los afloramientos de la parte sur del área de estudio, a la altura de la veta Lila, donde tiene un rumbo de N 170° y buzamiento de 78°SO, evidenciado por la presencia de un gouge de falla de 6 metros de ancho (foto 6). Esta falla se encuentra afectando depósitos del Grupo Tacaza con un movimiento de dextral. Su continuidad hacia el norte se encuentra cubierta por los depósitos fluvio-glaciares cuaternarios.

Hacia la naciente de la quebrada Chichahuayco, se observa la falla del mismo nombre, con un rumbo N 160° y buzamiento 60° SO, en este sector, la falla pone en contacto las rocas del Grupo Tacaza, sobre las rocas volcánicas del Grupo Barroso con un movimiento de tipo dextral (foto 7).

Realizando un análisis, en el plano de falla, se observan dos juegos de estrías, unas horizontales y relacionadas con un movimiento de rumbo dextral y un segundo juego con estrías oblicuas y cortando las estrías horizontales, sugiriendo un movimiento de tipo inverso con componente sinestral.

Estas estructuras longitudinales a los valles, en sectores se encuentran cubiertas por depósitos cuaternarios, que en mucho casos llegan a aflorar por cambios abruptos de la topografía (foto 8). Donde incluso se observa que la falla condiciona la surgencia de aguas subterráneas.

8.2 FALLAS E-O

Son estructuras transversales al valle Chinchayhuayco, constituyen fallas de menor orden que las descritas anteriormente. Entre las estructura más resaltantes se encuentran la Falla Lila, Azúcar y Ninajasa. Realizamos un análisis de la falla Azúcar en la margen izquierda de Chinchayhuayco, y determinamos que la falla tiene un rumbo N95° y 60° de buzamiento hacia el S. Esta falla se encuentra afectando rocas del Grupo Tacaza y Barroso con un movimiento de tipo inverso.

Foto 6: Vista al sur, mostrando el gouge de la falla Chichayhuayco.

Foto 7: Falla inversa afectando las rocas del Grupo Tacaza y poniendo en contacto con las rocas del Grupo Barroso.

Foto 8: Plano de falla con dirección N 170°. Las fechas indican el plano de deslizamiento.

En el plano de falla se puedo observar sólo una dirección de estrías (oblicuas) que tienen relación con el segundo juego de estrías de la Falla Chichahuayco. La Falla Azúcar, deforma las rocas superiores formando pliegues y flexuras, además se puede observar en el bloque cabalgante estructuras tipo pop-up (fotos 9, 10 y 11).

Del análisis estructural, interpretamos, hasta dos movimientos de las fallas, la primera relacionado a movimientos principales de rumbo (transcurrente) y uno posterior donde la deformación nos indica un estilo de deformación de tipo compresional, con una ligera componente de rumbo de tipo sinestral.

Foto 9: Falla Azúcar, que se encuentra afectando rocas de los Grupo Tacaza y Barroso y generando flexuras en dichas rocas.

Foto 10: Pop up afectando las rocas del Grupo Tacaza producto del movimiento inverso de la Falla Azúcar.

Foto 11: Fotografía mostrando la interpretación del Pop up de la foto 10.

9.0 ASPECTOS HIDROGEOLÓGICOS

La hidrogeología del área, motivo del presente informe, tiene carácter de estudios básicos, sustentados en información de reconocimiento, muestreo y análisis. Los resultados de campo se restringen a una evaluación geológica - estructural y sobre todo a la hidroquímica.

9.1 INVESTIGACIONES HIDROGEOLÓGICAS EN EL ÁREA

9.1.1 IDENTIFICACIÓN DE FUENTES DE AGUAS

Durante la inspección de campo, realizado el 10 de agosto del 2011, se pudo verificar, que las descargas de aguas y lodo habían cesado, quedando en el punto de surgencia sedimentos de limo blanquecino y aguas parcialmente estancadas (flujo mínimo, casi imperceptible). Con el objetivo de evaluar la naturaleza de las descargas y su posible origen, así como la interacción con las aguas subterráneas del entorno, se identificó tres (3) surgencias de aguas subterráneas (cuadro 2), siendo: el punto 1 la surgencia de aguas y lodo (Chi_1), el punto 2 la fuente termal en la parte inmediata superior (Chi_2) y el punto 3 la fuente termal Yumire (Chi_4), ubicada aguas abajo a 3.5 km. Las fuentes Chi_1 y Chi_4 corresponden a fuentes de flujo permanente (figura 2).

Código	Este	Norte	Cota GPS msnm	Caudal (I/s)	EC (uS/cm)	PH	T° C	Descripción
Chi_1	76948 2	8386539	4737	s/c	958	7,65	3,2	Poza de surgencia de aguas y lodo
Chi_2	76979 9	8386403	4729	2.5	783	6,89	28,7	Fuente Termal
Chi_4	75938 3	8388966	4428	4.5	2420	6.37	73,7	Fuente Termal Yumire

Cuadro 2

Resumen y evaluación de fuentes de agua subterránea y parámetros físicos de las

Fuente: Mapeo de fuentes (INGEMMET, 2011).

En el cuadro 2, se puede observar que el agua de la fuente Chi_1, donde se produjo la surgencia de aguas y lodos; así como las aguas de la fuente Chi_2, tienen propiedades físico químicas similares. La diferencia lo constituye la fuente termal Yumire (Chi_4), sobre todo en cuanto al contenido de sales disueltas, expresadas en conductividad eléctrica. Entre las fuentes Chi_1 y Chi_2 la diferencia de sales es solamente de 175 uS/cm, los cuales interpretamos que pueden proceder del mismo ambiente de formación. Con la diferencia que en Chi_1 al estar estancado aumenta ligeramente su contenido de sales.

La conductividad eléctrica de las aguas termales en Chi_4 (fuente termal Yumire), corresponden a aguas que tuvieron mayor tiempo de circulación en el subsuelo, que tuvieron contacto con una fuente de calor, las cuales

disuelven las sales con el aumento de temperatura en profundidad, llegando a tener cantidades elevadas de sales disueltas (2 420 uS/cm). Esta surgencia se encuentra relacionada a areniscas cuarzosas y condiciona su afloramiento a una falla paralela al valle (foto 8).

Foto 12 y 13. Fuente codificada como Chi_1. En la fotografía 12, se observa la surgencia de aguas subterráneas y lodo blanquecino ocurrido en julio del 2011. En la fotografía 13, se observa el estado actual de los sedimentos blanquecinos depositados después que ceso la surgencia.

Foto 14. Fuente codificada como Chi_2. Es una fuente termal del 28,7 ° C. Nótese la surgencia de mayor caudal a lado derecho de la fotografía.

Foto 15. Fuente codificada como Chi_4. Es una fuente termal con dos ojos de surgencia, la temperatura llega a 73,7 ° C. Nótese la surgencia condicionado por areniscas cuarzosas.

9.1.2 IDENTIFICACIÓN DE FUENTES DE LODOS

Para poder identificar la procedencia de los lodos blanquecinos, se muestreo y codificó los sedimentos en el punto de surgencia Chi_1 y los lodos de perforación tomados de una balsa de decantación (figura 2 y cuadro 3).

	Resumen	y evaluation									
Código	Este	Norte	Cota GPS msnm	Descripción							
Chi_1	769482	8386539	4737	Poza de surgencia de aguas y lodo							
Chi_3	727308	8374708	4569	Poza de lodos							

Cuadro 3 Resumen y evaluación de fuentes de lodos

Fuente: Mapeo de fuentes (INGEMMET, 2011)

El muestreo y análisis de lodos se realizó con el fin de comparar las propiedades de cada una de ellas y de esta manera establecer relaciones que puedan ayudarnos a identificar el fenómeno desarrollado el 23 de julio del 2011.

Foto 16. Toma de muestras de lodos sedimentados en el punto de surgencias de aguas y lodos (Chi_1)

Foto 17. Toma de muestras de lodos en la poza de lodos (Chi_3) utilizado en la perforación.

Figura 2. Ubicación y codificación de fuentes de aguas y lodos, como puntos identificados para el análisis: Chi-1: surgencia de agua y lodo; Chi-2: fuente termal; Chi-3: poza de lodo de perforación; y Chi-4: Fuente termal de Yumire.

9.2 HIDROQUÍMICA DE LAS AGUAS SUBTERRÁNEAS Y LODOS

9.2.1 ESTACIONES DE MUESTREO DE AGUAS Y LODOS

Se ha establecido una red de cuatro (4) estaciones de muestreo (agosto 2011), todas ubicadas en el área del proyecto Millo del Consorcio Minero Horizonte S.A. (CMH). La ubicación de las estaciones de muestreo se presenta en el cuadro 4, el nombre de cada estación incluye un prefijo Chi (Abreviatura de la quebrada Chichahuaycco).

Cuadro 4

Ubicación puntos de muestreo para análisis de laboratorio

Nº	Estación	Coorder (PS	nadas UTM AD56)	Descripción			
		E	N	•			
Mue	streo de ag	juas					
1	Chi_1	769482	8386539	Punto de surgencia de aguas y lodo			
2	Chi_2	769799	8386403	Fuente Termal			
3	Chi_4	759383	8388966	Fuente Terma Yumire			
Mue	streo de lo	dos					
4	Chi_1	769482	8386539	Punto de surgencia de aguas y lodos Costado calicata (1) suelos somero			
5	Chi_3	727308	8374708	Poza de lodos de perforación			

Fuente: Mapeo de fuentes (INGEMMET, 2011).

9.2.2 SELECCIÓN DE LA SERIE ANALÍTICA

La serie analítica, se seleccionó con la finalidad de describir las propiedades y los componentes hidroquímicos de las aguas subterráneas y lodos. Así como, sobre ellos, realizar las comparaciones y evaluar su posible origen.

Los parámetros físico – químicos de las aguas fueron medidas insitu (con equipos portátiles), donde también se recolectaron muestras para ser analizadas en los laboratorios de SGS y una contra muestra, analizada en los laboratorios del INGEMMET. Los parámetros más importantes medidos son los siguientes:

ANALISIS DE AGUAS

- Físico-químicos: pH, temperatura, conductividad eléctrica, carbonatos y bicarbonatos.
- Parámetros Inorgánicos: sulfato, cloruros, fluoruros y nitratos.
- Metales Disueltos: Al, Ag, Sb, As, Be, Ba, B, Bi, Cd, Ce, Ca, Co, Cr, Cu, Sn, Se, Sr, Sc, Fe, La, Li, Mg, Mn, Mo, Ni, P, K, Si, Na, Tl, Pb, Ti, V, W, Y, Zr y Zn (serie estándar por ICP-AES, Espectrometría de Emisión Atómica por plasma acoplado inductivamente).
- Metales Totales: Ag, Al, As, B, Ba, Be, Bi, Ce, Cd, Co, Cr, Cu, Fe, La, Li, Mn, Mo, NI, P, Pb, Sb, Se, Sn, Sc, Si, Ti, Tl, V, W, Y, Zn, Zr. (serie estándar por ICP-AES, Espectrometría de Emisión Atómica por plasma acoplado inductivamente).

