SUB GERENCIA DE GESTIÓN DEL RIESGO DE DESASTRES.

16-11-2016

"CALCULO DEL NIVEL DE RIESGO POR FLUJO DE DETRITOS (HUAYCOS) EN LAS URBANIZACIONES Y SECTORES DE VALLECITO EL OLIVO ETAPA I Y II, CHINCHICHACA, VIRGEN DEL CARMEN, MICAELA BASTIDAS, PATIBAMBA ALTA, CERCADO, LA VICTORIA, MAGISTERIAL, MANUEL ESCORZA, VALLECITO EL OLIVO Y LAS PALMERAS.

PARA CUMPLIR LA META 27 "ACTUALIZACIÓN DE LA INFORMACIÓN PARA LA GESTIÓN DEL RIESGO DE DESASTRES" MUNICIPALIDADES DE CIUDADES PRINCIPALES TIPO B, DEL PROGRAMA DE INCENTIVOS A LA MEJORA DE LA GESTIÓN MUNICIPAL DEL AÑO 2016.

MUNICIPALIDAD PROVINCIAL DE ABANCAY

SR. JOSE MANUEL CAMPOS CESPEDES.

Alcalde Provincial.

ARQ. JESSICA CORAZAO PINTO Gerente Municipal.

ING. HECTOR OMAR HUAISARA ENCISO Sub Gerente de Gestión del Riesgo de Desastres.

EQUIPO TECNICO RESPONSABLE:

DUEÑAS GUEVARA, Yodna L. SEGOVIA ANCCO, Edwin.

MADUEÑO MELENDEZ, Maribel.

LOAIZA MUÑOZ, Israel. RIVAS COTARMA, Rosseli.

MARÍN MONTESINOS, Nilo. GAMARRA CHIPA, Roel Waldiry Coordinadora Plan de Incentivos 2016 Meta 27. Especialista Territorial y de Control de Calidad.

Ingeniera Geóloga.

Técnico Especialista En SIG.

Técnico de Campo. Técnico de Campo.

Técnico de Campo.

ABANCAY - PERÚ **2016**

ÍNDICE

			·· · · · · · · · · · · · · · · · · · ·	
RES	SUMI	EN		1
INT	ROD	UCCI	ÓN	2
ANT	ГЕСЕ	DEN	TES	2
PLA	NTE	AMIE	NTO DEL PROBLEMA	. 10
JUS	TIFIC	CACIÓ	ÓN	. 10
OB.	JETIV	′O		. 10
1.	MA	RCO	TEORICO	. 11
1	1	MAF	RCO NORMATIVO	. 11
1	.2	MAF	RCO CONCEPTUAL	. 12
	1.2	.1	¿QUE SON LOS FLUJOS DE DETRITOS (HUAYCO)?	. 12
	1.2	.2	CLASIFICACIÓN DE MOVIMIENTOS EN MASA (FLUJO DE DETRITOS)	. 13
	1.2	.3	¿COMO SE GENERAN LOS FLUJOS DE DETRITOS (HUAYCO)?	. 14
2.	ME	TODO	DLOGÍA DE TRABAJO	. 18
2	.1	PRC	CESO DE ANÁLISIS JERÁRQUICO	. 18
2	.2	DET	ERMINACIÓN DEL ÁREA DE ESTUDIO	. 22
	2.2	.1	DESCRIPCIÓN DEL AREA DE ESTUDIO.	. 22
	2.2	.2	INFORMACIÓN SOCIO DEMOGRÁFICO	. 24
	2.2	.3	VÍAS DE ACCESO	. 24
	2.2	.4	SERVICIOS BÁSICOS	. 25
	2.2	.5	ACTIVIDAD SOCIO ECONÓMICA	. 25
2	.3	REC	OPILACIÓN DE INFORMACIÓN	. 26
3.	PEL	.IGR(OSIDAD	. 29
3	.1	DET	ERMINACIÓN DEL NIVEL DE PELIGROSIDAD DE FLUJO DE DETRITOS	. 29
			IDENTIFICACIÓN Y CARACTERIZACIÓN DEL PELIGRO DE FLUJO OS (HUAYCO)	
	3.1	.2	PARÁMETROS DE EVALUACIÓN DEL PELÍGRO	. 34
	3.1	.3	ANÁLISIS DE SUSCEPTIBILIDAD	. 38
			ABILIDAD	
			SIS DE ELEMENTOS EXPUESTOS AL PELOGROSIS DE LOS NIVELES DE VULNERABILIDAD	
4.		_	LCULO DEL NIVELES DE VULNERABILIDAD	
_	RIES	GO '	Y RESULTADOS	. 81
			LO DEL NIVEL DE RIESGO POR INUNDACION EN ZONA DE ESTUDIO GRAFIA	
			3RAFIA,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Lista de Mapas

Mapa N° 1: Mapa de Peligro de Flujo de Detritos (huayco) de la Ciudad de Abancay Ciudades Sostenibles	1 3
Mapa N° 3: Litología de la zona de estudio	
Mapa N° 4: Pendiente de la zona de estudio 5	
Mapa N° 5: Cobertura vegetal de la zona de estudio	
Mapa N° 6: Determinación del nivel de peligro en la quebrada de Chinchichaca motiv	
del presente análisis.	
Mapa N° 6: Mapa de vulnerabilidad	
Lista de Figuras	
Figura N° 1: Mapa de susceptibilidad de Movimientos en Masa del Perú Figura N° 2: Mapa de susceptibilidad de movimientos en masa de la regió	n
Apurímac	s
(1996)	
Figura N° 4: Geología del área inspeccionada (modificado de Marocco,1975) 3: Figura N° 5: Precipitaciones mensuales máximas en 24 Horas	
Lista de Tablas	
Tabla N° 1: Peligros de huaycos en la ciudad de Abancay	
Lista de Cuadros	
Cuadro N° 1: Registro de emergencias ocurridas por Flujo de detritos (Huayco) en I Región Apurímac	
Cuadro N° 2: Registro de Flujo de detritos en la ciudad de Abancay	
Cuadro N° 3: Tipos de Movimientos en Masa 1	
Cuadro N° 4: Velocidades de los Movimientos en Masa 1-	
Cuadro N° 5: Escala de velocidad propuesta por Cruden y Varnes (1996). (Adaptad de AGS, 2000, Lee y Jones, 2004)	
Cuadro N° 6: Escala de Intensidad de Deslizamientos para diferentes procesos 2	1
Cuadro N° 7: Población, N° de manzanas, viviendas, área ocupada 2	
Cuadro N° 8: Instituciones Educativas	
Cuadro N° 9: Concesión de energía Eléctrica	
Cuadro N° 10: Resumen de actividad económica	
detritos (huayco)	

Cuadro N° 7: Fases Metodológicas para la Evaluación del Nivel de Peligro	33
Cuadro N° 13: Escala de velocidad propuesta por Cruden y Varnes (1996	6). (Adaptada
de AGS, 2000, Lee y Jones, 2004)	40
Cuadro N° 14: Precipitaciones Mensuales Máximas de 24 horas	63
Cuadro N° 15: Turbulencia de los ríos afluentes de la Cuenca del Río Mar	iño 67
Cuadro N° 16: Turbulencia De Los Ríos De La Cuenca Del Río Mariño (M.	Reynolds) 67

Lista de Fotos

Foto N° 1: Los círculos de líneas entrecortadas muestra los afloramient (filtraciones) en la zona de la avalancha. Apreciándose un caudal conside	_
momento de la evaluación	31
Foto N° 2: Zona de arranque (avalancha de detritos) del cerro Chuyllurpata	
desplazamiento del flujo de detritos (huayco)	32
Foto N° 3: Sector de Podocarpus, zona donde la inundación de detritos o	
Nótese el estrechamiento del cauce del río	
Foto N° 4: Afloramiento rocoso del Grupo Mitu	40
Foto N° 5: Depósito aluvial en la escarpa de talud	42
Foto N° 6: Depósito coluvial en la corte de talud de carretera	
Foto N° 7: Se observa al fondo el valle del Pachachaca, al centro las	
Abancay, a la izquierda el valle del Mariño y adelante las laderas empi	
tomada desde Fl Mirador).	•

SUB GERENCIA DE GESTIÓN DEL RIESGO DE DESASTRES MUNICIPALIDAD PROVINCIAL DE ABANCAY

RESUMEN

El presente trabajo se realiza las Urbanizaciones Pueblo Joven Centenario,

Urbanizaciones Las Américas, Vallecito el Olivo I y II etapa, Chinchichaca, Virgen del

Carmen, Micaela Bastidas, Patibamba Alta, Cercado, La Victoria, Magisterial, Manuel

Escorza, Vallecito El Olivo y Las Palmeras del Distrito Abancay, para el Cumplimiento

de la Meta 27 "Actualización de la Información para la Gestión del Riesgo de

Desastres" de Municipalidades de Ciudades Principales Tipo B del PROGRAMA DE

INCENTIVOS A LA MEJORA DE LA GESTIÓN MUNICIPAL DEL AÑO 2016.

El área de estudio se eligió considerando, la ubicación de las urbanizaciones con

respecto a la ciudad de Abancay, disponibilidad de información técnico científico y

apoyo de la municipalidad.

La zona de estudio tiene una extensión superficial de 6.073 Has, se encuentra

ubicado al oeste del distrito de Abancay.

El trabajo se realizó en tres etapas, la primera consistió en la recopilación de

información de las instituciones, la segunda etapa se basó en trabajos de campo,

encuestas y la tercera en el procesamiento de la información.

El mapa del peligro fue determinado por el Programa de Ciudades Sostenibles

PNUD-INDECI y Segundo Reporte de Zonas Críticas por Peligros Geológicos y

Geo-hidrológicos en la Región Apurímac - INGEMMET 2013, de acuerdo a la

ponderación de los factores condicionantes y desencadenantes el nivel es muy

alto.

1

INTRODUCCIÓN

El presente trabajo de análisis y cálculo de Nivel de Peligro se ha realizado para el Cumplimiento de las Metas 27 "Actualización de la Información para la Gestión del Riesgo de Desastres" de Municipalidades de Ciudades Principales Tipo B del PROGRAMA DE INCENTIVOS A LA MEJORA DE LA GESTIÓN MUNICIPAL DEL AÑO 2016, para lo cual, se ha escogido como zona critica las Urbanizaciones y Sectores de Vallecito el Olivo I y II etapa, Chinchichaca, Virgen del Carmen, Micaela Bastidas, Patibamba Alta, Cercado, La Victoria, Magisterial, Manuel Escorza, Vallecito El Olivo y Las Palmeras del Distrito Abancay - Apurímac por ser una de las áreas con peligro común y recurrente.

ANTECEDENTES

El Perú está asentado sobre un extenso y heterogéneo territorio que tiene como columna vertebral a la cordillera de los andes, que genera una alta diversidad geográfica, biológica y cultural. Así mismo, por su ubicación geográfica que aunada a las características geológicas naturales han determinado ser considerado como el tercer país más vulnerable del mundo, después de Honduras y Bangladesh.

La ocurrencia de fenómenos naturales como son las inundaciones, los deslizamientos, los terremotos y las erupciones volcánicas, entre otros, por si solos, representan fenómenos naturales si se desarrollan como parte de los ciclos geológicos y meteorológicos de la naturaleza; sin embargo, las intervenciones humanas en los ecosistemas naturales han provocado desórdenes a escala global que han incrementado nuestra vulnerabilidad a los desastres.

La magnitud y frecuencia de los desastres están determinadas por la ubicación geográfica y características geológicas que presenta el territorio nacional, el cual se ha

incrementado en las últimas décadas, debido a las condiciones de pobreza en las que aún vive la población.

Anteriormente, el área de estudio ha sido ya evaluada, encontrándose los siguientes trabajos: Inspección de riesgo geológico en el área de Ccocha y Pumaranra (Dávila y Zavala, 1997), Riesgos Geológicos del Perú Franjas N°2 y N°3 (INGEMMET. 2002 y 2003), Mapa de Peligros de la ciudad de Abancay (Programa Ciudades sostenibles, 2007); Inspección de la Seguridad Física del sector Ampay (Madueño, 2011) y Primer reporte de Zonas críticas de la región Apurímac (Villacorta et al, 2012).

Fuente: Informe Técnico: Evaluación del Flujo de Detritos de Tamburco.

Ministerio de Energía y Minas Instituto Geológico Minero y Metalúrgico - INGEMIVET Dirección de Geología Ambiental y Riesgo Geológico CEPTIBILIDAD FOR WOV ER WASA DEL FERD

Figura N° 1: Mapa de susceptibilidad de Movimientos en Masa del Perú.¹.

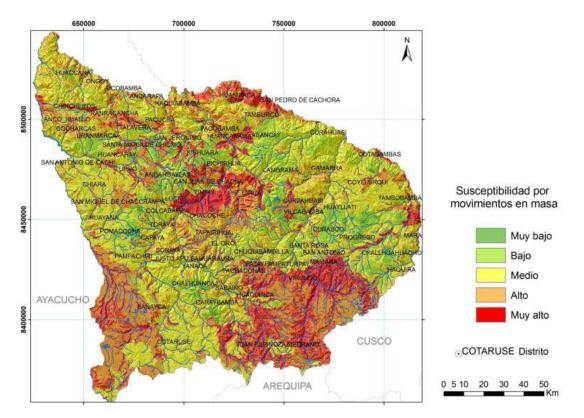
Fuente: Autoridad Nacional del Agua.

La temporada de Iluvias o periodo Iluvioso en nuestro país se desarrolla entre los meses de setiembre a abril del siguiente año, presentándose las mayores precipitaciones en los meses de verano. La intensidad de las Iluvias, estará sujeta al comportamiento del océano y la atmosfera en sus diferentes escalas; ocasionando

¹ Mapa de Vulnerabilidad Física del Perú.

cantidades superiores o inferiores a sus valores normales, llegando a presentar situaciones extremas en determinado espacio y tiempo.

La ocurrencia periódica de precipitaciones extraordinarias, ya sea por presencia del "Niño", "Niña" o de otras perturbaciones climáticas, hace que los cauces de los ríos incrementen sus caudales extremos, originándose desbordes o inundaciones en las zonas urbanas y rurales; y como consecuencia de ello los desastres. Por otro lado, la presencia de este tipo de precipitaciones han desencadenado también movimientos en masa como huaycos, deslizamientos, derrumbes, entre otros; provocando daños y pérdidas a la población y sus medios de vida. Estos daños y pérdidas socio económicas han puesto a varias zonas del país en situaciones de emergencia en más de una ocasión. Las manifestaciones adversas por la temporada de lluvias ocasionan además el deterioro de carreteras y puentes, y en algunos casos el aislamiento de ciudades. Así mismo, es afectado el sector agropecuario, que es la principal fuente de alimento e ingresos económicos de la mayoría de familias, especialmente en las zonas rurales; es por ello, que la escasez de alimentos, así como su inadecuada manipulación, conlleva al incremento de determinadas enfermedades como las diarreicas, las respiratorias, entre otras; especialmente de los grupos más vulnerables. Por otro lado, el sector vivienda es afectado directamente por daños a la infraestructura de las edificaciones así como cualquier otro tipo de construcción. Esta situación se ve agravada cuando las precipitaciones son muy intensas y en períodos de mayor duración, lo que hace más complejo el escenario adverso y condiciona negativamente el desenvolvimiento normal de las actividades socioeconómicas de la población.2:


-

Elaborado por: EQUIPO TECNICO PI 2016 META 27 MUNICIPALIDAD PROVINCIAL DE ABANCAY.

² Segundo Reporte de Zonas Críticas por Peligros Geológicos y Geo-hidrológicos en la Región Apurímac – INGEMMET 2013.

[&]quot;CÁLCULO DEL NIVEL DE PELIGRO ANTE FLUJO DE DETRITOS (HUAYCOS) EN LAS URBANIZACIONES Y SECTORES DE VALLECITO EL OLIVO I Y II ETAPA, CHINCHICHACA, VIRGEN DEL CARMEN, MICAELA BASTIDAS, PATIBAMBA ALTA, CERCADO, LA VICTORIA, MAGISTERIAL, MANUEL ESCORZA, VALLECITO EL OLIVO Y LAS PALMERAS.

Figura N° 2: Mapa de susceptibilidad de movimientos en masa de la región Apurímac.

Fuente: Mapa de susceptibilidad por movimientos en masa en la región Apurímac. Extracto del mapa nacional (Villacorta, Fidel & Zavala; 2012).

Cuadro N° 1: Registro de emergencias ocurridas por Flujo de detritos (Huayco) en la Región Apurímac.

EMERGENCIAS OCURRIDAS A NIVEL NACIONAL POR PROVINCIA Y TIPO DE FENÓMENO SEGUN DAÑOS DEPARTAMENTO : APURIMAC del 01/01/2003 al 14/11/2016														
								DAÑO	3					
FENOMENO	Total Emerg		PE	RSONALES	3		VIVIEI	NDAS	CC.	EE.	CC.	SS.	Ha. C	ULTIVO
		Damnif	Afecta	Desap	Herid	Fallec.	Destrd	Afecta	Destrd	Afecta	Destrd	Afecta	Destrd	Afecta
Prov: ABANCAY	13	85	2027	0	0	0	17	59	0	0	0	2	0	0
HUAYCO	13	85	2027	0	0	0	17	59	0	0	0	2	0	0
Prov: ANDAHUAYLAS	3	8	28	0	0	0	1	6	0	1	0	0	0	0
HUAYCO	3	8	28	0	0	0	1	6	0	1	0	0	0	0
Prov: ANTABAMBA	4	2	2284	0	0	0	1	0	0	0	0	0	0	0
HUAYCO	4	2	2284	0	0	0	1	0	0	0	0	0	0	0
Prov: AYMARAES	8	0	1635	0	0	0	0	7	0	0	0	0	0	0
HUAYCO	8	0	1635	0	0	0	0	7	0	0	0	0	0	0
Prov: CHINCHEROS	4	18	0	0	0	0	8	0	0	2	0	0	0	4
HUAYCO	4	18	0	0	0	0	8	0	0	2	0	0	0	4
Prov: COTABAMBAS	5	0	180	0	0	0	0	1	0	0	0	0	0	0
HUAYCO	5	0	180	0	0	0	0	1	0	0	0	0	0	0
Prov: GRAU	7	69	210	0	0	0	12	1	0	0	0	0	0	49
HUAYCO	7	69	210	0	0	0	12	1	0	0	0	0	0	49
TOTAL DEPARTAMENTO	44	182	6364	0	0	0	39	74	0	3	0	2	0	53

Fuente: SINPAD - Dirección Nacional de Operaciones del INDECI I.

Cuadro N° 2: Registro de Flujo de detritos en la ciudad de Abancay.

AÑO	LUGAR	DESCRIPCIÓN
10/01/2003	ABANCAY	LLUVIAS FUERTES CAUSAN DESLIZAMIENTOS DE CERROS EN LAS COMUNIDADES DE CCORHUANI, KERAPATA, CCOCHA, PUMARANRA Y SANTUARIO NACIONAL DE AMPAY, CARRETERAS AFECTADAS 5.00 KM., AREAS DE CULTIVO PERDIDO 10.00 HAS.
11/03/2012	ABANCAY, AMPAY	LAS INTENSAS PRECIPITACIONES QUE SE GENERAN POR ESTOS DÍAS A SOBRE SATURADO LOS CIMIENTOS DE LA VIVIENDA DE MATERIAL DE ADOBE CAUSANDO EL COLAPSO, O1 VIVIENDA COLAPSADA, 17 FAMILIA DAMNIFICADAS.
17/03/2012	ABANCAY	HUAYCO GENERADO EN EL SECTOR DE SAHUANAY LLEGA A LA CIUDAD DE ABANCAY POR LA QUEBRADA DE CHINCHICHACA EL CUAL ESTA AFECTANDO A LAS VIVIENDAS ALEDAÑAS AL RIO, APROXIMADAMENTE HAY 1,000 VIVIENDAS AFECTADAS QUE SE ENCUENTRAN EN EL TRAYECO DEL RIO

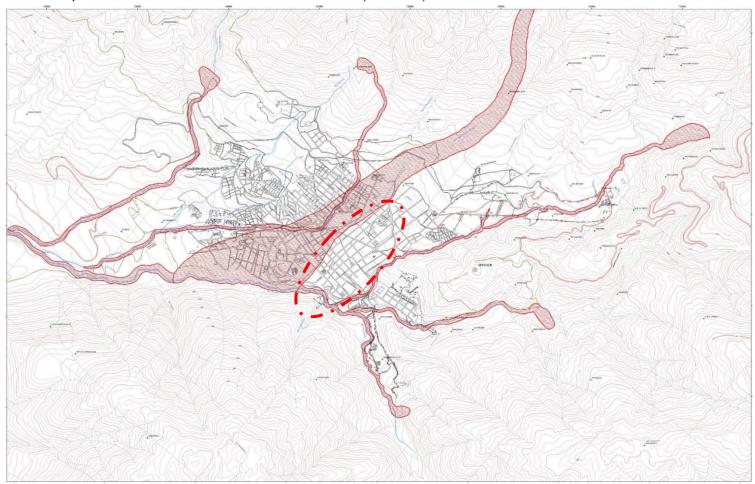
Fuente: SINPAD 2016 - INDECI.

La ciudad de Abancay tiene una larga historia de emergencias causados por fenómenos de origen climático y geodinámico, tales como deslizamientos, huaycos, inundaciones, socavación, fríos intensos, incendios en laderas y otros. Muchos de estos fenómenos están asociados al aparato glaciar del nevado Ampay que se encuentra sobre la ciudad. Son conocidos en el ámbito local que sus morrenas han originado pequeñas lagunas que ponen el peligro a la ciudad capital en caso de desborde.

En general, la sub cuenca del río Mariño donde se emplaza la ciudad de Abancay, es sensible a los procesos de geodinámica externa por la naturaleza de sus suelos, morfología, condiciones climáticas y procesos de crecimiento desordenado de la población tanto como a la inapropiada explotación de recursos naturales³.

Tabla N° 1: Peligros de huaycos en la ciudad de Abancay.

UBICACIÓN	PELIGRO	VULNERABILIDAD	RIESGO
Nacchero, Ullpuhuayco, Vallecito el Olivo, Mariño, Villa Gloria.	Huaycos	Personas, Viviendas Terrenos de Cultivo	18,000 Habitantes 3,000 Viviendas 30 Millones de Soles.


Fuente: (Programa Ciudades Sostenibles – Proyecto INDECI: PNUD PER/02/051 00014426).

³ (Programa Ciudades Sostenibles - Proyecto INDECI: PNUD PER/02/051 00014426).

⁸

[&]quot;CÁLCULO DEL NIVEL DE PELIGRO ANTE FLUJO DE DETRITOS EN LAS URBANIZACIONES LAS AMERICAS, VALLECITO EL OLIVO I Y II ETAPA, CHINCHICHACA, VIRGEN DEL CARMEN, MICAELA BASTIDAS, PATIBAMBA ALTA, CERCADO, LA VICTORIA, MAGISTERIAL, MANUEL ESCORZA, VALLECITO EL OLIVO Y LAS PALMERAS. Elaborado por: EQUIPO TECNICO PI 2016 META 27.

Mapa N° 1: PELIGRO DE FLUJO DE DETRITOS (HUAYCO) DE LA CIUDAD DE ABANCAY - CIUDADES SOSTENIBLES

Fuente: Programa Ciudades Sostenibles - INDECI, (2007).

¿Cuál es el nivel de riesgo esperado ante el flujo de detritos (huayco) en las Urbanizaciones Las Americas, Vallecito el Olivo I y II etapa, Chinchichaca, Virgen del Carmen, Micaela Bastidas, Patibamba Alta, Cercado, La Victoria, Magisterial, Manuel Escorza, Vallecito El Olivo y Las Palmeras del distrito de Abancay.

JUSTIFICACIÓN

El presente trabajo se justifica por que demostrará los niveles de peligro originados por flujo de detritos (huayco) aplicando la metodología establecida por el CENEPRED en la segunda versión del Manual para la Ejecución de Evaluaciones de Riesgo Originado por Fenómenos Naturales para Cumplir la Meta N° 27 "Actualización de la Información para la Gestión del Riesgo de Desastres" para Municipalidades de Ciudades Principales Tipo B en el Programa de Incentivos a la Mejora de la Gestión Municipal del Año 2016.

OBJETIVO

Cumplir con la Meta N° 27 "Actualización de la Información para la Gestión del Riesgo de Desastres" para Municipalidades de Ciudades Principales Tipo B en el Programa de Incentivos a la Mejora de la Gestión Municipal del Año 2016.