ANALISIS DE LODOS

- Fisicoquímicos: Carbonatos y Bicarbonatos.
- Parámetros Inorgánicos: Sulfato y Cloruros.
- Metales ICP en lodos: Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mn, Mo, Na, Ni, P, Pb, Sb, Sc, Sn, Sr, Ti, Tl, V, W, Y, Zn, Zr, Mg).
- Análisis de Rayos X
- Análisis de PIMA.

En cada estación de muestreo, se registraron las coordenadas UTM del punto (Proyección PSAD 56) y las características físicas como apariencia y olor. Adicionalmente se tomaron parámetros de campo (temperatura, pH, y conductividad eléctrica) y se recolectaron las muestras respectivas para los análisis en laboratorio de la serie analítica. Para la toma de parámetros en campo, se utilizó dos equipos de CE, PH y T^o de marca WTW. Estos equipos, se han calibrado utilizando sus respectivos estándares en el terreno y siguiendo las indicaciones del fabricante.

9.2.3. ANÁLISIS DE RESULTADOS – AGUAS

El laboratorio seleccionado, para el análisis de las muestras de agua, fue S.G.S, el cual cuenta con la respectiva certificación del INDECOPI-SNA (Registro N° LE-002). Los análisis de contra muestra se realizaron en el laboratorio del INGEMMET. A continuación se muestran los cuadros 5, 6, 7 y 8 con resultados de los análisis físico-químicos de los laboratorios. Los detalles, métodos y certificaciones, se encuentran en el Anexo I, del presente informe.

CÓDICO			Α	NIONES	6 (mg/l)				
CODIGO	LABORATORIO	CI	SO4	CO3	HCO3	NO3	F		
Chi-1-08-2011	SGS	4.97	491.69	0.5	111.3	0.232			
Chi-1	INGEMMET	4.10	486.60	0.5	147.6	<1.000	1.6		
Chi-2-08-2011	SGS	3.08	338.72	0.5	87.1	0.031			
Chi-2	INGEMMET	2.70	333.60	0.5	118.8	<1.000	2.1		
Chi-4-08-2011	SGS	433.50	264.47	0.5	357.4	0.031			
Chi-4	INGEMMET	458.80	256.30	0.5	476.2	<1.000	3.4		
CÓDIGO		CATIONES (mg/l)							
CODIGO	LABORATORIO	Li	K	Na	Ca	Mg	Sr		
Chi-1-08-2011	SGS	0.100	3.30	53.10	178.92	6.95	1.673		
Chi-1									
Chi-2-08-2011	SGS	0.120	2.90	42.80	140.52	3.95	1.463		
Chi-2	INGEMMET	0.111	4.23	39.36	199.40	4.60	1.330		
Chi-4-08-2011	SGS	1.000	50.20	493.00	95.88	11.08	2.078		
Chi-4	INGEMMET	5.470	74.50	364.13	143.16	10.60	1.760		

Cuadro 5 Resultado del análisis Físico Químico efectuado el 10/08/2011

Fuente: Elaboración Propia (INGEMMET, 2011).

Cuadro 6

Resultado del análisis de Metales Disueltos efectuado el 10/08/2011

CÓDICO								MET	ALES	FRAZA	(mg/l)						
CODIGO	LABORATORIO	Ag	AI	As	В	Ba	Be	Bi	Ce	Cd	Со	Cr	Cu	Fe	La	Li	Mn
Chi-1-08-2011	SGS	< 0.001	< 0.010	0.020	<0.1	0.030	0.0015	< 0.005	< 0.05	< 0.001	0.005	0.005	0.005	0.1000	< 0.0005	0.10	1.040
Chi-1	INGEMMET																
Chi-2-08-2011	SGS	< 0.001	< 0.010	0.020	0.1	0.021	< 0.0003	< 0.005	< 0.05	< 0.001	< 0.001	< 0.001	< 0.003	0.1000	< 0.0005	0.12	1.143
Chi-2	INGEMMET		0.069	0.012		0.024		<0.100		< 0.001	< 0.001	< 0.02	< 0.003	0.1670			1.060
Chi-4-08-2011	SGS	< 0.001	< 0.010	0.445	>2.5	0.101	0.0020	< 0.005	< 0.05	< 0.001	< 0.001	< 0.001	< 0.003	0.4000	< 0.0005	>1.00	0.898
Chi-4	INGEMMET		0.02	0.551		0.087		< 0.100		< 0.001	< 0.001	< 0.02	< 0.003	0.2220			0.729
CÓDIGO								MET	ALES T	RAZA	(mg/l)						
CODIGO	LABOINATORIO	Мо	Ni	Ρ	Pb	Sb	Se	Sn	Sc (dis)	Si (dis)	Ti	TI	V	W	Y	Zn	Zr
Chi-1-08-2011	SGS	< 0.005	0.005	<0.1	0.005	< 0.005	< 0.05	< 0.010	< 0.003	11.5	< 0.003	< 0.03	0.005	< 0.005	< 0.005	< 0.005	< 0.003
Chi-1	INGEMMET																
Chi-2-08-2011	SGS	< 0.005	< 0.001	<0.1	< 0.004	< 0.005	< 0.05	< 0.010	< 0.003	20.5	< 0.003	< 0.03	< 0.002	0.008	< 0.005	< 0.005	< 0.003
Chi-2	INGEMMET	< 0.005	< 0.005		<0.010	< 0.006	< 0.02	< 0.005			< 0.003	< 0.02	< 0.02			0.011	
Chi-4-08-2011	SGS	< 0.005	< 0.001	<0.1	< 0.004	< 0.005	< 0.05	< 0.010	< 0.003	>25.0	0.009	< 0.03	< 0.002	0.115	< 0.005	0.005	< 0.003
Chi-4	INGEMMET	< 0.005	< 0.005		<0.010	0.009	< 0.02	< 0.005			< 0.003	< 0.02	< 0.02			0.009	

Cuadro 7 Resultado del análisis de Cationes para Metales Totales

CÓDIGO		CATIONES (mg/l)								
CODIGO	LABORATORIO	Li	Κ	Na	Са	Mg	Sr			
Chi-1-08- 2011	SGS	0.350	19.1	60.0	178.92	50.00	2.500			
Chi-1	INGEMMET	0.170	9.7	53.8	295.30	68.10	1.850			
Chi-2-08- 2011	SGS	0.130	3.1	43.8	140.52	3.98	1.583			
Chi-2	INGEMMET	0.113	4.7	40.7	205.60	4.70	1.460			
Chi-4-08- 2011	SGS	1.000	51.9	493.0	95.88	12.25	2.165			
Chi-4	INGEMMET	5.750	77.8	386.3	147.50	11.10	1.890			

Cuadro 8 Resultado del análisis de Metales Totales

CÓDICO								MET	LES TO	TALES ((mg/l)						
CODIGO	ANALISIS	Ag	AI	As	В	Ba	Be	Bi	Ce	Cd	Co	Cr	Cu	Fe	La	Li	Mn
Chi-1-08-2011	SGS	< 0.010	>25.00	0.630	0.1000	>5.000	0.0330	0.005	1.30	0.005	0.425	0.38	0.825	>60.000	0.6185	0.35	>50.00
Chi-1			59.950	0.080		0.745		<0.1		0.016	0.056	0.073	0.013	85.500			5.160
Chi-2-08-2011	SGS	< 0.001	0.100	0.028	0.2000	0.030	< 0.0003	< 0.005	< 0.05	0.001	< 0.001	< 0.001	< 0.003	0.300	< 0.0005	0.13	1.203
Chi-2	INGEMMET		0.087	0.019		0.024		<0.1		< 0.001	< 0.001	< 0.02	< 0.003	0.120			0.993
Chi-4-08-2011	SGS	< 0.001	0.300	0.640	>2.5000	0.115	0.0023	< 0.005	< 0.05	0.001	< 0.001	< 0.001	< 0.003	1.400	< 0.0005	>1.00	1.013
Chi-4	INGEMMET		0.074	0.571		0.089		<0.1		< 0.001	< 0.001	< 0.02	< 0.003	0.839			0.700
CÓDIGO								META	ALES TO	TALES ((mg/l)						
CODIGO	ANALISIS	Мо	Ni	Р	Pb	Sb	Se	Sn	Sc (Tot)	Si (Tot)	Ti	TI	v	w	Y	Zn	Zr
Chi-1-08-2011	SGS	0.040	0.565	18.9	0.530	< 0.005	< 0.050	< 0.010	< 0.003	>25.0	0.265	< 0.03	0.960	< 0.005	0.155	2.010	0.010
Chi-1		0.015	0.075		0.076	0.012	< 0.020	< 0.005			0.027	< 0.02	0.120			0.317	
Chi-2-08-2011	SGS	< 0.005	< 0.001	0.1	< 0.004	< 0.005	< 0.050	< 0.010	< 0.003	22.4	< 0.003	< 0.03	< 0.002	0.013	< 0.005	< 0.005	< 0.003
Chi-2	INGEMMET	< 0.005	0.009		< 0.010	< 0.006	0.045	< 0.005			< 0.003	< 0.02	< 0.020			0.008	
Chi-4-08-2011	SGS	< 0.005	< 0.001	<0.1	< 0.004	0.005	< 0.050	< 0.010	< 0.003	>25.0	0.010	< 0.03	< 0.002	0.125	< 0.005	< 0.005	< 0.003
Chi 4	INCEMMET	<0.005	<0.005		<0.010	0.012	<0.020	<0.005			<0.003	<0.02	<0.020			0.011	

a. Parámetros Fisicoquímicos de las Aguas

La característica fisicoquímica en las agua en la surgencia Chi_1 (aguas y lodos), son muy similares a las de las aguas termales Chi_2, pero un muy diferente de la fuente termal Yumire (Chi_4).

El pH, en el punto de surgencia de aguas y lodos, para Chi_1 es de 7,65 y de la fuente termal adyacente, Chi_2 es 6,89, cuya diferencia es de 0,76 denotando características neutras para ambas fuentes, estas corresponden a

aguas que en el subsuelo no tuvieron contacto con un ambiente oxidante ni reductor. La fuente termal Yumire Chi_4 con 6,89 es agua neutra, que por su alta temperatura corresponden a aguas de circulación profunda.

Los valores de conductividad eléctrica en Chi_1 y Chi_2 oscilan entre 958 μ S/cm y 783 μ S/cm, las aguas de la fuente termal Yumire (Chi_4) tiene 2 420 μ S/cm. Chi_1 y Chi_2 son muy similares con moderado contenido de sales disueltas, teniendo gran diferencia con las aguas termales de Yumire (Chi_4), que tiene gran cantidad de sales disueltas.