1. MARCO TEORICO

1.1 MARCO NORMATIVO.

- Ley Nº 29332 y modificatorias, Ley que crea el Programa de Incentivos a la Mejora de la Gestión Municipal.
- Decreto Supremo Nº 400-2015-EF, aprueban los procedimientos para el cumplimiento de metas y la asignación de los recursos del Programa de Incentivos a la Mejora de la Gestión Municipal del año 2016.
- Ley N° 29664 y su Reglamento aprobado con Decreto Supremo N° 048-2011-PCM, mediante su Artículo 1° crea el Sistema Nacional de Gestión del Riesgo de Desastres (Sinagerd) como sistema interinstitucional, sinérgico, descentralizado, transversal y participativo, asimismo, define la Gestión del Riesgo de Desastres (GRD) como un proceso social cuyo fin último es la prevención, la reducción y el control permanente de los factores de riesgo de desastre en la sociedad, así como la adecuada preparación y respuesta ante situaciones de desastre. Resalta que la GRD está basada en la investigación científica y de registro de informaciones, estos últimos aspectos son de gran relevancia en las actuales Evaluaciones de Riesgo.
- Resolución Ministerial Nº 088-2012-PCM de fecha 13 de abril de 2012 se aprobó los "Lineamientos Técnicos Generales para implementación del Proceso de Estimación de Riesgos de Desastres en el Marco de la Ley Nº 29664 y su Reglamento".

SUB GERENCIA DE GESTIÓN DEL RIESGO DE DESASTRES MUNICIPALIDAD PROVINCIAL DE ABANCAY

• Decreto Supremo Nº 111-2012-PCM que incorpora la Política Nacional de

Gestión de Riesgos de Desastres como Política Nacional de obligatorio

cumplimiento.

Resolución Ministerial Nº 334-2012-PCM de fecha 28 de diciembre de 2009

que aprueba los "Lineamientos Técnicos del Proceso de Estimación del Riesgo

de Desastres".

El CENEPRED, ha elaborado el Manual para la Evaluación de Riesgos

originados por Fenómenos Naturales II versión, en base al cual se ha

desarrollado el presente documento, para calcular el nivel de Riesgo.

1.2 MARCO CONCEPTUAL

1.2.1 ¿QUE SON LOS FLUJOS DE DETRITOS (HUAYCO)?

Según Elorza, Mateo Gutierrez, Los flujos de constituyen un tipo de

movimiento de masa fluidificada por el agua o aire. El flujo implica una

mayor deformación interna que un deslizamiento. Los movimientos

tienen lugar sobre un gran número de pequeñas superficies de cizalla o

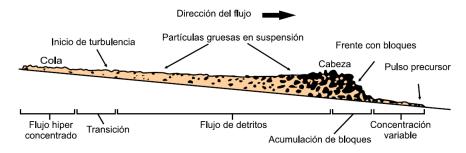
porque el contenido de agua en la masa es tan alto, que llega a

comportarse como un fluido (Bromhead, 1986).

Los flujos puedes subdividirse en varios tipos de función del material al

que afectan: flujos de detritos (debris flows), flujos de tierras (soil flows)

y flujos de roca (rock flows) (Dikau et al., 1996a; Dikau, 2004).


Los Debris Flows movilizan fragmentos de rocas, bloques y cantos en

una matriz arenosa con escaso contenido en arcilla.

12

"CÁLCULO DEL NIVEL DE PELIGRO ANTE FLUJO DE DETRITOS EN LAS URBANIZACIONES LAS AMERICAS, VALLECITO EL OLIVO I Y II ETAPA, CHINCHICHACA, VIRGEN DEL CARMEN, MICAELA BASTIDAS, PATIBAMBA ALTA, CERCADO, LA VICTORIA, MAGISTERIAL, MANUEL ESCORZA, VALLECITO EL OLIVO Y LAS PALMERAS.

Figura N° 3: Esquema de flujos canalizados y no canalizados, según Cruden y Varnes (1996).

Fuente: Movimientos en Masa en la Región Andina.

La mayoría de los flujos de detritos alcanzan velocidades en el rango de movimiento extremadamente rápido y por naturaleza son capaces de producir la muerte de personas (Hungr, 2005). Las velocidades de los flujos se determinan generalmente en el campo por observación de las super elevaciones del flujo en las curvas del canal las cuales se reflejan en marcas de lodos o de vegetación afectada (Costa, 1984 en Hungr, 2005).

1.2.2 CLASIFICACIÓN DE LOS MOVIMIENTOS EN MASA (FLUJO DE DETRITOS)

Los Movimientos en Masa se clasifican en:

TIPO	SUBTIPO			
Caídas.	Caída de roca (detritos o suelo)			
Volcamiento.	Volcamiento de roca (bloque)			
	Volcamiento flexural de roca o del macizo rocoso.			
Deslizamiento de roca o suelo.	Deslizamiento traslacional, deslizamiento en cuña.			
	Deslizamiento rotacional.			
Propagación lateral.	Propagación lateral lenta.			
	Propagación lateral por licuación (rápida).			
Flujo	Flujo de detritos.			
	Crecida de detritos.			
	Flujo de lodo.			
	Flujo de lodo.			
	Flujo de tierra Flujo de turba			
	Avalancha de detritos.			
	Avalancha de detritos.			
	Avalancha de rocas.			
	Deslizamiento por flujo o deslizamiento por			
	licuación (de arena, limo, detritos, roca fracturada).			
Reptación	Reptación de suelos.			
	Solifluxión, gelifluxión (en permafrost).			
Deformaciones gravitacionales profundas.				

Cuadro N° 3: Tipos de Movimientos en Masa.

Fuente: Región Andina: Guía para la Evaluación de Amenazas (2007).

Para cada tipo de movimiento en masa se describe el rango de velocidades, parámetro importante ya que ésta se relaciona con la intensidad de aquellos y la amenaza que pueden significar. Se menciona la relación del intervalo de velocidades típicas con la escala de velocidades propuesta por Cruden y Varnes (1996), la cual se presenta en la siguiente tabla:

Cuadro N° 4: Velocidades de los Movimientos en Masa.

CLASES DE VELOCIDAD	DESCRIPCIÓN	VELOCIDAD (MM/S)	VELOCIDAD TÍPICA
7	Extremadamente rápido.		
		5 x 10 ³	5 m/s
6	Muy rápido		
		5 x 10 ¹	3 m/min
5	Rápido		
		5 x 10 ⁻¹	1.8 m/h
4	Moderada		
		5 x 10 ⁻³	13 m/mes
3	Lenta		
		5 x 10 ⁻⁵	1.6 m/año
2	Muy lenta		
		5 x 10 ⁻⁷	16 mm/año
1	Extremadamente lenta		

Fuente: Región Andina: Guía para la Evaluación de Amenazas (2007).

1.2.3 ¿COMO SE GENERAN LOS FLUJOS DE DETRITOS (HUAYCO)?

Los flujos de detritos se inician como uno o varios deslizamientos superficiales de detritos en las cabeceras o por inestabilidad de segmentos del cauce en canales de pendientes fuertes. Los flujos de detritos incorporan gran cantidad de material saturado en su trayectoria al descender en el canal y finalmente los depositan en abanicos de detritos.

Fuente: Región Andina: Guía para la Evaluación de Amenazas (2007).

SUB GERENCIA DE GESTIÓN DEL RIESGO DE DESASTRES MUNICIPALIDAD PROVINCIAL DE ABANCAY

1.2.3.1 FACTORES QUE GENERAN LOS FLUJOS DE DETRITOS (HUAYCOS)

Se generan por aguas que fluyen rápidamente y al encontrarse

con un deposito suelto se mezcla con el mismo para producir un

debris flow (Johnson, 1970; Johnson y Rodie, 1984).

Par que se genere los flujos de detritos de cualquier mecanismo

se necesita precipitaciones de elevada intensidad, que pueden

generar inundaciones repentinas.

Los huaycos se desencadenan por intensas Iluvias, cuando

existe abundante material coluvial y se movilizan a través de

canales y sobre abanicos aluviales (Johnson y Rodie, 1984),

para depositarse finalmente en zonas de baja pendiente,

alimentando en numerosas ocasiones la cabecera de los

abanicos aluviales

Fuente: Geomorfología, Elorza, Mateo Gutiérrez.

1.2.3.1 MAGNITUD E INTENSIDAD DE UN FLUJO DE DETRITOS (HUAYCO).

MAGNITUD

La mayoría de los autores emplean el término magnitud de un movimiento en masa

para referirse al tamaño, ya sea en volumen o en área. En ambos casos debe

indicarse cuando se trata de volumen (o área) del movimiento inicial, de la zona de

depósito, o el total. Frecuentemente se emplea como medida de magnitud el área

total, la cual se estima aproximadamente con base en el análisis de productos de

sensores remotos. Para el cálculo de volumen, se estima el área y espesor de la zona

de arrangue o se emplean formulas empíricas que relacionan el área de la zona de

arrangue con el volumen, Picarelli et al. (2005).

15

Sin embargo, otros autores consideran que la magnitud en general debe involucrar otros parámetros que se refieren al tamaño y potencial destructivo de los movimientos en masa. Ojeda-Moncayo et al. (2004), presentan algunas consideraciones para el establecimiento de una escala de magnitudes para los movimientos en masa, teniendo en cuenta dichos parámetros.

Cuadro N° 5: Escala de velocidad propuesta por Cruden y Varnes (1996). (Adaptada de AGS, 2000, Lee y Jones, 2004).

CLASES DE VELOCIDAD	DESCRIPCIÓN	VELOCIDAD (MM/S)	VELOCIDAD TÍPICA	PROBABLE IMPORTANCIA DESTRUCTIVA
7	Extremadamente rápido.	5 x 10 ³	5 m/s	Catástrofe de mayor violencia, los edificios expuestos son totalmente destruidos por el impacto del material desplazado, muchas muertes.
6	Muy rápido	5 x 10 ¹	3 m/min	Algunas pedidas de vidas humanas, velocidad demasiado grande, destrucción importante.
5	Rápido	5 x 10 ⁻¹	1.8 m/h	Evacuación es posible: estructuras, bienes y equipos son destruidos.
4	Moderada	5 x 10 ⁻³	13 m/mes	Algunas estructuras pueden mantenerse, si se encuentran a corta distancia frente a la masa desplazada, las estructuras localizadas en la masa desplazada son extensamente dañadas
3	Lenta	5 x 10 ⁻⁵	1.6 m/año	Correctivos pueden llevarse a cabo durante el movimiento, algunas estructuras se pueden mantener con trabajos frecuentes, si el movimiento total no es grande durante la fase de aceleración.
2	Muy lenta	5 x 10 ⁻⁷	16 mm/año	Algunas estructuras permanentes sin daños por el movimiento, si hay grietas se pueden reparar.
1	Extremadamente lenta			Imperceptible sin instrumentación.

Fuente: Adaptado por SNL-CENEPRED de: Chávez, M. A. (2014).

INTENSIDAD:

Para referirse al potencial destructivo de un movimiento en masa, o intensidad, se emplean parámetros tales como la velocidad, las fuerzas de impacto, el espesor o la altura. La intensidad varía de acuerdo con la localización.

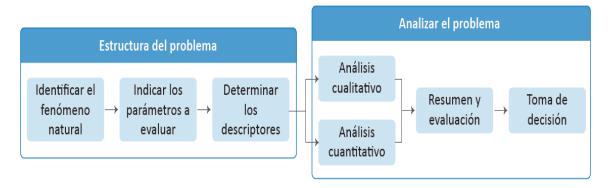
Cruden y Varnes (1996) establecen una escala de velocidades para movimientos en masa en 7 categorías, desde extremadamente lenta (5 × 10-10 mm/s) a extremadamente rápida (mayor a 5 m/s). Sin embargo, algunos movimientos en masa importantes por su potencial destructivo, como son los flujos de detritos, se encuentran todos por encima de la categoría "extremadamente rápido". A este tipo de movimiento en masa se le categoriza como catastrófico por su potencial de causar pérdida de vidas humanas.

Se han desarrollado varios métodos empíricos para el cálculo de velocidad y distancia de viaje, sobre la base de observaciones de campo y el análisis de características de los movimientos en masa tales como el volumen, y del recorrido y la distancia de viaje de fragmentos (Hungr et al., 2005).

Cuadro N° 6: Escala de Intensidad de Deslizamientos para diferentes procesos.

VOLUMEN	VELOCIDAD DEL DESLIZAMIENTO ESPERADA						
ESTIMADO (M³)	Deslizamiento (caída de roca).	rápido	Movimiento rápido (flujo de detritos).	Movimiento lento (deslizamiento reactivado)			
<0.001	Baja		Baja	Baja			
<0.5	Media		Baja	Baja			
>0.5	Alta		Baja	Baja			
<500	Alta		Baja	Baja			
500 - 10,000	Alta		Media	Baja			
10,000 - 50,000	Muy Alta		Alta	Media			
>500,000	Muy Alta		Muy Alta	Alta			
>>500,000	Muy Alta		Muy Alta	Muy Alta			

Fuente: Adaptado de Cardinali et al., 2002.