Los valores de temperatura que muestra el punto de surgencia de aguas y lodos (Chi_1), es muy bajo, 3,2 °C, correspondiendo a aguas muy frías, debido que este punto de surgencia, materia de la presente investigación, dejo de ser una surgencia constante. La fuente termal Chi_2, tiene 28 °C de temperatura, son aguas poco profundas que han tenido algún tipo de contacto con una fuente de calor, que puede ser el grado geotérmico natural del subsuelo en profundidad progresiva. La fuente termal Yumire (Chi_4) con 73,7 °C, ha tenido circulación profunda, lo que explica su alta temperatura y alto contenido de sales disueltas. Esta sale a superficie con 73,3 °C, condicionada por las estructuras geológicas de la quebrada (falla paralela al eje de quebrada).

Para establecer comparaciones visuales entre los parámetros físico – químicos se presentan los siguientes gráficos:

Figura 3. Histogramas de parámetros físico-químicos de las aguas

Según la figura 3, en el gráfico de pH, se observa que, en las tres muestras son aguas neutras, cuyos valores no salen del rango 6.5 a 8.5 (valores de aguas neutras determinados por la OMS). En el gráfico de Conductividad Eléctrica – EC, el contenido de sales disueltas de Chi_1 y Chi_2 son prácticamente las mismas, su diferencia en contenidos de sales son mínimas, pero el contenido de Chi_4 es totalmente diferente y tiene valores bastante elevados. La temperatura de Chi_4 difiere en gran medida de las fuentes Chi_1 y Ch_2, los cuales indican diferentes ambientes de formación. Con esto se puede corroborar que las fuentes Chi_1 y Chi_2, son totalmente diferentes a las aguas termales de Yumire Chi_4.

b. Facies Hidroquímicas

Para establecer comparaciones entre las propiedades principales de las agua en los puntos analizados, se ha ploteado los resultados en diagramas de Stiff, Piper y Scatter, los cuales ayudaran a la visualización de los mismos (figura 4).

Los resultados de los aniones y cationes mayoritarios analizados en los laboratorios de SGS y los resultados de la contra muestra analizados en los laboratorios del INGEMMET, prácticamente tiene los mismo resultados, con pequeñas diferencias tolerables.

Los análisis se desarrollaron para parámetros de metales totales y metales disueltos.

Diagramas de Stiff: Son representaciones gráficas, que muestran sintéticamente las características químicas principales de un agua, facilitando su clasificación. En la figuras 4 y 5, se observan los diagramas de Stiff para cada punto inventariado, analizado y clasificado con los valores de ambos laboratorios.

En la figura 4 se han ploteado los valores de aniones y metales disueltos, analizados en ambos laboratorios y representados mediante los diagramas de Stiff. En la figura 5 se plotearon los valores de aniones y metales totales, también analizados en ambos laboratorios. Estos gráficos nos ayudan, visualmente, a establecer comparaciones entre los diagramas y encontrar alguna diferencia en el predominio de los iones mayoritarios.

Según el análisis, la predominancia química entre metales disueltos y metales totales son las mismas y ambas corroboradas por los análisis de los dos laboratorios.

Figura 4. Diagramas de Stiff, ubicado y comparados en cada punto de surgencia de aguas, elaborado con aniones y metales disueltos predominantes en las aguas.

Figura 5. Diagramas de Stiff, ubicado y comparados en cada punto de surgencia de aguas, elaborado con aniones y metales totales de las aguas.

Interpretaciones: Los datos de análisis fisicoquímicos de campo y los análisis del laboratorio, distinguen la existencia de dos grupos de facies químicas de aguas:

• El primer grupo predominante en las fuentes Chi_1 y Chi_2, son de tipo sulfatada cálcica (Ca-SO₄). En aguas dulces, la concentración normal de

sulfatos puede variar entre 2 y 150 mg/l, en aguas salinas, asociado al Ca, puede llegar a tener valores de 5 000 mg/l. Los valores encontrados en las fuentes Chi_1 y Chi_2 es de 491,69 mg/l y 338,72 mg/l respectivamente. Estas características, son típicas del lavado de materiales sedimentarios, de la oxidación de sulfuros o de la descomposición de sustancias orgánicas. La disolución de materiales arcillosos, representaría la mayor cantidad aportada de este ión a las aguas subterráneas, los cuáles nos indican la relación existente entre las aguas subterráneas de las muestras Chi_1 y Chi_2 con ambientes lacustres.

Como todo el material de los alrededores es de ambiente volcánico, se interpreta que estas aguas pueden haber adquirido su predominancia de sulfatos de los siguientes ambientes:

- 1. Del contacto con las arcillas de los lodos de perforación.
- 2. Del contacto con la zona de alteración donde existe arcillas.
- 3. Del contacto y tiempo de retención con materiales no consolidados, relleno cuaternario, con presencia de arcillas de ambientes lacustres.
- 4. Por la disolución de minerales sulfurosos, principalmente pirita, galena y/o esfalerita.
- El calcio como segundo elemento predominante, tiene composición química adquirida cuando las aguas subterráneas entran en contacto con rocas volcánicas.

Estas interpretaciones nos permiten afirmar que estas aguas proceden de la infiltración de aguas de lluvia, en la parte alta de las montañas, por medio de las fracturas de rocas volcánicas y que en algún momento de su percolación en el subsuelo, tienen contacto con materiales sedimentarios (arcillas y limos) o minerales sulfurosos, donde adquiere la predominancia Sulfatada Cálcica.

La segunda predominancia, corresponde a la fuente termal Yumire (Chi_4), totalmente diferente a las aguas de los afloramientos Chi_1 y Chi_2, cuya composición principal corresponde, a la facies clorurada sódica (Na-Cl). Comúnmente el ión cloruro, en las rocas presentan escasa proporción, con elevada solubilidad de sus sales, pasan rápidamente a la fase acuosa, pudiendo alcanzar concentraciones muy altas. No forma sales de baja solubilidad, no se oxida, ni se reduce en aguas naturales, tampoco es adsorbido significativamente, ni entra a formar parte de procesos bioquímicos, por lo tanto la surgencia en estas aguas se interpretan que poseen un tiempo de retención considerable y provienen de flujos regionales.

El elemento de segunda predominancia (Na), tiene sales que son muy solubles y tienden a permanecer disueltas. El ión sodio puede ser adsorbido en arcillas en procesos de intercambio catiónico con otros cationes, como el calcio.

En la fuente termal Yumire Chi_4, se tiene una fuerte mineralización (CE: 2 420 uS/cm) y pH neutro (6.37), de predominancia clorurada sódica. Estos en presencia de sulfuros y apoyados en un ambiente anaeróbico (por lo

tanto, fuertemente reductor), generan olores a huevo podrido. Como en el punto donde se produce el afloramiento del manantial Yumire.

Por lo tanto las clasificaciones finales del predominio hidroquimico en las aguas son:

- Primer Grupo (Chi_1 y Chi_2): Aguas de predominio sulfatada cálcica (Ca-SO4).
- Segundo Grupo (Chi_4): Aguas de predominio clorurada sódica (Na-Cl).

Diagramas de Piper: Se ha utilizado este diagrama, para plotear los resultados de metales disueltos y metales totales versus los aniones mayoritarios. Donde se tiene la posibilidad de representar las tres fuentes avaluadas en un mismo gráfico, sin dar origen a confusiones. Los puntos ploteados corresponden a los contenidos predominantes de aniones versus los metales disueltos y aniones versus los metales totales. Los mismos que tienen una mínima diferencia, casi imperceptible en las predominancias evaluadas (figura 6 y 7).

Figura 6. Diagrama de Piper para los análisis de aguas trabajados con METALES DISUELTOS

Figura 7. Diagrama de Piper para los análisis de aguas trabajados con METALES TOTALES

<u>Interpretaciones</u>: En la figura 6 y 7, se observan que las aguas químicamente semejantes, agrupadas son Chi_1 y Chi_2, y las aguas de la fuente termal Yumire Chi_4 se encuentra en el lado opuesto de grafica, por lo tanto son aguas completamente diferentes.

En la figura 6 (aniones y metales disueltos) y figura 7 (aniones y metales totales) se observan que las muestras Chi_1 y Chi_2, tiene predominancia Sulfatada Cálcica y la fuente termal Yumire Chi_4 de predominancia clorurada sódica, en concordancia con el diagrama de Stiff.

<u>Diagramas de Scatter</u>: Para corroborar la evolución de flujos con la hidroquímica se utilizó la relación Cl+SO₄ vs Na+K (meq/l) (Mifflin, 1988 en Ángeles et al, 2004), los cuales muestran una tendencia de evolución hidroquímica predominantemente de flujo local, intermedio y regional (Grafico 2).

Figura 8. Diagrama de Scatter, para análisis de aguas, elaborados con Metales Disueltos

Figura 9. Diagrama de Scatter, para análisis de aguas, elaborados con Metales Totales.

Las fuentes Chi_1 y Chi_2, se diferencian considerablemente de la fuente termal Yumire Chi_4. La fuente de surgencia de aguas y lodos, Chi_1, se considera de flujo local a intermedio, lo que se corrobora con su baja temperatura (3.2 °C) y su contenido predominante sulfatada cálcica proviene del contacto que tiene las aguas con las rocas volcánicas y donde adquieren su predominancia de sulfatos. La fuente adyacente Chi_2, se ubica en el

mismo sector y tiene flujo local a intermedio. Los cuales indican que su recorrido ha tenido una profundidad de infiltración aproximada, entre 900 y 1200 metros, donde ha adquirido su alta temperatura (28.70°C), manteniendo su predominio químico, sulfatada cálcica, adquirido con mayor tiempo de retención del agua en rocas volcánicas. La fuente termal, Yumire, Chi_4, se define como precedente de un flujo regional, tiene temperatura de 73.7 °C y la composición química predominante es clorurada sódica. Para una mayor precisión, en la interpretación de los flujos se han ploteado al diagrama de Scatter, los resultados de análisis de aguas por metales disueltos (figura 8) y metales totales (figura 9), los cuales prácticamente muestran los mismo resultados.

c. Metales Traza

El agua de lluvia, que infiltra en el subsuelo a través de fracturas o poros de las rocas, tiene escaso contenido iónico. En la escorrentía superficial y a través de la zona no saturada y la zona saturada, hay una interacción agua - fase sólida, por la que el agua va adquiriendo sustancias químicas como especies disueltas. Los factores que influyen en la interacción agua - fase sólida son: naturaleza de las rocas (mineralogía, composición química), concentración de especies iónicas en el agua, tiempo de retención, condiciones del sistema como: Temperatura, presión, pH, potencial redox, presión de CO, CO₂, etc.

La presencia de metales traza en el área de estudio, están relacionadas con las rocas volcánicas y con la presencia de sulfatos, como consecuencia de la oxidación de los minerales sulfurosos en un cuerpo mineralizado. Así, los metales de mayor relevancia, en cuanto a abundancia en el agua, son: silicio, manganeso y hierro.

Las aguas del punto de muestreo Chi-1, ubicado en el piso de valle de la quebrada Chichahuaycco, reporta la mayor concentración en metales traza, como el silicio (11,5 mg/l), manganeso (1,04 mg/l) y hierro (0,1 mg/l). Sin embargo las aguas del manantial termal Chi_2, presenta mayor concentración de silicio (20,5 mg/l), manganeso (1,143 mg/l) y el hierro se mantiene con el mismo valor (0.1 mg/l) y aparece el Litio con una concentración mínima (0,1 mg/l). En las aguas la fuente termal, Yumire Chi_4, el contenido de silicio (> 25 mg/l) supera los contenidos de los puntos anteriores, el manganeso (0,89 mg/l), y las trazas de hierro (0.40 mg/l).

El silicio, elemento traza de mayor contenido en las aguas, procede mayoritariamente de la meteorización por hidrólisis de feldespatos y silicatos, los mismos que pueden estar presentes en las rocas volcánicas o zonas de alteración. Sin embargo, las aguas de la fuente termal Yumire Chi_4, es la que tiene mayor contenido de silicio, ya que tuvieron mayor tiempo de retención en contacto con areniscas cuarzosas. El manganeso proviene principalmente de la dilución de los carbonatos de manganeso presentes en zonas de mineralización, este elemento prácticamente no presenta ningún patrón de variación en los tres puntos muestreados. El hierro como elemento traza en aguas, tiene concentración controlada por procesos de equilibrio químico como oxidación – reducción y precipitación – disolución de hidróxidos, carbonatos y sulfuros. Valores entre 1 y 10 mg/l son comunes, aunque lo normal es que se encuentre por debajo de 0,1 mg/l, que es caso de los tres puntos muestreados. En la fuente Termal Yumire (Chi_4) aparece un

elemento traza como el boro (>2.5 mg/l), cuyo valor se incrementa debido a que las agua de esta fuente atraviesan zonas con alteración de rocas ígneas y/o contacto con gases volcánicos y/o terrenos evaporíticos.

d. Metales Totales

Los análisis de metales totales, normalmente, se trabajan para aguas superficiales, sin embargo con el objetivos de encontrar relaciones entre las agua de las fuentes inventariadas, se han realizado análisis por metales totales (cuadro 8).

De los resultados obtenidos, en general los metales totales para las tres fuentes identificadas, son mínimas casi imperceptibles. Las fuentes Chi_2 y Chi_4, fueron muestreados en el ojo de los manantiales, por lo tanto los niveles de metales totales son bastante bajos (debajo de 1), con excepción del silicio (Chi_2 =22.4 mg/l y Chi_4 > 25 mg/l), los cuales se explican por qué ambas fuentes son termales. En la muestra Chi_1, donde se produjo la surgencia de aguas y lodo (en la actualidad se nota un flujo mínimo, casi imperceptible que se mezcla con las aguas de la quebrada Chichahuaycco), se tienen presencia de Manganeso (>50 mg/l), Aluminio (59 mg/l) y hierro (85.50 mg/l), cuyos valores se han acumulado del arrastre de los sólidos suspendidos en el agua que bajan de la quebrada Chichahuaycco.

9.2.4. ANÁLISIS DE RESULTADOS – LODOS

Para identificar, si los procesos de surgencia de aguas y lodos, tienen alguna relación con los lodos utilizados en las perforaciones de exploración, se realizaron análisis de lodos en el punto de surgencia Chi_1 y en una balsa de lodos Chi_3.

Es importante mencionar, que estas las surgencias de "lodo blanquecino", no se han producido por primera vez. Se tienen evidencias de anteriores surgencia, como las registradas en las excavaciones realizadas por los ingenieros del proyecto minero.

Foto 18. Registro de anteriores surgencias de lodo blanquecino, lo que demuestra la estacionalidad de estas surgencias.

a. Análisis Fisicoquímicos.

Se analizaron componentes fisicoquímicos (carbonatos y bicarbonatos), parámetros orgánicos (cloruros y sulfatos) (cuadro 9) y análisis de metales en lodos en los laboratorios de SGS (cuadro 10). Un nuevo análisis de metales (cuadro 11), Rayos X (cuadro 12) y PIMA (cuadro 13), se realizaron en los laboratorios del INGEMMET.

COMPONENTE FISICOQUIMICO	Chi_1	Chi_3	Diferencia Chi_1 – Chi_3
Carbonatos (Milimol (-)/litro)	<1	<1	0
Bicarbonatos (Milimol (-)/litro)	25	10	15
PARAMETROS INORGANICOS	Chi_1	Chi_3	Diferencia
Cloruros (Milimol (-)/litro)	0.2	1.2	-1
Sulfatos (Centimol por litro)	79.61	28.14	51.47

Cuadro 9 Resultado del análisis de Lodos

Comparando valores en los resultados del cuadro 9, se observan variaciones en los contenidos de bicarbonatos, cloruros y sulfatos, los cuales se interpretan que ambos lodos tiene distinta composición.

Los valores de metales en lodos, se desarrolló mediante análisis de ICP en suelo, los mismo que arrojan valores potencialmente diferentes en cuanto a contenido metálico.

En general, los resultados obtenidos, para cada una de las fracciones correspondientes queda reflejado en el cuadro 10. Observándose, para la gran mayoría de metales, un nivel bajo valores intercambiables, lo que implica una estabilidad apreciable de las diferentes especies químicas metálicas, por tanto, durante su movilidad los lodos, mantienen sus propiedades químicas.

El Ca está presente de forma apreciable en la muestra Chi_3, (9079 mg/kg), generando una diferencia de (2327 mg/kg), en consecuencia, este elemento indican que los lodos de la fuente termal Chi_1 y Chi_3 son diferentes. En menor medida se encuentran, el Potasio (511 mg/kg), Sodio (471 mg/kg), Manganeso (251 mg/kg), Bario (107 mg/kg) y varios elementos que muestran diferencias por debajo de 100 mg/kg.

N°	METALES	Chi_1	Chi_3	Diferencia
				$Cni_1 - Cni_3$
1	Plata (mg/kg)	0.3	8.9	-8.6
2	Aluminio (mg/kg)	>5000	>5000	0
3	Arsénico (mg/kg)	18	10	8
4	Boro (mg/kg)	<1	<1	0
5	Bario (mg/kg)	235	128	107
6	Berilio (mg/kg)	2.4	0.9	1.5
7	Bismuto (mg/kg)	<5	<5	0
8	Calcio (mg/kg)	6752	9079	-2327
9	Cadmio (mg/kg)	<1	<1	0
10	Cobalto (mg/kg)	13	11	2
11	Cromo (mg/kg)	17	49	-32
12	Cobre (mg/kg)	57.8	65.9	-8.1
13	Hierro (mg/kg)	>10000	<10000	0
14	Potasio (mg/kg)	1715	1204	511
15	Lantano (mg/kg)	42.4	29.4	13
16	Magnesio (mg/kg)	>10000	5834	0
17	Manganeso (mg/kg)	1638	1889	-251
18	Molibdeno (mg/kg)	3	3	0
19	Sodio (mg/kg)	198	669	-471
20	Níquel (mg/kg)	22	19	3
21	Fosforo (mg/kg)	856	1096	-240
22	Plomo (mg/kg)	27	58	-31
23	Antimonio (mg/kg)	<5	<5	0
24	Escandio (mg/kg)	3	2.5	0.5
25	Estaño (mg/kg)	<10	<10	0
26	Estroncio (mg/kg)	85	47.7	37.3
27	Titanio (mg/kg)	<100	186	0
28	Talio (mg/kg)	5	2	3
29	Vanadio (mg/kg)	40	37	3
30	Wolframio / Tungsteno (mg/kg)	<10	33	0
31	Itrio (mg/kg)	8	9	-1
32	Zinc (mg/kg)	131.8	114.5	17.3
33	Circonio (mg/kg)	2	5	-3

Cuadro 10

Resultado del análisis de Lodos-Metales por ICP (Laboratorio de SGS)

En los laboratorios de INGEMMET se utilizó el método Espectrometría de Emisión Atómica por plasma, acoplado inductivamente – ICP- AES, para analizar los lodos los cuales muestran los siguientes valores (cuadro 11)

N°	METALES	Chi_1	Chi_3	Diferencia Chi_1 – Chi_3
1	Plata (µg/g)	1.4	10.4	-9
2	Aluminio (µg/g)	20400	66100	-45700
3	Arsénicos (µg/g)	<10.0	<10.0	0
4	Bario (µg/g)	235.0	1036.6	-801.6
5	Bismuto (µg/g)	<5.0	<5.0	0
6	Calcio (µg/g)	9400	16300	-6900
7	Cadmio (µg/g)	6.09	7.62	-1.53
8	Cobalto (µg/g)	18.51	15.73	2.78
9	Cromo (µg/g)	19.63	67.63	-48
10	Cobre (µg/g)	46.68	69.05	-22.37
11	Hierro (µg/g)	31700	39500	-7800
12	Potasio (µg/g)	1500	29100	-27600
13	La (µg/g)	46.13	45.03	1.1
14	Litio (µg/g)	14.74	20.15	-5.41
15	Magnesio (µg/g)	13800	9000	4800
16	Manganeso (µg/g)	1745.0	2147.0	-402
17	Molibdeno (µg/g)	<5.0	<5.0	0
18	Sodio (µg/g)	200	16700	-16500
19	Níquel (µg/g)	24.45	21.55	2.9
20	Fósforo (µg/g)	1162.0	1565.4	-403.4
21	Plomo (µg/g)	29.40	56.75	-27.35
22	Rubidio (µg/g)	755.4	1112.5	-357.1
23	Azufre (µg/g)	1900	1600	300
24	Antimonio (µg/g)	10.0	10.0	0
25	Estaño (µg/g)	10.0	10.0	0
26	Estroncio (µg/g)	217.01	347.45	-130.44
27	Talio (µg/g)	10.0	10.0	0
28	Vanadio (µg/g)	155.67	84.27	71.4
29	Wolframio (µg/g)	20.00	42.12	-22.12
30	Zinc (µg/g)	131.57	132.32	-0.75

Cuadro 11 Resultado del análisis de Lodos-Metales por ICP (Laboratorio INGEMMET)

Los resultados obtenidos en el cuadro 11, muestras valores en unidades menores (μ g/g), los cuales resaltan las diferencias entre los metales de los lodos. Los elementos con mayores diferencias son: Aluminio (45700 μ g/g), Potasio (27600 μ g/g), Sodio (16500 μ g/g), Calcio (6900 μ g/g), Fosforo (403.4 μ g/g), Manganeso (402 μ g/g) y fracciones menores que identifican las diferencias entre ambas muestras.

Para apreciar las visibles diferencias en los lodos, se han realizado diagramas de Stiff con los elementos mayoritarios.

Figura 10. Diagrama de Stiff, para los elementos predominantes en los lodos Chi_1 y Chi_3, los cuales muestran gráficos comparados entre sí.

En la figura 10 se observan claras evidencias del predominio de los elementos mayoritarios en los lodos. Los lodos del punto de surgencia Ch_1 tiene como elementos predominantes a los Sulfatos, en valores que llegan a 1600 meq/l y en segundo lugar al magnesio que llega a tener valores de 800 meq/l. Los lodos de la muestra Chi_3 (poza de lodos) tiene la misma predominancia química pero con valores muy inferiores (Sulfatos 600 meq/l y magnesio 400 meq/l), teniendo diferencias muy saltantes (sulfatos 1000 meq/l y magnesio de 400 meq/l), los cuales contribuyen con la teoría de que los lodos no son los mismos.

b. Análisis de Rayos X

Se realizaron también análisis de Rayos X, en los lodos (cuadro 12), los cuales nos muestran valores comparados entre las muestras Chi_1 (punto de surgencia de lodos) y Chi_3 poza de lodos.