2. METODOLOGÍA DE TRABAJO

2.1 PROCESO DE ANÁLISIS JERÁRQUICO

Este método fue desarrollado por el matemático Thomas L. Saaty (1980) diseñado para resolver problemas complejos de criterios múltiples, mediante la construcción de un modelo jerárquico, que le permite a los actores (tomadores de decisiones) estructurar el problema de forma visual.

Flujo metodológico a seguir para la toma de decisiones

Fuente: Manual EVAR - CENEPRED

Para la estimación del valor de la importancia relativa de cada uno de los indicadores se recurre a una metodología de comparación de pares, en este caso se empleó el PAJ (Saaty, 1990) por sus ventajas, flexibilidad y por la facilidad de involucrar a todos los actores en el proceso de decisión (Garfi et al., 2011), la escala es la que se muestra a continuación:

ESCALA	ESCALA VERBAL	EXPLICACIÓN			
NUMERICA					
9	Absolutamente o muchísimo más importante o preferido que	Al comparar un elemento con el otro, el primero se considera absolutamente o muchísimo más importante que el segundo.			
7	Mucho más importante o preferido que	Al comparar un elemento con el otro, el primero se considera mucho más importante o preferido que el segundo.			
5	Mas importante o preferido que	Al comparar un elemento con el otro, el primero se considera más importante o preferido que el segundo.			
3	Ligeramente más importante o preferido que	Al comparar un elemento con el otro, el primero se considera más importante o preferido que el segundo.			
1	Igual	Al comparar un elemento con otro, hay indiferencia entre ellos.			
1/3	Ligeramente menos importante o preferido que	Al comparar un elemento con el otro, el primero se considera ligeramente menos importante o preferido que el segundo.			
1/5	Menos importante o preferido que	Al comparar un elemento con el otro, el primero se considera mucho menos importante o preferido que el segundo.			
1/7	Mucho menos importante o preferido que	Al comparar un elemento con el otro, el primero se considera mucho menos importante o preferido que el segundo.			
1/9	Absolutamente o muchísimo menos importante o preferido que	Al comparar un elemento con el otro, el primero se considera absolutamente o muchísimo menos importante o preferido que el segundo.			
2, 4, 6, 8	Valores intermedios entre dos juicios adyacentes, que se emplean cuando es necesario un término medio entre dos de las intensidades anteriores.				

Fuente: Manual EVAR - CENEPRED

Para obtener estos ponderados son necesarios respuestas (numéricas o verbales) a una serie de preguntas que comparan dos parámetros o dos descriptores a una serie de preguntas.

Toskano Hurtado (2005) presenta algunas de las ventajas del PAJ frente a otros métodos de Decisión Multicriterio y son:

- Presenta un sustento matemático.
- Permite desglosar y analizar un problema por partes.
- Permite medir criterios cuantitativos y cualitativos mediante una escala común.
- Incluir la participación de equipos multidisciplinarios y generar un consenso.
- Permite verificar el índice de consistencia (IC) y hacer las correcciones, si fuere el caso.
- Generar una síntesis y dar la posibilidad de realizar análisis de sensibilidad.
- Ser de fácil uso y permitir que su solución se pueda complementar con métodos matemáticos de optimización.

Fuente: Manual EVAR - CENEPRED

a. Ponderación de los parámetros descriptores:

Se identifican los parámetros que permitan caracterizar el fenómeno de movimientos en masa (ejemplo). En función del número de parámetros identificados tendremos el número de filas y columnas de la matriz de ponderación (matriz cuadrada).

Para este caso se ha determinado dos parámetros así mismo se ha dado valores para cada uno de ellos tal como se indica:

La Magnitud del Movimiento en Masa (reptación) y se le da un peso de <u>0.7</u>.

La Intensidad del Movimiento en Masa (reptación) y se le da un peso de <u>0.3</u>.

b. Ponderación de los descriptores del parámetro

PASO 1: Descriptores. Se identifican los descriptores del parámetro magnitud. Los descriptores se ordenan en forma descendente del más desfavorable al menos desfavorable. En función del número de descriptores tendremos el número de filas y columnas de la matriz de ponderación (matriz cuadrada).

MATRIZ DE COMPARACION DE PARES						
MAGNITUD	Extr. Lenta - Muy lenta.	Lenta- Moderada	Rápido- Muy rápido-	Extrem. Muy Rápido		
Extr. Lenta - Muy lenta.	1.00	0.50	0.33	0.17		
Lenta-Moderada	2.00	1.00	0.33	0.20		
Rápido-Muy rápido-	3.00	3.00	1.00	0.33		
Extrem. Muy Rápido	6.00	5.00	3.00	1.00		
SUMA	12.00	9.50	4.67	1.70		
1/SUMA	0.08	0.11	0.21	0.59		

Fuente: Elaboración Propia Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

PASO 2: Matriz de Normalización. Se elabora la matriz multiplicando la inversa de las sumas totales por cada elemento de su columna correspondiente.

Debe cumplir que la suma de cada columna debe ser igual a la unidad.

MATRIZ DE NORMALIZACIÓN					
MAGNITUD	Extr. Lenta - Muy lenta.	Lenta- Moderada	Rápido- Muy rápido-	Extrem. Muy Rápido	Vector Priorización
Extr. Lenta - Muy lenta.	0.083	0.053	0.071	0.098	0.076
Lenta-Moderada	0.167	0.105	0.071	0.118	0.115
Rápido-Muy rápido-	0.250	0.316	0.214	0.196	0.244
Extrem. Muy Rápido	0.500	0.526	0.643	0.588	0.564
	1.000	1.000	1.000	1.000	1.000

Fuente: Elaboración Propia Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

Indica la importancia (peso) de cada parámetro en la determinación del nivel de peligro.

	Vector Priorización	Porcentaje (%)
MAGNITUD	0.076	7.636
Extr. Lenta - Muy lenta.	0.115	11.525
Lenta- Moderada	0.244	24.404
Rápido-Muy rápido-	0.564	56.435
Extrem. Muy Rápido	Vector Priorización	7.636

Fuente: Elaboración Propia Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

Para continuar el análisis se realiza la misma operación para cada factor condicionante y desencadenante indicado líneas arriba.

PASO 3: La susceptibilidad se obtiene al sumar los valores de los factores condicionantes, desencadenantes y se multiplica por el peso de cada uno de los factores.

FACTOR CONDICIONANTE				TOTAL		
GEOMORFOLOGIA	LITOLOGIA	PENDIENTE	COBERTURA VEGETAL	PRECIPITACIONES	ACTIVIDAD HUMANA	
0.380	0.507	0.490	0.487	0.492	0.542	0.491

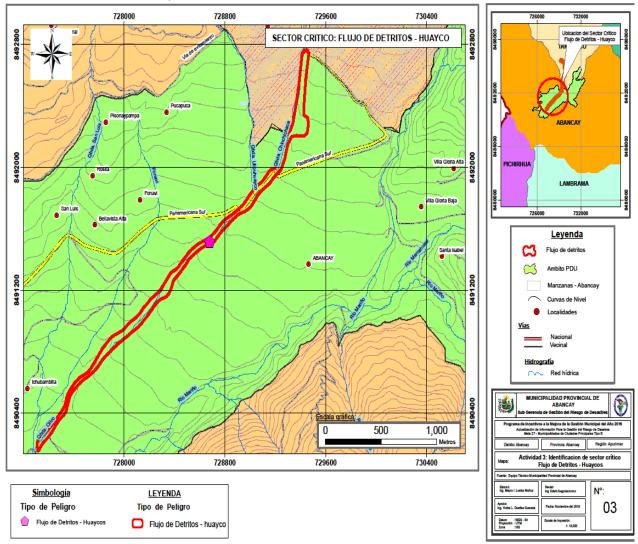
Fuente: Elaboración Propia Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

PASO 4: Para mayor detalle se adjunta el manual para los cálculos.

2.2 DETERMINACIÓN DEL ÁREA DE ESTUDIO

Se optó realizar el trabajo del cálculo del nivel de peligrosidad de las Urbanizaciones Las Américas, Vallecito el Olivo I y II etapa, Chinchichaca, Virgen del Carmen, Micaela Bastidas, Patibamba Alta, Cercado, La Victoria, Magisterial, Manuel Escorza, Vallecito El Olivo y Las Palmeras del Distrito Abancay de la Región de Apurímac, por encontrarse al lado de un río, recurrencia de emergencias, crecimiento poblacional, ubicación de las urbanizaciones con respecto a la ciudad Abancay facilitándonos la visita de campo, la disponibilidad de información de las instituciones sobre la peligrosidad⁴, interés por parte de los funcionarios de la Municipalidad Provincial de Abancay.

2.2.1 DESCRIPCIÓN DEL AREA DE ESTUDIO.


La quebrada Chinchichaca, se encuentra ubicado al norte de la plaza de armas de la ciudad de Abancay, el recorrido del río Chinchichaca (tributario principal del río Mariño) se inicia en el sector de Chuyllurpata y su trayectoria se realiza por la parte central de la ciudad de Tamburco y la ciudad de Abancay, en la parte alta mediante un canal de concreto armado hasta llegar al sector de El Arco, punto donde inicial la zona de estudio para el presente análisis. El área de estudio es de 56.67 Has. (Ver mapa N° 02).

_

⁴ INDECI – Ciudades Sostenibles - PNUD.

2.2.1.1 UBICACIÓN Y LOCALIZACIÓN.

Mapa N° 2: Área de estudio.

Fuente: Equipo Técnico Meta 27 Pl 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

2.2.2 INFORMACIÓN SOCIO DEMOGRÁFICO

2.2.2.1 DENSIDAD POBLACIONAL.

El distrito de Abancay tiene una población de 45,864 habitantes según el Censo del INEI 2007, las urbanizaciones Las Américas, Vallecito el Olivo I y II etapa, Chinchichaca, Virgen del Carmen, Micaela Bastidas, Patibamba Alta, Cercado, La Victoria, Magisterial, Manuel Escorza, Vallecito El Olivo y Las Palmeras, tiene una población de 1,153 habitantes de acuerdo a la información levantada en campo a través de las encuestas, realizadas por el equipo técnico de la Municipalidad Provincial de Abancay. (Ver cuadro N° 7).

Cuadro N° 7: Población, N° de manzanas, viviendas, área ocupada.

POBLACIÓN	NRO DE FAMILIAS	NRO DE VIVIENDAS
1,153	348	346

Fuente: Equipo Técnico Meta 27 Pl 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

2.2.3 VÍAS DE ACCESO.

Vías de acceso a las urbanizaciones motivo de análisis son:

- Emp. PE-3S (Abancay) Abancay Cusco.
- Emp. PE-3S AP-550.
- Emp. AP-550-R66.
- Emp. AP-103 Chinchichaca.

2.2.4 SERVICIOS BÁSICOS.

- Servicios por empresas privadas como: agua-desagüe, energía eléctrica, teléfonos (fijos y móviles), internet, televisión por cable.
- Servicios por parte de la Municipalidad son: Parques y jardines, serenazgo, limpieza pública uso de suelo y otros.
- Servicios por el gobierno central son lo siguiente: Policía,
 Instituciones Educativas de Nivel Inicial y Primaria, establecimientos de Salud.

Cuadro N° 8: Instituciones Educativas.

ID LOCAL ESCOLAR	CÓDIGO IE	NOMBRE	DIRECCIÓN IE	TOTAL HOMBRES	TOTAL ALUMNO	TOTAL DOCENTE
042383	0285536	I.E.I. MIGUEL GRAU	AVENIDA SEOANE	972	972	33

Fuente: Elaboración Propia 2016. Usando la herramienta SIGRID.

2.2.5 ACTIVIDAD SOCIO ECONÓMICA.

En el sector se tiene los servicios de comercio como: viviendas uso, tienda de abarrotes, taller de mecánica, venta de materiales de construcción, venta de autopartes, otros negocios, alquiler de vivienda, cabinas de internet, bar, gras sintético, panadería, clínica dental granados, educación privada, quinta recreacional, alquiler, venta de gas, hostal, peluquería, restauran, etc.

En sector industria: Carpintería, ferretería, etc.

En el sector servicios, de transporte, telefonía (Claro Movistar, Entel, Bitel), energía eléctrica Electro-Sur.