		CODIGO DE MUESTRA	Chi_1	Chi_3	Diferencia
N⁰	MINERAL	FÓRMULA	%	%	(Chi_1 - Chi_3)
1	Cuarzo	Si02	43.07	57.14	-14.07
2	Albita	(Na,Ca)AI(Si,AI)308	11.44	26.08	-14.64
3	Montmorillonita	CaO.2(AI,Mg)2Si4010(8.89	4.54	4.35
4	Ortoclasa	(K,Ba,Na)(Si,AI)408OH)2.4H2O	3.3	2.83	0.47
5	Amorfo	-	13.98	2.04	11.94
6	Pirita	FeS2	1.4	1.70	-0.3
7	Muscovita	(K,Na)(AI,Mg,Fe)2(Si3.1AI0.9)010(OH)2	2.29	1.36	0.93
8	Augita	Ca(Fe,Mg)Si206		1.25	-1.25
9	Calcita	CaC03	0.76	1.13	-0.37
10	Hematita	Fe203		1.02	-1.02
11	Fresnoita	Ba2TiSi208		0.91	-0.91
12	Clorita	(Mg,AI)6(Si,AI)4010(OH)8	14.87		14.87

Cuadro 12 Resultado del análisis de Lodos-Rayos X (Laboratorio INGEMMET)

Según el cuadro de análisis por rayos X, absolutamente todos los valores de minerales son diferentes. Las diferencias más marcadas se observan entre los minerales de Albita (14.64 %) y Cuarzo (14.07 %), las demás diferencias son mínimas, pero representativas, aunque cabe resaltar que en las muestras de lodo Chi_1, no existe minerales que si existe en la muestra Chi_3, como la Augita, Hematita y Fresnoita. Del mismo modo la muestra de surgencia de lodos Chi_1 posee Clorita (14.87 %) mineral que no aparece en las muestras de lodos Chi_3.

c. Análisis de PIMA

Se realizó análisis de los lodos Chi_1 y Chi_3, con el propósito de determinar la existencia de elementos anómalos por minerales metálicos según el análisis de PIMA.

Cuadro 13 Resultado del análisis de Lodos-PIMA (Laboratorio INGEMMET)

												AN	IALIS	IS P	ORI	MET	ODO F	PIMA					
													SOLI	CITUD) Nº :0	28-20)11-DGA	۲					
PROYECT	0									: P	ROYE	сто	MILLO)			Fecha	de rei	nisión: 05/10/2011				
CANTIDA	DΥ	TIPO) DE	MUE	STR	AS				: 2 r	nues	tras p	oulvur	ulent	as							1	
APROBA	201	N PC	R AC	6						:							FIRMA:						
Muestra	qz	k-al	n-al	rflct	pyr	dias	kao	dk	ill	sm	ser	jar	cac	chl	ер	SC	FeOx	NH4	Otros	ASOCIACION	ALTERACION	COD.	OBS.
																			sm(montmorillonita),				
CHI-1							1		1	3									kao(halloisita)	sm-hall-ill	Argilica	3	
																			sm(montmorillonita),				
CHI-3							1			3									kao(halloisita)	sm-hall	Argilica	3	

Según el análisis PIMA se detectó un ensamble mineralógico de tipo sm (montmorillonita, kao (hallosita) e illita, para la muestra de lodos chi_1según la asociación sm-hall-ill y para la muestra Chi_3 se tiene solamente el ensamble **sm** (montmorillonita y kao (hallosita), según la asociación **sm-hall**, los cuales muestran una notoria diferencia entre ambas muestras.

CONCLUSIONES:

- Las unidades estratigráficas que afloran en el área evaluada, corresponden a rocas cretácicas y cenozoicas, siendo las rocas cenozoicas las que afloran en mayor parte del área. Desde el punto de vista estructural, se identificaron dos sistemas principales de fallas, las fallas NO-SE y las fallas E-O. Considerando un análisis somero sobre la cinemática de dichas estructuras, se determinó dos tipos de movimientos: sinestral de rumbo y compresivo, con evidencias de reciente reactivación.
- 2. La unidad hidrogeológica permeable del área, lo constituye las rocas volcánicas fracturadas, en las inmediaciones de la surgencia de aguas y lodos. Pero la más importante, para el análisis, lo constituye la zona de transición entre suelo y roca de basamento: material totalmente saturado de agua subterránea, con escasa circulación por encontrarse confinado y con dos manantiales de descarga visible.
- 3. En el área se identificaron dos tipos de facies químicas: las fuentes Chi_1 y Chi_2, son de tipo sulfatada cálcica (Ca-SO4) y la fuente Chi_4, de predominio clorurada sódica (Na-Cl). La primera ligada a ambientes lacustres con influencia de aguas de deshielo; y la segunda a las aguas subterráneas de las unidades permeables (areniscas cuarzosas). La gran mayoría se encuentran con pH neutro y bajo contenido de metales disueltos.
- 4. El origen de las aguas subterráneas del área, son producto de la recarga a partir de la infiltración de las aguas pluviales estacionales, abundantes en la región, y de la recarga mediante infiltración de las aguas de deshielo. Precisamente esta estacionalidad es que mueve elementos finos, limos y arcillas, generando surgencias estacionales de aguas y lodos blanquecino.
- 5. Existen evidencias de campo, que comprueban el afloramiento del lodo blanquecino en tiempos pasados.
- 6. Los lodos analizados (Chi_1 y Chi_3) mediante: metales en lodos, Rayos X y PIMA, muestran propiedades diferentes, interpretándose que no son los mismos lodos que se utilizan en las perforaciones de exploración. Sin embargo no se descarta la posibilidad de que exista influencia de estos al momento de perforar en rocas muy fracturadas.
- 7. La surgencia de aguas y lodos suelen ser estacionales, se presentan como consecuencia de la existencia de niveles confinados entre las fracturas de las rocas volcánicas. La presión hidráulica natural, en estos niveles confinados, aumenta con la infiltración de las lluvias. La surgencia de las aguas y lodos se producen cuando el nivel de aguas que se almacenan, llegan a zonas con fisuras que se intersectan con la superficie. La presencia de limos blanquecinos es debido a que la surgencia atraviesa ambientes lacustres.

RECOMENDACIONES

- Realizar un inventario detallado de los puntos de aguas subterráneas (manantiales termales y fríos), y monitorear sus propiedades fisicoquímicas, mensuales (principalmente: pH, T°, CE y TDS) con equipos portátiles. Si existe variaciones en los valores de pH y T° nos dará indicios de un posible rebrote de aguas y lodos.
- 2. Para determinar con exactitud el origen de los lodos encontrados en la surgencia Chi_1, se recomienda realizar análisis de Isotopos ambientales (O18 y Deuterio) e isotopos radiactivos (Tritio y Carbono), los mismo que indicaran la edad de las aguas y tiempo de residencia en el subsuelo desde su infiltración.
- 3. Se recomienda el uso de trazadores, en la parte alta (lugar de las perforaciones) y rastrearlas hasta la surgencia, esto nos podrá Mejorar el sistema de recojo y recirculación de las filtraciones de la actual presa de relaves, considerando las filtraciones actuales en la base de la presa de relaves 2 y3, estos requieren bombeos permanentes hacia la Estación de reciclaje, para su tratamiento y vertido al medio receptor.
- Continuar con el monitoreo hidroquímico de las fuentes identificadas en el presente reporte, principalmente Chi_1 y Chi_2. Parámetros químicos de las aguas subterráneas y superficiales del entorno, a fin de evaluar los posibles cambios fisicoquímicos.

REFERENCIAS

- Ángeles, S., Rosales, L. & Ramos J. (2004) Características de flujos regionales, y su manifestación, tres casos en México, Instituto de Geografía de México.
- Benavides V. 1962: Estratigrafía pre Terciaria de la región de Arequipa. Bol. Soc. geol. Perú, 38: 5-63.
- Cartwright I. et al. (2008) Integrating physical hydrogeology, hydrochemistry, and environmental isotopes to constrain regional groundwater flow: Southern Riverine Province, Murray Basin, Australia. Groundwater Flow Understanding p.105-134
- Delleur J.W. (1999) The Handbook of groundwater engineering. CRC Press. 945 p.
- Gea –DES Ingenieros SAC (2005) Evaluacion Ambiental Categoria "C" Proyecto Millo. 18 p.
- Hoefs Jochen, (2009) Stable Isotope Geochemistry. Sixth edition Springer, 281 p.
- Lamban, J & Custodio, E (1999)-Estudio isotópico ambiental(O-D) en la unidad Anoia: Principales Zonas de recarga e implicaciones en el funcionamiento Hidrogeológico del sistema. Publicado en Ingeniería del Agua. Vol. 6 Num. 2(junio 1999) p. 139-150.
- Mendívil S. 1965: Geología de los cuadrángulos de Maure y Antajave (hojas 35-x, 35-y). INGEMMET. Boletín. Serie A: Carta Geológica Nacional, vol. 10, 99 p., 1965
- Palacios O. 1975: Mapa geológico del cuadrángulo de Chullca 30-q. Carta Geológica del INGEMMET.
- Pradeep K.; Joel R. Gat; & KLAUS F.O. (2005) Isotopes in the water cycle. Springer, 373 p.
- PULIDO, J. (1978) Hidrogeología Práctica. Bilbao: URMO, 314 p.
- Herráez Isabel (2008) Relaciones isotópicas, oxigeno-18 y deuterio, entre las aguas superficiales y subterráneas. Técnicas y aplicaciones multidisciplinarías de los isótopos ambientales, p 25-43.
- Rollinson H.R. (1993) Using geochemical data: evaluation, presentation, interpretation. Longman Scientific & Technical. 352 p.
- Vilanova E.; Mas-Pla J. & Menció A. (2008)-Determinación de sistemas de flujo regionales y locales en las depresiones tectonicas del Baix Emporada y la Selva (NE de España) en base a datos hidroquímicos y isotópicos. Boletín Geológico y Minero, 119 (1), p. 51-62
- Wiliam J. Deutsch (1997) Groundwater geochemistry: fundamentals and applications to contamination, New York, Lewis Publishers 221 p.
- Wilson, J. 1962. Geología de los cuadrángulos de Pachia y Palca (Hojas 36-V y 36-x). INGEMMET. Boletín. Serie A: Carta Geológica Nacional, n. 4, 82 p., 1962

ANEXOS:

- Anexo I. Resultados de análisis de aguas, realizado en INGEMMET
- Anexo II. Resultados de análisis de aguas realizado en SGS
- Anexo II. Resultados de análisis de Lodos SGS
- Anexo IV. Resultado de análisis de Lodos INGEMMET
- Anexo V. Resultado de análisis de Rayos X en lodos, INGEMMET
- Anexo VI. Resultado de análisis de PIMA en lodos, INGEMMET

DIRECCIÓN DE LABORATORIOS LABORATORIO DE QUÍMICA ANALÍTICA

INFORME DE ANALISIS Nº 005-2011-INGEMMET/DL/LQ

1 ï

÷.