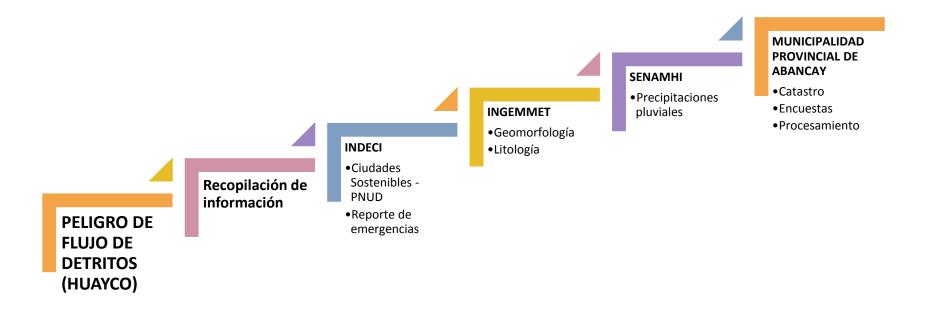
Cuadro N° 9: Concesión de energía Eléctrica.

ZONA	CONCESION	EMPRESA	TIPO	AREA INF	DEPTO	FUENTE	AREA(Has)
ABANCAY	Distribución Apurímac	ELECTRO SUR ESTE S.A.A.	Concesión Definitiva		Apurímac	MEM	

Fuente: Elaboración Propia 2016. Usando la herramienta SIGRID

Cuadro N° 10: Resumen de actividad económica.

ACTIVIDAD ECONÓMICA	ZONA DE ESTUDIO
DESCRIPCIÓN	Las urbanizaciones Las Américas, Vallecito el Olivo etapa I y II, Chinchichaca, Virgen del Carmen, Micaela Bastidas, Patibamba Alta, Cercado, La Victoria, Magisterial, Manuel Escorza, Vallecito El Olivo y Las Palmeras.
TIENDA DE ABARROTES	13
TALLER DE MECÁNICA	3
FERRETERIA	5
VENTA DE AUTO PARTES	3
OTROS NEGOCIOS	11
ALQUILER DE VIVIENDAS	36
CABINA DE INTERNET	1
CARPINTERIA	3
GRAS SINTETICO	1
ALQUILER	36
VENTA DE GAS	2
HOSTAL	2
PELUQUERIA RESTAURANT	2
KESTAUKANT	3


Fuente: Encuestas Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

2.3 RECOPILACIÓN DE INFORMACIÓN.

En el organigrama del cuadro N°06 se muestra como se hizo la recopilación de la información para el cálculo del peligro; en el organigrama del cuadro N° 07 indicado se describe el proceso de elaboración del análisis del nivel de peligrosidad.

Cuadro N° 11: Flujo grama del recojo de información sobre el peligro de flujo de detritos (huayco).

Fuente: Elaboración Propia Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

Cuadro N° 12: Fases Metodológicas para la Evaluación del Nivel de Peligro.

RECOPILACIÓN DE LA INFORMACIÓN DE INSTITUCIONES TECNICO CIENTIFICO Y DE CAMPO

- Estudios técnicos, informes técnicos y/o artículos de investigación (en formato Word, jpg o pdf).
- Información vectorial y raster (shapefile, MXD, imágenes de satélite y modelo de elevación de terreno)
- •Información alfanumérica (numérica, textual y alfanumérica) en formato Excel.

ESTANDARIZACION DE INFORMACIÓN

- Determinar el sistema de coordenadas geográficas y el datum WGS84 (Georreferenciar)
- Determinar la escala de trabajo para la caracterización de la peligrosidad. Digitalizar los mapas que se encuentren en formato jpg o formato vectorial.
- Determinar la escala de trabajo para el análisis de la peligrosidad. Construir la base de datos en Excel de toda la información estadística y descriptiva referida al peligro de flujo de detritos (huayco).

SELECCIÓN DE PARÁMETROS PARA EL ANALISIS DE PELIGROSIDAD.

- Identificar y jerarquizar los parámetros para la evaluación de la peligrosidad.
- •Identificar y jerarquizar los factores condicionantes y desencadenantes del peligro de flujo de detritos (huayco).

CONSTRUCCIÓN DE LA BASE DE DATOS PARA EL INICIO DEL GEOPROCESAMIENTO

 Vincular la base de datos de peligrosidad con la información cartográfica.

Fuente: Elaboración propia con el apoyo del manual de EVAR CENEPRED.2016.

3. PELIGROSIDAD

- 3.1 DETERMINACIÓN DEL NIVEL DE PELIGROSIDAD DE FLUJO DE DETRITOS (HUAYCO)
 - 3.1.1 IDENTIFICACIÓN Y CARACTERIZACIÓN DEL PELIGRO DE FLUJO DE DETRITOS (HUAYCO).

El evento se debió a la reactivación parcial de un deslizamiento antiguo, "detonado" por las intensas precipitaciones y posteriores filtraciones que saturaron e incrementaron la presión de poros en los depósitos inconsolidados, ocasionando la desestabilización de la ladera.

El fenómeno constituye un movimiento en masa de tipo complejo: "Avalancha de detritos" sucedido por un "Flujo de detritos (huayco)". Los factores condicionantes fueron la presencia de filtraciones y saturación de los depósitos superficiales inconsolidados, producto de las intensas precipitaciones pluviales (fotos 1 y 2) en el cuerpo de un deslizamiento antiguo; y la fuerte pendiente de la ladera. Además de factores geológicos pre-existentes, como afloramientos rocosos, areniscas y calizas muy fracturadas y meteorizadas (foto 3) con buzamientos a favor de la pendiente (234° / 39 S).

727000 728000 729000 730000 731000 732000 Laguna Uspaycocha CORRALPATA 849700 Laguna Angascocha 849600 SANTIAGO DE KERAPATA 849500 Caseta SERNANP SAN ANTONIO CHUPAPATA COLCA PANTILLAY Leyenda PERASPATA Depósitos residuales Depósitos coluviales Estadio Maucacalle ိဳ ့ ့ Depósitos morrenicos Ortogneis Microgranito Grupo Mitu LIMAPATA TIERRA NUEVA Grupo Copacabana Sup.

Figura N° 4: Geología del área inspeccionada (modificado de Marocco, 1975).

Fuente: INGEMMET.

MOLINOPATA

Grupo Copacabana Inf

Foto N° 1: Los círculos de líneas entrecortadas muestra los afloramientos de agua (filtraciones) en la zona de la avalancha. Apreciándose un caudal considerable en el momento de la evaluación.

Fuente: INGEMMET.

Foto N° 2: Zona de arranque (avalancha de detritos) del cerro Chuyllurpata y posterior desplazamiento del flujo de detritos (huayco).

Fuente: INGEMMET.

El flujo de detritos, en su avance por la quebrada Sahuanay, provocó derrumbes debido a la erosión de sus riberas (pie de laderas) incorporando de esta manera material al huayco (foto 7). Además debido a los derrumbes de las laderas se incorporaron al flujo troncos de árboles y bloques de roca de hasta 1 m. En algunos sectores se desbordo el material del huayco con un *run-up* 5de más de 2 m de altura hacia la margen derecha de la quebrada Sahuanay a la altura de la caseta del SERNANP.

Fuente: INGEMMET.

⁵ Run Up: Indica cuando un flujo sale por encima de su cauce original e inunda los flancos superiores al canal.

Los daños continuaron aguas abajo, debido principalmente al estrechamiento del cauce del río por viviendas o puentes. De haber ocurrido un flujo secundario mayor, o si el material del flujo de detritos no se almacenaba en el estadio de Maucacalle, esta zona hubiera sido arrasada por el flujo.

Fuente: INGEMMET.

Fuente: INGEMMET.

Para la caracterización del peligro se ha considerado los factores condicionantes y desencadenantes.

- Factores Condicionantes: Son dinámicos por que predisponen la ladera al movimiento sin llegar a iniciarlo.
- Factores Desencadenantes: Son aquellos que inicial el movimiento y la ladera llega a ser inestable.

3.1.2 PARÁMETROS DE EVALUACIÓN DEL PELÍGRO.

Las urbanizaciones Vallecito el Olivo I y II etapa, Chinchichaca, Virgen del Carmen, Micaela Bastidas, Patibamba Alta, Cercado, La Victoria, Magisterial, Manuel Escorza, Vallecito El Olivo y Las Palmeras, donde el escenario más probable sería la ocurrencia de un huayco con nivel de intensidad muy alto; con un volumen de 4'422,845 m³.

Fuente: Programa Ciudades Sostenibles – Proyecto INDECI: PNUD PER/02/051 00014426.

3.1.2.1.1 MAGNITUD DEL MOVIMIENTOS EN MASA (REPTACIÓN).

La velocidad de movimiento puede ser el mejor parámetro para describir el potencial de daño de un deslizamiento, sin embargo es muy difícil de predecir e incluso medir.

Cruden y Varnes (1996) han utilizado la velocidad de movimiento como variable descriptiva de la magnitud de un deslizamiento de acuerdo con el Cuadro N° 13, sin embargo, estos valores deben ser utilizados sólo como indicativos del nivel potencial de daño (Rodríguez y Jiménez, 2009).

Cuadro N° 13: Escala de velocidad propuesta por Cruden y Varnes (1996). (Adaptada de AGS, 2000, Lee y Jones, 2004).

CLASES DE VELOCIDAD	DESCRIPCIÓN	VELOCIDAD (MM/S)	VELOCIDAD TÍPICA	PROBABLE IMPORTANCIA DESTRUCTIVA
7	Extremadamente rápido.	5 x 10 ³	5 m/s	Catástrofe de mayor violencia, los edificios expuestos son totalmente destruidos por el impacto del material desplazado, muchas muertes.
6	Muy rápido	5 x 10 ¹	3 m/min	Algunas pedidas de vidas humanas, velocidad demasiado grande, destrucción importante.
5	Rápido	5 x 10 ⁻¹	1.8 m/h	Evacuación es posible: estructuras, bienes y equipos son destruidos.
4	Moderada	5 x 10 ⁻³	13 m/mes	Algunas estructuras pueden mantenerse, si se encuentran a corta distancia frente a la masa desplazada, las estructuras localizadas en la masa desplazada son extensamente dañadas
3	Lenta	5 x 10 ⁻⁵	1.6 m/año	Correctivos pueden llevarse a cabo durante el movimiento, algunas estructuras se pueden mantener con trabajos frecuentes, si el movimiento total no es grande durante la fase de aceleración.
2	Muy lenta	5 x 10 ⁻⁷	16 mm/año	Algunas estructuras permanentes sin daños por el movimiento, si hay grietas se pueden reparar.
1	Extremadamente lenta			Imperceptible sin instrumentación.

Fuente: Cruden y Varnes (1996)

PONDERACIÓN SAATY PARA MAGNITUD DEL FLUJO DE DETRITOS (HUAYCO)

MATRIZ DE NORMALIZACIÓN						
MAGNITUD	EXTR. RÁPIDO	MUY RAPIDO	MODERADA, RÁPIDO	EXTR. LENTA, MUY LENTA, LENTA	Vector Priorización	
EXTR. RÁPIDO	0.579	0.667	0.485	0.389	0.530	
MUY RAPIDO	0.193	0.222	0.364	0.333	0.278	
MODERADA, RÁPIDO	0.145	0.074	0.121	0.222	0.141	
EXTR. LENTA, MUY LENTA, LENTA	0.083	0.037	0.030	0.056	0.051	

ÍNDICE DE CONSISTENCIA	IC	0.058
RELACIÓN DE CONSISTENCIA < 0.08 (*)	RC	0.066

Fuente: Elaboración Propia Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

INTENSIDAD DEL FLUJO DE DETRITOS

La intensidad y los efectos potenciales de las inundaciones dependen de varios aspectos, no sólo de aspectos meteorológicos, sino también de las características propias del terreno, como son los tipos y usos del suelo, el tipo y la distribución de la vegetación, la litología, las características de la red de drenaje, magnitud de las pendientes de la cuenca, obras realizadas en los cauces, entre otros.

Tabla N° 2: Escala de Intensidad de Inundaciones dinámicas.

NIVEL DE	PROFUNDIDAD X VELOCIDAD
INTENSIDAD	DEL FLUJO (m2/s)
	(INUNDACIONES DINÁMICAS)
MUY ALTA	H*V > 1.5 m
ALTA	0.5 m < H*V < 1.5 m.
MEDIA	0.25 m < H*V < 0.5 m.
BAJA	H*V < 0.25 m

Fuente: Estimaciones de Riesgo por Inundaciones – INDECI.