7

REF. 5	SOLICITUD/O.T.
SOLIC	ITADO POR
ANAL	SIS DE
FECH.	A

Solicitud Nº 018-2011-INGEMMET/DGAR

Ing. Fluquer Peña AGUAS: METALES DISUELTOS

13 de Setiembre de 2011

ANIONES:

CODIGO DE	SO4"	CO3"	HCO3	F	CI.	NO,	
MUESTRA	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
1 Chi_1_08_2011	486.6	*N.D.	147.6	1.6	4.1	N.D.	
2 Chi 2_08_2011	333.6	N.D.	118.6	2.1	2.7	N.D.	
3 Chi_4_08_2011	256.3	N.D.	467.2	3.4	468.8	N.D.	

L.D.M.(mg/L) 0.5 0.5

MÉTODO: CO3", HCO3 Titrimétrico F', Cl', NO₃', SO₄": Cromatografia Iónica * N.D. = No Detectable

1

Ń"	CODIGO DE	Ca	Mg	Na	K	Sr	1.i	
	MUESTRA	mg/L	mg/L,	mg/L	mg/L	mart	mg/L	
2	Chi_2_08_2011	199.40	4.6	39,36	4.23	1.33	0.111	
3	Chi_4_08_2011	143.16	10.6	364.13	74.5	1.76	5.47	

MÉTODO: Espectrometria de Emisión Atómica por Plasma Acoptado Inductivamente (ICP-AES)

57

N.º	CODIGO DE	AI	As	Ba	81	Cd	Co	Cr	Cu	Fe	Mn mg/L
19	MUESTRA	mg/L.	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
2	Chi_2_08_2011	0.069	0.012	0.024	<0.1	≤0.001	< 0.001	<0.02	<0.003	0.167	1.06
3	Chi_4_08_2011	<0.02	0.551	0.087	<0.1	≲0.001	<0.001	< 0.02	<0.003	0.222	0.729

CODIGO DE Mo Ni Pb Sb Se Sn Ti TI ۷ Zn N* MUESTRA mg/L 2 Chi 2 08 2011 <0.005 <0.005 < 0.01 <0.006 < 0.02 <0.005 <0.003 < 0.02 <0.02 0.011 3 \$0.005 Chi 4 08 2011 < 0.005 < 0.01 0.009 < 0.02 <0.005 <0.003 < 0.02 < 0.02 0.009 0.003 L.D.M.(mg/L) 0.005 0.005 0.01 0.006 0.02 0.005 0.02 0.02 0.003

MÉTODO : Espectrometría de Emisión Atômica por Plasma Acoplado Inductivamente (ICP-AES)

METALES TOTALES:

L.D.M.(mg/L)

0.02

0.01

0.001

N*	CODIGO DE	Ca	Mg	Na	к	Sr	LI	
· ·	MUESTRA	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
1	Chi_1_08_2011	295.3	68.1	53.8	9.7	1.85	0.17	
2	Chi_2_08_2011	205,6	4.7	40.7	4.7	1.46	0.11	
3	Chi_4_08_2011	147.5	11.1	386.3	77.8	1.89	5.75	
3	Chi_4_08_2011	147.5	11.1	386.3	77.8	1.89	t	
	L.D.M.(mg/L)	0.3	0.1	0.1	0.2	0.02	0.00	

MÉTODO : Espectrometria de Emisión Atómica por Plasma Acopiado Inductivamente (ICP-AES)

N#	CODIGO DE	Al	As	Ba	Bi	Cd	Co	Cr	Cu	Fe	Mn
	MUESTRA	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
1	Chi_1_08_2011	59.95	0.080	0.745	< 0.1	0.016	0.056	0.073	0.013	85.5	5.16
2	Chi_2_08_2011	0.087	0.019	0.024	< 0.1	< 0.001	≤ 0.001	<0.02	< 0.003	0.120	0.993
3	Chi_4_08_2011	0.074	0.571	0.089	< 0.1	<0.001	≤0.001	<0.02	< 0.003	0.839	0.700

0.1

0.001

0.001

0.02

0.003

0.01

0.001

N*	CODIGO DE	Mo	Ni	Pb	Sb	Se	Sn	TI	TI	V	Zn
<u>.</u>	MUESTRA	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
1	Chi_1_08_2011	0.015	0.075	0.076	0.012	<0.02	<0.005	0.027	< 0.02	0.120	0.317
2	Chi_2_08_2011	< 0.005	0.009	< 0.01	<0.006	0.045	<0.005	<0.003	< 0.02	<0.02	0.008
3	Chi_4_08_2011	<0.005	< 0.005	< 0.01	0.012	<0.02	< 0.005	< 0.003	<0.02	< 0.02	0.011

L.D.M.(mg/L)	0.005	0.005	0.01	0.005	0.02	0.005	0.003	0.02	0.02	0.003
				_						

MÉTODO : Espectrometría de Emisión Atómica por Plasma Acoplado Inductivamente (ICP-AES)

na

M.Sc. MARIA JARA F. aboratorio de Análisis Geoquímico INGEMMET

43

LABORATORIO DE ENSAYO ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACION INDECOPI-SNA CON REGISTRO Nº LE-002

INFORME DE ENSAYO CON VALOR OFICIAL MA1110758

- 22	÷					
- P	tán	ıln	a (2.	rte.	17
					-	

			AGUS ILETTERMARA.	AGUA SUBTERRÁNEA	AGUA SLETERAANEA
P	tetra: volucto desarito como		AGUA SLETTERRÂNER	AGUA SUSTERRAMEA	AQUA SLETERRÁNEA
h	ientificación de Muestra		01-1-06-3011	59-246-2011	0++0+2007
		LD	10/08/2011 DB-95-829, M	10/00/3011 (98.38:00A.H.	1996010 1002-364.H
	Oorsna (mg/L)	6.01	4.97	3.00	411.55
	Nitratos (NO3) (mg/L)	0.003	0.732	<0.011	#0.631
	Sulfatos (mg/L)	0.65	491.69	318.75	764.47
	Skarbonates (CaCO3 mg/L)	4.9	111.3	87.1	187.4
	Carbonatos (CaCO3 mg/L)	0.5	<0.5	-0.5	18.8
	Plata (mg/L)	1.01		<0.001	<0.001
	Alumísio (mg/L)	621	-	<0.01	(0.0)
	Arsénico (mg/L)	6.068		0.020	0.445
	Boro (reg/L)	84		0.1	22.5
	Bano (mg/L)	0.001		0.021	0.501
	Betilo (mg/L)	0.0003	2	<0.0001	0.0020
	Barnutas (mg/l.)	0.085		<0.005	<0.005
	Calido (mg/L)	81		>3D	350
	Cadmin (mg/L)	0.001	-	<0.001	<0.001
	Certs (mg/L)	0.09	-	×0.05	<0.05
	Cobelto (mg/L)	0,001		<0.001	<0.001
	Crons (rng/L)	0.001		<0.001	<0.001
	Cobre (mg/1)	6,803	-	<0.003	<0.003
	Hero (Agr.)	81	-	0.1	0.4
	Potasio (mg/L)	8.1	_	2.9	50.2
	Lantano (regn.).	6.008		<0.0005	<0.0005
	Litto (mg/L)	0.29	-	0.12	>1
	Magnesia (ing/L)	0.24	+	195	11.08
	Manganeso (img/L)	9.002	-	1.143	0.858
	Mollodeno (mg/E)	6.085	14 I.	<0.005	<0.005
	Sodio (mg/l.)	8.5	-	42.8	>60
	Nequel (mg/L)	0.081	-	<0.001	+0.001
	Fóslara (mg/L)	847	-	<0.1	<0.1
	Plans (mg/L)	0.004	-	<0.004	<3.004
	Artimonia (mg/L)	0.001	-	<0.005	<0.005
	Escandio Disuelto ((ng/L)	0.001	-	<0.003	<0.003
	Selanio (mg/l.)	9.05	+	<0.05	<0.05

LABORATORIO DE ENSAYO ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACION INDECOPI-SNA CON REGISTRO N° LE-002

INFORME DE ENSAYO CON VALOR OFICIAL MA1110758

Página 3 de 7

			ADUA SUSTERAÁNEA ADUA SUSTERAÁNEA	AGUA GUITERRÄMEN AGUA SUITERRÄMEN	ADJA SLITTERRÄNDA ADJA SLITTERRÄNDA
			D+1463(1) 1039(301) 38/423674	CH-3-89-2811 2009/2011 (81:30:03A.M.	DV-4-DR-2011
	Slide Disueto (SIO2) (mg/L)	8.8	-	20.5	×25
	Estaño (mg/L)	630	+	<0.01	<0.01
	Estrancio (mg/L)	1.001	-	1.463	2.078
	Titario (rigil)	6.009		<0.00)	0.009
4	Talio (mg/L)	8.85	-	<0.03	<0.03
4	Vanadio (rig(L)	100.0	-	<0.002	<0.002
8	Wolflamit/Tunisgteno (mg/l.)	0.008	-	0.008	0.115
	Inio (mg/L)	0.005		<0.005	<0.005
	Zinc. (mg/li.)	6.008	÷.	<0.005	<0.005
	Granie (mgl.)	6,000		<0.003	<0.003
	Plata (mg/L)	0.001	0.010	<0.001	<0.001
	Aluminio (mg/L)	8.01	>25	0.10	0.30
	Arsénico (reg/L)	0.085	0.630	0.028	0.640
	Baro (mg/L)	8.1	0.1	0.2	>2.5
	Bario (mg/L)	0.003	>5	0.030	0.115
	Berlio (mg/L)	BLOBER	0.0330	<0.0003	0.0023
	Benuto (regil.)	8,089	0.005	<0.005	<0.005
	Calcio (mg/L)	.0.1	>50	>50	>50
	Cadmin (reg/L)	8.001	0.005	<0.001	<0.001
	Cerio (mg/t.)	2.85	1.30	<0.05	<0.05
2	Cobetto (mg/t.)	6.001	0.425	<0.001	<0.001
ñ	Cramo (mg/L)	0.004	0.380	<0.001	<0.001
	Cobre (mg/L)	6.800	0.825	<0.003	<0.003
	Herro (mg/L)	.44	>60	0.3	1.4
	Potasio (reg/L)	41.	19,1	3.1	51,9
	Lantano (mg/L)	0.3025	0.6185	<0.0005	<0.0005
	(figh) atti	0.0m	0.35	0.13	>1
	Magnesta (mg/L)	3.04	×50	3.96	12.25
	Monganeso (mg/k.)	0.051	>50	1.203	1.013
	Molitideno (mg/L)	8.000	II.040	<0.005	-03.005
	Sodio (mg/l.)	.0.1	>63	43.8	>60
	Niguel (mg/L)	6.001	0.565	+0.005	<0.001

45

LABORATORIO DE ENSAYO ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACION INDECOPI-SNA CON REGISTRO N° LE-002

Página 4 de 7

INFORME DE ENSAYO CON VALOR OFICIAL MA1110758

			AGUA SUBTERRANEA	AGLIA SUFTERRANSA	AGUA SUBTERRÁNICA
			AGUA SLIETESRÅNDA	AGUA SUBTERRÂNEA	AGUA SUBTERRÁNEA
			0+148-200 2020/2011 30-05-204.M.	04249-2011 1006/2011 (M.2008AM	0>+408.2011 15/06/2011 18:30:004.94
	Póstoro (mg/L)	0.1	18.9	0.1	<8.1
	Piomo (mg/L)	8.004	0.530	<0.004	+0.004
	Antimonio (mg/k.)	6.825	<0.005	<0.005	0,005
	Estandio Total (mg/L)	8.903	<0.003	<0.003	<0.003
	Selenio (mg/L)	0.05	<0.05	<0.05	<0.05
	Silicio Total(SICI2) (mg/L)	4.5	>25	22.4	>25
	fataño (mg/L)	8.05	<0.01	<0.01	<0.01
2	fatroncia (mg/L)	0.001	>2.5	1.583	2.165
1	Titanio (mg/L)	0.085	0.265	<0.003	8.010
	Talio (mg/L)	8.03	<0.03	<0.03	<0.03
	Variadio (mg/L)	1.052	0.960	<0.002	<0.002
	Walframio/Tunigtono (mg/L)	8.005	<0.005	0.013	0.125
	Italio (mg/L)	8.905	0.155	<0.005	<0.005
	Zhc (mg/L)	8.005	2.010	<0.005	<0.005
	Orcanio (mg/L)	1.000	0.010	<0.003	<0.003

LABORATORIO DE ENSAYO ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACION INDECOPI-SNA CON REGISTRO Nº LE-002

Página 1 de 2

INFORME DE ENSAYO CON VALOR OFICIAL MA1111798

CONSORCIO MINERO HORIZONTE S.A. A solicitud de: 3R. CRANE 102 5-5. URB. JACARANDA SAN BORJA ENV / UB-310727-004 Solicitud de Ersayo: Muestreo realizado por: Cierto 3 Cantidad Muestras: Proyecto Millo Fecha de Recepción a SGS: 16/05/2011 03:00 Procedencia n.m. Analisis Método EPA 70005 Rev.02, 2007: Flame Atomic Absorption. Spectrophotometry. Method Calco Disselto Sodio Disuelto EPA 70008 Rev.02, 2007: Fiame Atomic Absorption Spectrophotometry Method Matriz Producto descrito como Identificación de Muestro ALLA SATTRAMANA ACLA MOTTRADAS ADLA IL STTERAMEN AGA MUTTRANES ADLA DI BITCHIAMEN AGUE SUBTERNAMES Die 1-08-2011 Ch+2+10-2011 Q1-+10-2011 PARTH (0-0101A.N. IAMORTI INSTRUM HAMPETT IN HOUSE A LD. Calde Douetto (mg/L) 9.08 35.58 178.92 140.52 8.02 Sodio Disuelto (mg/L) 493.00

LABORATORIO DE ENSAYO ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACION INDECOPI-SNA CON REGISTRO Nº LE-002

INFORME DE ENSAYO CON VALOR OFICIAL MA1110958

Página 2 de 4

Ma	itriz Inducto descrito como		AGOR BUBTORANCE
10	entificación de Muestra		ALLA D.BTERRARCA
		LD.	04148-001 1898/001 88-0164-5
-	Plata (mpl)	4.00	+0.001
	Aluminia (mail.)	421.	<0.01
	América (molt)	3.088	8.020
	Box (mail)		-01
	Barta (mail)	1.001	0.430
	Bette (mpt)	0.9900	0.0015
	Barrier (mgc.)	1.000	-0.005
	Calcin (mail)		
	Column (rept.)	4.001	-0.001
	Caterio (regil)		-0.0E
	Coheto (molt)	-1.001	0.000
	County (regil)	8.001	8.ME
	Cobio (mpt)	4.00	0.000
	History (mg/L)		1.000
5	Patratio (mg/L)		99.1
1	Potaso (regit.)	0.0000	10
Ŕ.	Landino (mg).		<0.0005
	una (mgr.)		0.10
	Magneec (mgL)		6.95
	Mangarreso (mg/L)	100	1.040
	MoRodeno (mgl.)	120	0.023
	Sodio (mg/L)	8.1	53.1
	Niquel (mg/L)	4,001	0.005
	Pósfaro (reg1.)	8.1	<0.5
	Piono (mg/L)	8,004	0.005
	Antimoria (mg/L)	8.385	<0.005
	Eszandio Disuetto (mg/L)	. 6305	<0.003
	Selenia (mg/L)	1.00	<8.05
	Silkio Disuetta (SIO2) (mg/L)	0.8	11.5
	Estaño (mg/L)	0.01.	<0.01
	Estroncio (mg/L)	8.001	1.673

LABORATORIO DE ENSAYO ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACION INDECOPI-SNA CON REGISTRO Nº LE-002

Página 3 de 4

INFORME DE ENSAYO CON VALOR OFICIAL MA1110958

			MALA SLETTINANIA
			ADIA D. BTO DATA
		-	0-149-201
			REALIZED DEVELOPMENT
	Titanio (mg/L)	9.009	<0.003
	Talo (mp/L)	6.03	<0.03
5	Vanadio (mg/t.)	1.083	0.005
ł.	Wothamio/Tunsgtono (mg/L)	0.009	<0.005
ģ.	Item (mg/t)	3.005	<0.005
	Zinc (mg/i)	6.009	0.005
	Ononio (mg/L)	0.000	<0.963

INFORME DE ENSAYO MA1110785

atria milia	nto descritto mono	F	10005	LODOS
keriti	ficación de Muestra	- Aller	Concession of the second se	Locos
		L.D.	01-1-09-000 30-902/051 00:00:00404	0993062011 10/06/2011 10:25:00AM
_	Cademates (Million) (Minu)	purg -		
	Carbonatos (Harris (-2000)	5.01	41	<1
	Brackenster (Mirror (1994)		0.2	3.2
	Endorse (Promotion)		25	10
_	Suffation (Centimol por litro)	0.07	79.01	28.14
	(hete (mg/kg)	0.2	0.3	6.9
	Aurona (mg/kg)	000	⇒5000	>5000
	Araénico (mgAig)		18	10
	Boro (mg/kg)	1	<1	<1
	thario (righty)	. 1	235	128
	Berlio (mg/kg)	0.9	2.4	0.9
	Bismute (mg/hg)	1.1	<5	<5
	Calos (mg/kg)	100	6752	9079
	Gadmio (mg/kg)	1	<1	+1
	Colualto (mg/kg)	1	13	11
	Crome (mg/kg)	. 4	17	49
	Cobre (mgAg)	0.1	57.8	65.9
	Hierro (md/kg)	100	>10000	>10000
	Potasio (mg/4g)	30.	1715	1204
	Lantano (mg/kg)	4.5	42.4	29.4
	Hagnesia (mp/kg)	100	> 10000	5834
	Hanganess (mg/kg)	2	1630	1889
	Holibdeno (mg/kg)		3	3
	Sodia (mg/kg)	100	190	669
	Niquel (mg/kg)	1	22	19
	Foeforo (mg/kg)	194	856	1096
	Plome (mg/kg)	2	27	50
	Antimunio (mg/kg)		45	-5
	Excandio (mg/kg)	0.5	10	2.1
	Estaño (mg/kg)	30	< 10	+10
	Extransic (ma/ka)	85	850	47.7
	Titano (molto)	100	4300	36.6

INFORME DE ENSAYO MA1110785

		L0005	LODOS	
		LODOS	LODOS	
		0%105-210	01-3-09-2011	
	3	MADDER OF STREET	10,09,0011 10,29-004.0	
Talio (mg/kg)	2	5	2	
Talio (mg/kg) Vanadio (mg/kg)	2	5 40	2 37	
Talio (mg/kg) Vanadio (mg/kg) Wolframio/Tutagteno (mg/kg)	2	5 40 <10	2 37 33	
Talio (mg/kg) Vanadio (mg/kg) Weiframic/Turagteno (mg/kg) Izrio (mg/kg)	2 2 40 05	5 40 ≪10 8.0	2 37 33 9.0	
Talio (mg/kg) Vanadio (mg/kg) Wolfmmic/Tunagteno (mg/kg) Enio (mg/kg) Zinc (mg/kg)	2 2 40 0.5 0.5	5 40 <10 8.0 131.8	2 37 33 9.0 114.5	