PONDERACIÓN DE LA INTENSIDAD DE FLUJO DE DETRITOS METODO SAATY

MATRIZ DE NORMALIZACIÓN						
INTENSIDAD	H*V > 1.5 m	0.5 m < H*V < 1.5 m	0.25 m < H*V < 0.5 m	< 0.25 m	Vector Priorización	
H*V > 1.5 m	0.597	0.662	0.536	0.438	0.558	
0.5 m < H*V < 1.5 m	0.199	0.221	0.321	0.313	0.263	
0.25 m < H*V < 0.5 m	0.119	0.074	0.107	0.188	0.122	
< 0.25 m	0.085	0.044	0.036	0.063	0.057	

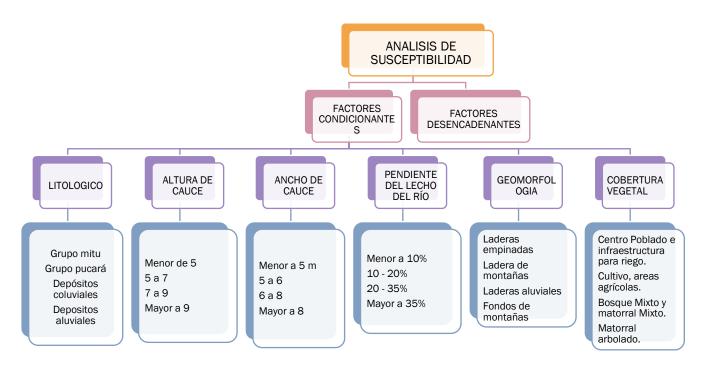
ÍNDICE DE CONSISTENCIA	IC	0.039
RELACIÓN DE CONSISTENCIA < 0.08 (*)	RC	0.045

Fuente: Elaboración Propia Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

3.1.2.2 CONSOLIDADO DEL PARAMETRO DE EVALUACIÓN PARA FLUJOS DE DETRITOS (HUAYCO) DE LA QUEBRADA DE CHINCHICHACA

A través del método de ponderación – Saaty se evalúa el parámetro que tiene mayor importancia para la generación del peligro.

Para este caso, se ha considerado como parámetros de evaluación la magnitud y la intensidad.


En esta evaluación el parámetro más importante para la generación del peligro son:

La Magnitud del flujo de detritos (huayco) y se le da un peso de <u>0.5</u>.

La Intensidad del flujo de detritos (huayco) y se le da un peso de <u>0.5</u>.

3.1.3 ANÁLISIS DE SUSCEPTIBILIDAD

3.1.3.1 FACTORES CONDICIONANTES

Fuente: Elaboración Propia Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

PONDERACIÓN DE FACTORES CONDICIONANTES MÉTODO SAATY.

MATRIZ DE NORMALIZACION							
FACTORES CONDICIONANT ES	LITOLOGI A	ALTUR A DE CAUCE	ANCH O DE CAUC E	PENDIEN TE	GEOMORFOLO GÍA	COBERTU RA VEGETAL	Vector Priorizaci ón
LITOLOGIA	0.158	0.173	0.113	0.240	0.160	0.129	0.162
ALTURA DE CAUCE	0.316	0.346	0.453	0.160	0.320	0.452	0.341
ANCHO DE CAUCE	0.316	0.173	0.226	0.320	0.240	0.194	0.245
PENDIENTE	0.053	0.173	0.057	0.080	0.160	0.032	0.092
GEOMORFOLOG ÍA	0.079	0.086	0.075	0.040	0.080	0.129	0.082
COBERTURA VEGETAL	0.079	0.049	0.075	0.160	0.040	0.065	0.078

INDICE DE CONSISTENCIA	IR	0.095
RELACION DE CONSISTENCIA < 0.1 (*)	RC	0.076

Fuente: Elaboración Propia Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

a) LITOLOGICO

• Grupo Mitu (Pérmico superior): El grupo Mitu es representado por una secuencia molásica de areniscas feldespáticas, lutitas rojas arcosas y conglomerados, el material predominan sobre los limo-arcillitas y niveles volcánicos, es frecuentes la estratificación oblicua, entrecruzada y paléocanales; La sedimentación es rítmica.

Las areniscas se presentan en bancos, variables de 0.5 a 6 metros de espesor, el color es rojo ladrillo o verdoso; el grano varia de grueso a fino, predominando las areniscas de grano mediano a fino, las lutitas se encuentran intercaladas entre los bancos de areniscas, pueden constituir capas con más de 5 metros de espesor, son poco duras y deleznables por la meteorización.

Los conglomerados son abundantes en la parte inferior del grupo (conglomerado basal), observados con claridad en la falla Pachachaca frente a la Quebrada Santo Tomás con un espesor de 100 metros, los clastos son bien redondeados y del tamaño de guijos, con cantos de areniscas volcánicas y lutitas, la matriz es arenosa de color roja o gris clara.

Existen niveles de lava andesiticas en la parte superior expuestas en el flanco sur del nevado Ampay, son bancos de

80 a 100 metros de espesor. El Grupo Mitu en el área de estudio se estima que tiene 600 a 800 metros de espesor.

Foto N° 4: Afloramiento rocoso del Grupo Mitu.

Fuente: Programa Ciudades Sostenibles - PNUD.

Depósitos Cuaternarios Incoherentes

 Depósitos Morrenicos: Este tipo de depósitos se halla el valle de origen glaciar de la quebrada Ampay – Sahuanay, parte superior de la cuenca, consta de clastos y bloques angulosos, subangulosas, con matriz limo arenoso, se encuentran bastantes compactas y algo cementadas. La naturaleza litológica de los fragmentos es mayormente

calcárea en la zona de Ampay y Granítica en Runtococha. Estos depósitos son de carácter heterométrico donde los finos ocupan el 60% las dimensiones de los gruesos varían de 0.25 a 3.0 metros en algunos casos permanecen como diques naturales formando lagunas.

Depósitos Aluviales: Se hallan en el piso de valle, desde el centro poblado hasta el río Pachachaca, estos depósitos tienen bloques mayores de 0.5 metros -lo cual indica una alta energía en el transporte- y cantos de formas subredondeadas a redondeadas. Tienen una matriz detrítica mezclada con arenas y limos, formando una irregular y somera estratificación. Estos depósitos aluviales son a su vez transportados, lavados y redepositados hacia el Pachachaca formando gravas redondeadas con matriz arenosa bien clasificada. Sobre los depósitos aluviales se ha formado un costra dura calcárea blanquecina denominada "caliche" de espesor variado (0.5 a 2.0 metros) debido a la precipitación del carbonato de calcio y otras sales evaporiticas disueltas en el agua por una intensa evaporación en periodos áridos donde sufren un movimiento ascendente, cementado los bloques y clastos de una antigua superficie aluviónica, posteriormente cubierta por un suelo orgánico gris negro de espesor de 0.3 a 0.5 metros constituye la capa arable vale decir horizonte A del suelo.

Foto N° 5: Depósito aluvial en la escarpa de talud.

Fuente: Programa Ciudades Sostenibles - PNUD.

Depósitos Coluviales: Se encuentran recubriendo el pie de ladera gran parte de la zona Norte, tomando una coloración rojiza y con tonos gris claro en otras áreas. Está constituido por fragmentos de roca de formas angulares a subangulares, con matriz arcillosa – limosa. Estos depósitos han tenido poco transporte, mayormente gravitacional.

Dentro de esta clasificación se incluyen a los depósitos aluviales formados por la meteorización "in situ" de roca, que bajo la acción del agua se puede movilizar y formar huaycos, como se puede apreciar al pie del nevado Ampay, donde se presenta una sucesión de varias etapas de huaycos.

También se incluyen los depósitos de deslizamiento y escombros de talud, para efectos del cartografiado Geológico.

Foto N° 6: Depósito coluvial en la corte de talud de carretera.

Fuente: Programa Ciudades Sostenibles - PNUD.

PONDERACIÓN DE LA LITOLOGÍA MÉTODO SAATY.

MATRIZ DE NORMALIZACIÓN

LITOLOGIA	GRUPO MITU	DEPOSITOS MORRENICOS	DEPOSITOS COLUVIALES	DEPOSITOS ALUVIALES	Vector Priorización
GRUPO MITU	0.071	0.098	0.040	0.067	0.069
DEPOSITOS MORRENICOS	0.357	0.492	0.480	0.533	0.466
DEPOSITOS COLUVIALES	0.286	0.164	0.160	0.133	0.186
DEPOSITOS ALUVIALES	0.286	0.246	0.320	0.267	0.280

ÍNDICE DE CONSISTENCIA	IC	0.033
RELACIÓN DE CONSISTENCIA < 0.08 (*)	RC	0.038

Fuente: Elaboración Propia 2016.

SIMBOLOGIA **Poligonos** Centros poblados Zona Crítica Ambito PDU Limite administrativo Tamburco Via nacional √ Via vecinal LEYENDA Hidrografía BLOQUES Y FRAGMENTOS DE CALIZAS Y LUTITAS LAVAS ANDESITICAS Area (ha) 4.62 Bloques y fragmentos de calizas y lutitas 8% Bloques de rocas angulosas a sub angulosa 37.44 66% con matriz areno arcillosa 12.07 Lavas andesiticas 21% Lutitas negras intercadas con calizas v 04 2.55 areniscas, precencia de abundantes fosile 727500

Mapa N° 3: Litología de la zona de estudio.

Fuente: Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

ALTURA DE CAUCE

Desde la zona de El Arco, el río de Chinchichaca presenta su cauce con diferente altura y es debido a la presencia de viviendas construidas sin respetar la faja marginal, vías de transporte existente y acumulación de basura y desmonte.

PONDERACIÓN DE LA ALTURA DEL CAUCE MÉTODO SAATY.

MATRIZ DE NORMALIZACIÓN

ALTURA DE CAUCE	MENOR DE 5 m	DE 5 A 7 m	DE 7 a 9 m	MAYOR A 9 m	Vector Priorización
MENOR DE 5 m	0.561	0.621	0.533	0.455	0.542
DE 5 A 7 m	0.187	0.207	0.267	0.273	0.233
DE 7 a 9 m	0.140	0.103	0.133	0.182	0.140
MAYOR A 9 m	0.112	0.069	0.067	0.091	0.085

	IC	0.017
ÍNDICE DE CONSISTENCIA		
RELACIÓN DE CONSISTENCIA < 0.08 (*)	RC	0.019

Fuente: Elaboración Propia Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

b) ANCHO DE CAUCE

Desde el sector de evaluación, el ancho del cauce del río tiene dimensiones irregulares, las obras públicas y privadas existentes han estrechado el ancho del cauce.

PONDERACIÓN DEL ANCHO DEL CAUCE MÉTODO SAATY.

MATRIZ DE NORMALIZACIÓN

ANCHO DE CAUCE	MENOR DE 5 m	DE 5 A 6 m	DE 6 a 8 m	MAYOR A 8 m	Vector Priorización
MENOR DE 5 m	0.571	0.662	0.480	0.400	0.528
DE 5 A 6 m	0.190	0.221	0.360	0.333	0.276
DE 6 a 8 m	0.143	0.074	0.120	0.200	0.134
MAYOR A 8 m	0.095	0.044	0.040	0.067	0.062

ÍNDICE DE CONSISTENCIA	IC	0.049
RELACIÓN DE CONSISTENCIA < 0.08 (*)	RC	0.056

Fuente: Elaboración Propia Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

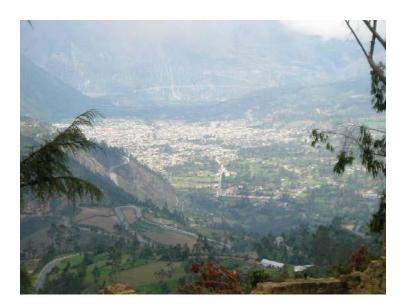
c) PENDIENTE

VALLE PROFUNDO DEL PACHACHACA

Formado por la profunda incisión del río Pachachaca, su topografía es predominantemente plana ligeramente inclinada de 0 a 3 % de pendiente. En el tramo que corresponde a la cuenca del río Mariño entre sus nacientes y la ciudad de Abancay el río discurre desde las cotas de su origen sobre 5000 m.s.n.m. hasta su desembocadura a 1,700 m.s.n.m de altitud en fajas cercanas a los 100 m de ancho. Pasando por el sector de la ex hacienda Santo Tomas, se observa un profundo cañón controlado por una falla regional con más 1300 m de talud.

En sus tramos amplios se han formado terrazas que están destinadas a fines agrícolas.

LADERAS ALUVIALES DE ABANCAY


Es una franja amplia que cubre gran parte de la cuenca inferior que se extiende desde el río Pachachaca hasta la parte del Distrito de Tamburco. La topografía es suavemente inclinada (8 a 15%) y está constituida por un potente deposito aluvial compacto. Sobre este depósito se desarrollan la agricultura y la ciudad de Abancay.

FONDOS DE QUEBRADAS TRIBUTARIAS DEL RÍO MARIÑO

Son formas de tierras alargadas, que se ubican en terrenos adyacentes a los cursos de agua que han disectado más profundamente a los terrenos, su pendiente es algo inclinada (6 a 12%), en la cuenca baja con fajas menores a 50 metros de ancho, en la cuenca media sobre los 2,600 m.s.n.m la pendiente incrementa de 12 a 18 % en las fajas de menor ancho.

Foto N° 7: Se observa al fondo el valle del Pachachaca, al centro las laderas de Abancay, a la izquierda el valle del Mariño y adelante las laderas empinadas (foto tomada desde El Mirador).

Fuente: INDECI - Programa Ciudades Sostenibles - PNUD.

PONDERACIÓN DE PENDIENTE MÉTODO SAATY. MATRIZ DE NORMALIZACIÓN

PENDIENTE DEL LECHO DEL RÍO	MENOR A 10%	10 - 20%	20 - 35%	MAYOR A 35%	Vector Priorización
MENOR A 10%	0.522	0.589	0.429	0.353	0.473
10 - 20%	0.261	0.295	0.429	0.412	0.349
20 - 35%	0.130	0.074	0.107	0.176	0.122
MAYOR A 35%	0.087	0.042	0.036	0.059	0.056

ÍNDICE DE CONSISTENCIA	IC	0.042
RELACIÓN DE CONSISTENCIA < 0.08 (*)	RC	0.047

Fuente: Elaboración Propia Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

727500

729000

727500 730500 SIMBOLOGIA <u>Polígonos</u> Centros poblados Zona Crítica **LEYENDA** Ambito PDU Porcentaje de Pendiente Limite administrativo 53 0-4 Tamburco **5** 4-8 <u>Vias</u> 8492500 **5** 8-15 Via nacional **5** 15 - 25 √ Via vecinal 50 - 75 <u>Hidrografía</u> Cuadro de distribución de % de MUNICIPALIDAD PROVINCIAL DE Abancay pendiente % de Porcentaje Area (ha) pendiente de área 7.88 0-4 14% 2 4-8 1.72 3% 8 - 15 14.10 25% 18.75 4 15 - 25 33% 5 25 - 50 8.77 15% 50 - 75 4.95 9% 1,000 04 más 75 0.51 1%

Mapa N° 4: Pendiente de la zona de estudio.

Fuente: Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

730500

732000

GEOMORFOLOGÍA Y SU PONDERACION SAATY

El área geográfica donde se asienta la ciudad de Abancay y sus zonas de expansión ha sido afectada por intensa actividad geodinámica tanto interna como externa que se refleja en su variada topografía y su tendencia a la ocurrencia de fenómenos geológicos y geológicos-climáticos.

- Laderas aluviales de la ciudad de Abancay: Es una franja amplia que cubre gran parte de la cuenca inferior que se extiende desde el río Pachachaca hasta la parte del Distrito de Tamburco. La topografía es suavemente inclinada (8 a 15%) y está constituida por un potente deposito aluvial compacto. Sobre este depósito se desarrollan la agricultura y la ciudad de Abancay.
- Laderas Empinadas Cuenca Inferior y Media: Se caracterizan por presentar pendientes empinadas y escarpadas (50 a 75 %) la longitud de las laderas puede pasar de los 1,000m constituyen las vertientes de los tributarios del río Mariño y es el sector más inestable topográficamente. Los procesos erosivos son intensos en las vertientes de mayor pendiente, las huellas de grandes deslizamientos se observan en la parte alta de la ciudad de Abancay, así mismo demuestran que en tiempos pasados han ocurrido periodos muy húmedos o fenómenos

geodinámicos muy intensos que han originado huaycos mucho más violentos que en la actualidad.

Fondos de Quebradas Tributarias del Río Mariño:

Son formas de tierras alargadas, que se ubican en terrenos adyacentes a los cursos de agua que han disectado más profundamente a los terrenos, su pendiente es algo inclinada (6 a 12%), en la cuenca baja con fajas menores a 50 metros de ancho, en la cuenca media sobre los 2,600 m.s.n.m la pendiente incrementa de 12 a 18 % en las fajas de menor ancho.

Zona Montañosa Superior

Constituida por áreas topográficas con pendiente muy escarpadas (75%), donde los afloramientos rocosos forman farallones modelados por la dinámica glacial del Ampay, cuya línea de nieve está a los 4, 700 m.s.n.m variando a 4,800 m.s.n.m. las lenguas de hielo descienden a 4 650 m.s.n.m. En meses excepcionales fríos (Junio Julio); estas lenguas distan a 4 Km. de la Laguna de Ampay. El glaciar ocupa una área total de 5.7 Km y su espesor es inferior a los 60 metros. PONDERACIÓN DE LA GEOMORFOLOGÍA MÉTODO SAATY.

MATRIZ DE NORMALIZACIÓN

GEOMORFOL OGÍA	LADERAS EMPINADAS	LADERAS DE MONTAÑA	LADERAS ALUVIALES	TERRAZAS	Vector Priorización
LADERAS EMPINADAS	0.513	0.522	0.533	0.455	0.506
LADERAS DE MONTAÑA	0.256	0.261	0.267	0.273	0.264
LADERAS ALUVIALES	0.128	0.130	0.133	0.182	0.143
FONDOS DE MONTAÑAS	0.103	0.087	0.067	0.091	0.087

ÍNDICE DE CONSISTENCIA	IC	0.007
RELACIÓN DE CONSISTENCIA < 0.08 (*)	RC	0.008

Fuente: Elaboración Propia Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

d) COBERTURA VEGETAL

El crecimiento poblacional que durante los últimos 10 años se viene registrando están reduciendo las áreas naturales de la zona de evaluación.

Centro Poblado Urbano e Infraestructura para riego

La falta de delimitación del cauce natural del río y su faja marginal permiten la ocupación de los terrenos por viviendas, e infraestructuras públicas así mismo la acumulación. En la zona de estudio el 34% es ocupado por vivienda.

Cultivos, áreas agrícolas

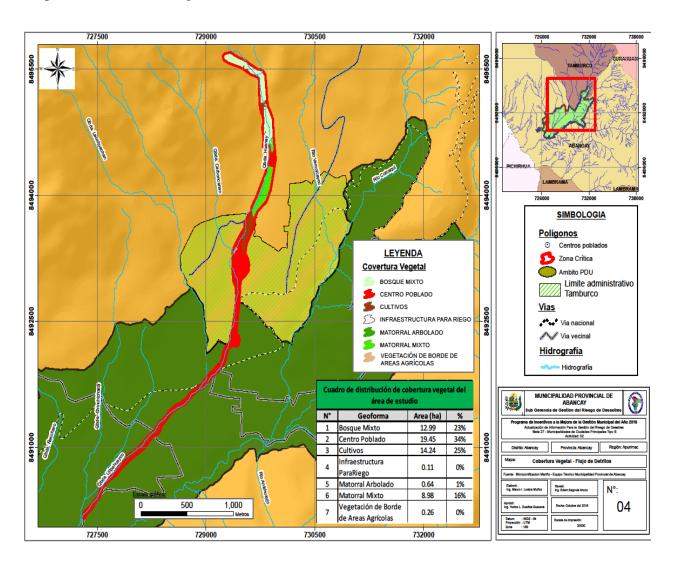
El 14.50% del área de evaluación se usa como área de cultivo y cultivo con riego permanente.

Bosque Mixto y matorral mixto

Solo 21.97% de área se encuentra cubierto por plantas con alturas mayores de 5 m de altura.

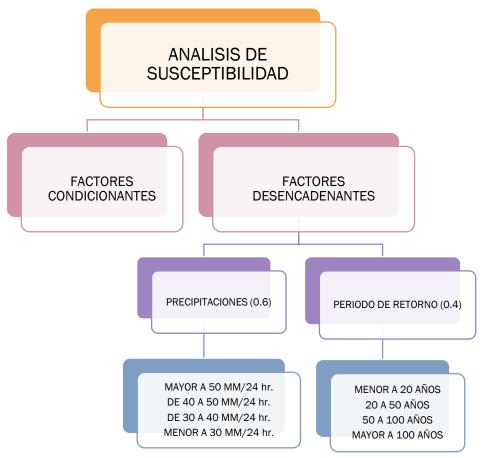
Matorral Arbolado

El 8.98% del terreno está ocupado con árboles cuyas alturas son superiores a los 5 m.


PONDERACIÓN DE PENDIENTE MÉTODO SAATY. MATRIZ DE NORMALIZACIÓN

COBERTURA VEGETAL	CENTRO POBLADO Y INFRAESTRUCTURA PARA RIEGO	CULTIVO, ÁREAS AGRÍCOLAS	BOSQUE MIXTO Y MATORRAL MIXTO	MATORRAL ARBOLADO	Vector Priorización
CENTRO POBLADO Y INFRAESTRUCTURA PARA RIEGO	0.600	0.686	0.545	0.462	0.573
CULTIVO, ÁREAS AGRÍCOLAS	0.150	0.171	0.273	0.231	0.206
BOSQUE MIXTO Y MATORRAL MIXTO	0.150	0.086	0.136	0.231	0.151
MATORRAL ARBOLADO	0.100	0.057	0.045	0.077	0.070

ÍNDICE DE CONSISTENCIA	IC	0.041
RELACIÓN DE CONSISTENCIA < 0.08 (*)	RC	0.046


Fuente: Elaboración Propia Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

Mapa N° 5: Cobertura vegetal de la zona de estudio.

Fuente: Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

3.1.3.2 FACTORES DESENCADENANTES

Fuente: Elaboración Propia Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

a. PRECIPITACIONES PLUVIALES.

Las precipitaciones Mensuales Máximas de 24 Horas, se basan en los registros de la estación hidrometeorológica de Mollepata, cuyos resultados son los siguientes:

Cuadro N° 14: PRECIPITACIONES MENSUALES MÁXIMAS DE 24 HORAS

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	OCT	NOV	DIC	MAX	PROM
P. MAX 24 hr	40.6	50.2	37.5	41.7	30.0	40.5	25.0	12.0	24.0	28.5	34.2	40.8	50.2	29.0

Fuente: SENAMHI

PRECIPITACIONES MÁXIMAS EN 24 HORAS EN LA CIUDAD DE ABANCAY 60 50 P. MAXIMA 24 HORAS (M.M.) 20 10 JUN FEB JUL AGO SET **ENE** MAR ABR MAY OCT NOV DIC MES

■ P.MAX 24 hr.

Figura N° 5: Precipitaciones mensuales máximas en 24 Horas.

Fuente: SENAMHI

Las precipitaciones totales y mensuales presentadas se basan en los registros de la estación hidrometeorológica de Abancay, registradas en 37 años desde el año de 1,964 hasta el año 2,000.

Fuente: (INDECI – Programa Ciudades Sostenibles - PNUD).

PONDERACIÓN DE LA ZONA DE PRECIPITACIONES MÉTODO SAATY.

MATRIZ DE NORMALIZACIÓN

PRECIPITACIONES	MAYOR a 50 mm/24 hr.	40 a 50 mm/24 hr	30 a 40 mm/24 hr	MENOR a 30 mm/24 hr	Vector Priorización
MAYOR a 50 mm/24 hr.	0.597	0.621	0.588	0.538	0.586
40 a 50 mm/24 hr	0.199	0.207	0.235	0.231	0.218
30 a 40 mm/24 hr	0.119	0.103	0.118	0.154	0.124
MENOR a 30 mm/24 hr	0.085	0.069	0.059	0.077	0.072

ÍNDICE DE CONSISTENCIA	IC	0.006
RELACIÓN DE CONSISTENCIA < 0.08 (*)	RC	0.007

Fuente: Elaboración propia 2016 Fuente: Elaboración Propia Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

b. PERIODO DE RETORNO

Para el estudio Hidrológico del Río Mariño en la ciudad de Abancay, se ha utilizado la base de datos elaborada por el Modelo Hidrológico Sistematizado denominado Sistema de Simulación de Parámetros Naturales S.I.P.A.N. y que se basa en registros históricos de 29 años y que reporta la siguiente información básica:

• Temperatura Mínima Mensual: 3.58 °C

Temperatura Media Mensual: 11.37 °C

Temperatura Máxima Mensual: 19.03 °C

• Precipitación Máxima Probable de 24 horas para 1.0 año:

33.529 mm.

• Precipitación Máxima Probable de 24 horas para 5.0 años: 40.966 mm.