NUCLEMINE DIRECCIÓN DE LABORATORIOS - LABORATORIO DE QUÍMICA Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information <t< th=""><th>CA ENAMET INGENTION OF LANSTERIOUS IN CARE LANSTERIOUS IN CARE LANSTERIOUS IN CARE LANSTERIOUS IN CARE LANSTERIOUS INC. 2011</th><th>MET/DULO 14/10/2</th><th>DRIOS - LABORATORIO DE E DE RESULTADOS SIS N° 006-2011-INGEMMET/DLLC</th><th>A DE LABORATOR INFORME (IFORME DE ANÁLISIS SOLIGITUD Nº: 1</th><th>DIRECCIÓN INF</th><th>ostation i</th><th>× INGEM</th></t<>	CA ENAMET INGENTION OF LANSTERIOUS IN CARE LANSTERIOUS IN CARE LANSTERIOUS IN CARE LANSTERIOUS IN CARE LANSTERIOUS INC. 2011	MET/DULO 14/10/2	DRIOS - LABORATORIO DE E DE RESULTADOS SIS N° 006-2011-INGEMMET/DLLC	A DE LABORATOR INFORME (IFORME DE ANÁLISIS SOLIGITUD Nº: 1	DIRECCIÓN INF	ostation i	× INGEM
INFORME DE ANALISIS N° 006-2011-INGEMMET/DULO SOLIGITUD N° 017-2011-INGEMMET/DULO ROYECTO CATI-Apoyo a Entitades SOLIGITUD N° 017-2011-INGEMMET-DGAR CESPONSABLE SOLIGITUD N° 017-2011-INGEMMET-DGAR CANTIDAD Y TIPO DE MUESTRAS CATI-Apoyo a Entitades SOLIGITUD N° 017-2011-INGEMMET-DGAR COREDEINCIA CA TA As Ba Bi TA/10/2011 N° CODISIO Ag Ba Bi Ca Ca Ca N° CODISIO Ag Ba Bi Ca Ca Ca Ca N° CODISIO Ag Ba Bi Ca	2011 Material Profession State	NET/DULG 14/102	IS Nº 006-2011-INGEMMET/DL/LC	FORME DE ANALISIS souidirub NºL	INF 31 - Apovo a Entidades		
ROYECTO Sol.IGITUD N*: 017-2011-MICEMMET-0GAR RESPONSABILE Constrate GA 11 - Apoyo a Entidades. RESPONSABILE Fluquer Peña L. CANTIOAD Y TIPO DE MUESTRAS CO. Muestras de lodos FOCEDENCIA Proyecto Milio-Apurimac. FECHA. 14/10/2011 N° CODISIO Ag Ba BI Ca Ca N° CODISIO Ag Ba BI Ca Ca Cd N° CODISIO Ag As Ba BI Ca Cd 14/10/2011 N° COLIGIO NO Ag Ba BI Ca Cd Cd N° COLIGIO NO Ag Ba BI Ca Cd Cd N° CHI-1 1.40 20400 c10 7.62 1 CHI-1 1.40 205.0 c5 94000 6.09 1 L.D.M 0.5 5 5 7.02 1 1 1 1 1 1 <th>2011 ALE CO C Cr ALE CO C Cr ALE CO C Cr ALE CO C Cr ALE CO C C C C C C C C C C C C C C</th> <th>14/10/2</th> <th>1": 017-2011-INGEMMET-DGAR</th> <th>SOLICITUD Nº: C</th> <th>11 - Abovo a Entidades</th> <th></th> <th></th>	2011 ALE CO C Cr ALE CO C Cr ALE CO C Cr ALE CO C Cr ALE CO C C C C C C C C C C C C C C	14/10/2	1": 017-2011-INGEMMET-DGAR	SOLICITUD Nº: C	11 - Abovo a Entidades		
ROVECTO GA 11 - Apoyo a Entidades. RESPONSABLE Fluquer Peña L. CESPONSABLE Fluquer Peña L. CANTIOAD Y TIPO DE MUESTRAS 02 Muestras de lodos FECHA FECHA 14/10/2011 N CODIGO As Ba Bl Ca N CODIGO As Ba Bl Ca Ca N CODIGO As Ba Bl Ca Ca Ca N CODIGO As Col DS 10/201 Ca Ca Ca Ca N COLICIA As Ba Bl Ca Ca Ca Ca Ca N COLICIA As As Ba Bl Ca Ca Ca Ca Ca 1 1/40 20400 <10 1037 <5 16300 7.62 1 LD.M 0 10 10 5 5 10 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>	2011 Material Materia Material Material Material Material Material Material Material	14/10/2			11 - Abovo a Entidades		
ATIPO DE MUESTRAS 02 Muestras de lodoa 14/10/2011 14/10/2011 ROCEDENCIA Proyecto Millo-Apurimac. FECHA 14/10/2011 N CODIGO Ag Al As Ba Bl Ca Cd N CODIGO Ag Al As Ba Bl Ca Cd N COLISIO Ag Al As Ba Bl Ca Cd N CHI-1 1.40 20400 <10 1037 <5 16300 7.62 1 L.D.M 0.5 10.4 10 10 5 5 10 1	2011 Materiolination 1 Co Cr Cu 1 1 1 2 48.66 1 1 1 2 48.66	14/10/2			uer Peña L	Elaqui	OVECTO SPONSABLE
N° CODIGO Ag AI As Ba BI Ca Cd MI 1 CHI-1 1.40 20400 <10	I Co Cr Cu 9 19/9 19/9 19/9 1 15.51 19.63 46.68 2 15.73 67.63 69.05 1 1 1 2	1.11.11.00	PECHUA-		Autestras de lodos.	DE MUESTRAS, 02 M	UNTIDAD Y TIPO D
v* conido Ag Al As Ba Bi Ca Ca Cd 1 CHI-1 1.40 20400 e10 235.0 e5 9409 999 1999 2 CHI-3 1.40 20400 e10 235.0 e5 9400 609 1 2 CHI-3 10.4 66100 e10 1037 e5 16300 7.62 1 L.D.M 05 10 10 5 5 10 1	I Co Cr Cu g µg/g µg/g µg/g 9 18.51 19.63 48.68 12 15.73 67.63 69.05 1 1 1 2		000341		THE REPORT OF TH	20112	COLOR POST COLOR
1 CHI-1 Hg/g H	g µg/g µg/g µg/g 9 18.51 19.63 46.68 2 15.73 67.63 69.05 1 1 1 2	Ca Cd	Bi Ca	As Ba	AI	Ag Ag	- CONGC
1 CHI-1 1.40 20400 <10 235.0 <5 9400 6.09 1 2 CHI-3 10.4 66100 <10	9 18.51 19.63 48.68 2 15.73 67.63 69.05 1 1 1 2	5/84 6/84	0 h0/0 h0/0	10/01 b/01	6/6rt	b/6d	2000
LOM. 1 05 1 10 1 10 1 10 1 10 1 10 1 10 1 1	6 10.10 01.00 09.00	9400 6.05	-0 <5 9400	<10 235.0	20400	1.40	CHI-1
(L.D.M. 1 05 1 10 1 10 1 5 1 50 1 10 1 1 1		10200	10201	1001 1002	00100	10.4	CHI-3
Ea K I a HI MA MA MA		01	5 1 10	10 1 5	1 01 1	0.5	ILD.M.
r CODIGO TA	Ni Ni P	Mn Mo	UM BM	La Li	K	0 Fe	CODIGC
1 CHL-1 31700 1500 46.13 14.74 13800 17.45 <5	9 pg/9 pg/9 pg/9	1745 ×5	4 13800 1745	46.13 14.74	1500	31700	CHI-1
2 CHI-3 39500 29100 45.03 20.15 9000 2147 <5 1	16700 21.55 1565	2147 <5	15 9000 2147	45.03 20.15	29100	39500	2 CHI-3
[EDM I 10 10 5 5 10 5 5	1 10 1 5 1 10 J	5	1 10 1 5	5 5	1 10 1	1 10	LD.M.
Pb Rb S Sb Sn Sr Ti	V W Zn	Sr TI	Sn Sr	S Sb	42	Pb	CONICO
6/6rl 6/6rl 6/6rl 6/6rl 6/6rl 6/6rl	6/6ri 6/6ri 6/6ri 6	5/61 6/61	0 h9/8 h9/8	6/6/1 6/6/	6/6/1	6/6/1	00000
1 CHI-1 29.40 755.4 1900 10 10 20 10	0 155.67 20.00 131.57 9 84.27 42.12 132.32	217.01 10 347.45 10	10 217.01	1600 10	755.4 1112.5	29.40	2 CHI-1
LDM 10 10 10 10 10 10 10 1	6 20 5	10 10	10 10	10 10	1 01 1	1 10	L.D.M.
METODO: Espectrometria de Emisión Atômica por Plasma Acoplado Inductivamente (ICP-AES)		CP-AES)	oplado Inductivamente (ICP-AES)	mica por Plasma Acop	etria de Emisión Atóm	Espectrome	METODO:

	FORMATO	Código Versión	: DL-F-164 : 00
*INGEMMET	REPORTE DE RESULTADOS DE ANÁLISIS	Aprobado por	: DL
	MINERALÓGICOS POR DIFRACCIÓN DE	Fecha aprob.	12 JUL, 2011
	RAYOS "X"	Página	: 1 de 2

	REPORTE Nº 046-20	11/DL/LRX		
SOLICITUD №	016-2011-INGEMMET/DGAR	REFERENCIA	PROYECTO: GA11 (Pro (Millo)	yecto
ORDEN DE TRABAJO Nº				
SOLICITADO POR	Fluquer Peña L.			
Nº DE MUESTRAS	02			
TIPO DE ÁNODO	Cu			
DIFRACTOMETRO MARCA	SHIMADZU	MODELO	XRD -6000	

DIFRACTOMETRO MARCA	SHIMADZU	MODELO	XRD -6000
ENERGIA	40 Kv, 30 mA		

FECHA

22 de Agosto de 2011

ESTUDIO REALIZADO POR Palermo Carrasco Guerrero

		RANGO DE BARRIDO (20)		
DE	2*	HASTA	70°	

CODIGO DE MUESTRA		Chi-3 0	Chi-3 08-2011					
Nº	MINE	RAL	FÓRMULA	96				
01	Cuarzo	n 10-07 n	SiO2	57.14				
02	Albita		(Na,Ca)Al(Si,Al)3O8	26.08				
03	Montmorillonit	а	Ca0.2(AI,Mg)2Si4O10(OH)2.4H2O	4.54				
04	Ortoclasa		(K,Ba,Na)(Si,Al)4O8	2.83				
05	Amorfo		-	2.04				
06	Pirita		FeS2	1.70				
07	Muscovita		1.36					
08	Augita		Ca(Fe,Mg)Si2O6	1.25				
09	Calcita	Calcita CaCO3						
10	Hematita	natita Fe2O3						
11	Fresnoita		Ba2TiSi2O8	0.91				

	FORMATO	Código Versión	DL-F-164
XINGEMMET	REPORTE DE RESULTADOS DE ANÁLISIS	Aprobado por	DL
	MINERALÓGICOS POR DIFRACCIÓN DE	Fecha aprob.	12 JUL 2011
	RAYOS "X"	Página	2 de 2

CODIGO DE MUESTRA Chi-		Cni-1 (08-2011				
Nº	MINER	IAL	FÓRMULA	%			
01	Cuarzo		SiO2	43.07			
02	Clorita		(Mg,Al)6(Si,Al)4010(OH)8	14.87			
03	Amorfo		-	13.98			
04	Albita		(Na,Ca)Al(Si,Al)3O8	11.44			
05	Montmorillonit	а	Ca0.2(Al,Mg)2Si4O10(OH)2.4H2O	8.89			
06	Ortoclasa		(K,Ba,Na)(Si,Al)4O8	3.30			
07	Muscovita		(K,Na)(Al,Mg,Fe)2(Si3.1Al0.9)O10(OH)2	2.29			
08	Pirita		FeS2	1.40			
09	Calcita		CaCO3	0.76			

OBSERVA	CIONES
inguna	
V"B" DIRECTOR DE LABORATORIOS	FIRMA
DIMELING	Espec PALERMO CARRASCO GUERRERO Laboratorio de Rayos X INGEMMET

	2000000	SECTON DE ECCON DE DOIA A FECHAY MA				780				
	ACCURACE ON CONTRACT	NOUNDAL SU	1010	DIMONIC		000	m	m		
	1	T		¥		NOI		-		
				(SPARA)		ALTERAC	Argāca	Arglitca		
		-				VSOCIACION	mhaltim	un hall		
	28/09/2011	nisión: 05/10/201				Offices	m[montmoritovica]. ao[hallointa]	m(montmoritionta)). ao(halloisita)		
VIV	echa envío	echa de ren	IRMA:		IRMA:	eox NH	9.4	2		
ANÁLISIS POR METODO PI	- DGAR	- PROVECTO MILLO	Fluguer Peria	- 2 muestras pulyurulentas		al nuit mitt pyr das kao dk il sn se jar cac chi cp sc				
	DIRECCIÓN DE HINEA	PROVECTO	RESPONSABLE	CANTIDAD Y TIPO DE MUESTRAS	APROBACIÓN POR AG	Muestra Ubicación None Este 42 Kal	CHI-F 8386530 760482	CHL3 8374708 727308	Estudiado por Unandratida	(Salah Star