- Precipitación Máxima Probable de 24 horas para 10.0 años:
 43.770 mm.
- Precipitación Máxima Probable de 24 horas para 20.0 años:
 46.774 mm.
- Precipitación Máxima Probable de 24 horas para 50.0 años:
 51.205 mm.
- Precipitación Máxima Probable de 24 horas para 100.0 años:
 52.124 mm.
- Precipitación Máxima Probable de 24 horas para 200.0 años:
 52.941 mm.
- Precipitación Máxima Probable de 24 horas para 500.0 años:
 55.697 mm.
- Precipitación Máxima Probable de 24 horas para 1,000 años:
 57.567 mm.
- Precipitación Máxima Probable de 24 horas para 10,000 años:
 66.115 mm.

De acuerdo al valor mínimo del Número de Reynolds para establecer la turbulencia a partir del parámetro 4,000, se ha observado, que la turbulencia registrada en los diferentes ríos de la cuenca del río Mariño son muy variables dependiendo básicamente del caudal, la velocidad y el tirante.

El Río que presenta una turbulencia media es el río Chinchichaca con una velocidad de 1,05 m/seg.

Cuadro N° 15: Turbulencia de los ríos afluentes de la Cuenca del Río Mariño.

RÍO	LUGAR	CAUDAL (M3/SEG)	NUMERO DE REYNOLDS (Re)	TIPO DE TURBULECIA
Ñacchero	Grifo el Pilota – Carretera Panamericana	0,147104	87,561	Media
San Luís	Urbanización San Luís – Carretera Panamericana	0,088367	262,998	Alta
Ullpahuayco	Puente Concreto Armado	0,007000	8,928	Baja
Chinchichaca	Pontón de Madera – Urbanización Nueva Granja	0,162514	90,689	Media
Veronicayoc	Puente Veronicayoc – Carretera Panamericana	0,040000	22,321	Media
Colcaqui	Puente Capelo – Carretera Panamericana	2,141834	597,610	Alta
Colcaqui	Puente Condebamba – Urbanización Condebamba			
Marcahuasi	Puente Aymas	1,063585	395,679	Alta
Hatunpata	Puente Calicanto	9,044598	1'281,830	Muy Alta
Varios Cauces	Cuenca Anishuayco			

Fuente: Programa de Ciudades Sostenibles - PNUD.

El Régimen Hidráulico de los principales Ríos de la Cuenca del Río Mariño se ha evaluado en función al número de Froude.

Cuadro N° 16: Turbulencia De Los Ríos De La Cuenca Del Río Mariño (M. Reynolds)

FECHA EVALUACIÓN	LUGAR	RIO	VELOCIDAD (M/SEG)	NUMERO DE FROUDE (Fr)	TIPO DE REGIMEN
16-03-2,006	Grifo el Pilota – Carretera Panamericana	Ñacchero	0,980	0,990	Critico
16-03-2,006	Urbanización San Luís – Carretera Panamericana	San Luís	1,963	1,619	Supercrítico
16-03-2,006	Puente Concreto Armado	Ullpahuayco	0,500	1,129	Supercrítico
16-03-2,006	Pontón de Madera – Urbanización Nueva Granja	Chinchichaca	1,015	0,837	Subcrítico
16-03-2,006	Puente Veronicayoc – Carretera Panamericana	Veronicayoc	0,500	0,714	Subcrítico
16-03-2,006	Puente Capelo – Carretera Panamericana	Colcaqui	1,487	0,708	Subcrítico
16-03-2,006	Puente Condebamba – Urbanización Condebamba	Colcaqui			
16-03-2,006	Puente Aymas	Marcahuasi	1,772	1,132	Supercrítico
16-03-2,006	Puente Calicanto	Hatunpata	1,837	0,663	Subcrítico
16-03-2,006	Cuenca Anishuayco	Varios Cauces			

Fuente: Programa de Ciudades Sostenibles - PNUD.

Los Ríos que presentan un Régimen Supercrítico son los ríos San Luís, Ullpahuayco y Marcahuasi, los que son altamente erosivos.

PONDERACIÓN DEL PERIODO DE RETORNO MÉTODO SAATY.

MATRIZ DE NORMALIZACIÓN

PERIODO DE RETORNO	MENOR A 20 AÑOS	20 A 50 AÑOS	50 A 100 AÑOS	MAYOR A 100 AÑOS	Vector Priorización
MENOR A 20 AÑOS	0.071	0.059	0.098	0.049	0.069
20 A 50 AÑOS	0.143	0.118	0.164	0.073	0.124
50 A 100 AÑOS	0.357	0.353	0.492	0.585	0.447
MAYOR A 100 AÑOS	0.429	0.471	0.246	0.293	0.359

ÍNDICE DE CONSISTENCIA	IC	0.039
RELACIÓN DE CONSISTENCIA < 0.08 (*)	RC	0.044

Fuente: Elaboración Propia Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

3.1.3.3 PONDERACION DEL PELIGRO METODOLOGÍA SAATY

Para la ponderación del peligro se consideró los factores condicionantes y desencadenantes.

a) MATRIZ DE CONSISTENCIA PARA EL FACTOR CONDICIONANTE

Dentro de los primeros elementos de análisis se priorizó la altura y el ancho del cauce porque la forma y dimensiones que tenga la sección permitirá el transito del recurso hídrico, seguidamente se hace la ponderación a la pendiente, seguido de la morfología y por último la cobertura vegetal.

PONDERACIÓN DEL PERIODO DE RETORNO MÉTODO SAATY

MATRIZ DE NORMALIZACION

FACTORES CONDICIONANTES	ALTURA DE CAUCE	ANCHO DE CAUCE	PENDIENTE	GEOMORFOLOGÍA	COBERTURA VEGETAL	Vector Priorización
ALTURA DE CAUCE	0.522	0.632	0.457	0.353	0.387	0.470
ANCHO DE CAUCE	0.174	0.211	0.343	0.235	0.387	0.270
PENDIENTE	0.130	0.070	0.114	0.235	0.129	0.136
GEOMORFOLOGÍA	0.087	0.053	0.029	0.059	0.032	0.052
COBERTURA VEGETAL	0.087	0.035	0.057	0.118	0.065	0.072

INDICE DE CONSISTENCIA	IC	0.065
RELACION DE CONSISTENCIA < 0.1 (*)	RC	0.058

Fuente: Elaboración Propia Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

b) MATRIZ DE CONSISTENCIA PARA EL FACTOR DESENCADENANTE.

Dentro de los factores desencadenantes destacan las precipitaciones pluviales y el periodo de retorno

En este caso ambos parámetros desencadenantes son de igual importancia ya que son los generadores del evento.

En base al análisis se ha dado el sigueinte peso ponderado a ambos factores desencadenantes.

Precipitaciones Pluviales: 0.5.

Periodo de Retorno 0.5

3.1.3.4 NIVELES DE PELIGROSIDAD RANGOS DEL PELIGRO

CALCULO DEL FACTOR CONDICIONANTE.

FACTOR CONDICIONANTE

LITOLOGÍA	ALTURA DEL CAUCE	ANCHO DEL CAUCE	PENDIENTE	GEOMORFOLOGÍA	COBERTUTA VEGETAL
0.466	0.542	0.528	0.473	0.087	0.070
0.280	0.233	0.276	0.349	0.143	0.151
0.186	0.140	0.134	0.122	0.264	0.206
0.069	0.085	0.062	0.056	0.506	0.573

CALCULO DEL FACTOR DESENCADENANTE.

FACTOR DESENCADENANTE

PRECIPITACIONES	PERIODO DE RETORNO
0.586	0.518
0.218	0.241
0.124	0.154
0.072	0.086

Fuente: Elaboración Propia Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

CALCULO DEL NIVEL DE PELIGROSIDAD.

CALCULO DEL NIVEL PELIGRO 0.538 0.275 0.175 0.137

NIVELES DE PELIGROSIDAD

CALCULO DEL RANGO DEL NIVEL DE PELIGROSIDAD.

RANGO	NIVELES		
0.275	≤R>	0.538	MUY ALTO
0.175	≤ R <	0.275	ALTO
0.137	≤R<	0.175	MEDIO
R	<	0.137	BAJO

Fuente: Elaboración Propia Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

MATRIZ DE PELIGROSIDAD

MATRIZ DE PELIGROSIDAD

RANGO

MUY ALTO	Geomorfológicamente corresponde a laderas empinadas, litológicamente compuesto por depósitos morrénico, el ancho y la altura del cauce es menos a los 5m, la pendiente es menor a 10%, se observa centros poblados e infraestructuras para riego; las precipitaciones son mayores a 50 mm/24hr, con periodos de retorno entre 50 y 100 años.	0.234	≤ Rango >	0.457
ALTO	Geomorfológicamente corresponde a laderas de montaña, litológicamente compuesto por depósitos aluviales, la altura del cauce esta entre 5 y 7 m, el ancho esta entre 5 y 6 m, la pendiente esta entre 10 y 20%, se observa áreas de cultivos y cultivos; las precipitaciones están entre 40 y 50 mm/24hr, con periodos de retorno mayor a 100 años.	0.157	≤ Rango <	0.234
MEDIO	Geomorfológicamente se asienta sobre laderas aluviales, litológicamente compuesto por depósitos coluviales, la altura del cauce esta entre 7 y 9 m, el ancho esta entre 6 y 8 m, tiene una pendiente entre 20 y 35%, se tiene bosques mixtos y matorral mixto; las precipitaciones están entre 30 y 40 mm/24hr, con periodo de retorno entre 20 y 50 años.	0.152	≤ Rango <	0.157
BAJO	Corresponde a fondos de montañas, litológicamente compuesto por materiales del Grupo Mitu, el cauce tiene una altura superior a 9m, el ancho es superior a 8 m, la pendiente es superior a 35%, se tiene matorrales arbolados; las precipitaciones son menores a 30 mm/24hr, con periodos de retorno menores a 20 años.	Ra	ngo <	0.152

Fuente: Elaboración Propia Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

IA DE GESTIÓN DEL RIESGO DE DESASTRES CIPALIDAD PROVINCIAL DE ABANCAY MADA DEL PELIGRO DE LA OL

MAPA DEL PELIGRO DE LA QUEBRADA CHINCHICHACA.

Mapa N° 6: Determinación del nivel de peligro en la quebrada de Chinchichaca motivo del presente análisis.

Fuente: Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

4. VULNERABILIDAD

4.1 ANÁLISIS DE ELEMENTOS EXPUESTOS EN ZONAS SUSCEPTIBLES AL PELIGRO

Para el análisis de vulnerabilidad, se utilizó el análisis multicriterio, denominado **Proceso Jerárquico Analítico de Saaty (1980)**, que desarrolla el cálculo de los pesos ponderados de los descriptores cuyo resultado busca indicar la importancia relativa en comparación de pares.

Para el cálculo del nivel de vulnerabilidad se ha analizado la zona expuesta al impacto de un huayco en las Urbanizaciones Las Americas, Vallecito el Olivo I y II etapa, Chinchichaca, Virgen del Carmen, Micaela Bastidas, Patibamba Alta, Cercado, La Victoria, Magisterial, Manuel Escorza, Vallecito El Olivo y Las Palmeras del distrito de Abancay.

4.2 ANÁLISIS DE LOS NIVELES DE VULNERABILIDAD

Los objetivos analizados son la dimensión social y económica con la respectiva ponderación de sus indicadores, la dimensión ambiental no se ha analizado por falta de información; para obtener información precisa se realizó encuestas directas a los pobladores a cargo del equipo técnico de la Sub Gerencia de Gestión del Riesgo de Desastres

4.2.1 DIMENSIÓN SOCIAL.

El análisis de la dimensión social nos permite identificar las características intrínsecas de la población de la zona de evaluación y su resultado en la contribución para el análisis de la vulnerabilidad.

Para este análisis se identificaron y seleccionaron parámetros de evaluación agrupados en los componentes de fragilidad y resiliencia.

Organigrama 4.1: General del análisis de la vulnerabilidad de la zona de evaluación.

Fuente: Elaboración Propia Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

4.2.1.1 FRAGILIDAD SOCIAL

Para el análisis de la fragilidad social se ha considerado el grupo etario, discapacidad, número de personas en vivienda y N° de embarazadas, todos estos datos serán analizados para su ponderación.

INDICADORES DE FRAGILIDAD SOCIAL

FRAG. SOCIAL	GRUPO ETARIO	PERSONAS CON DISCAPACIDAD Y EMBARAZADAS	N° DE PERSONAS EN VIVIENDA	Vector Priorización
GRUPO ETARIO	0.286	0.286	0.286	0.286
PERSONAS CON DISCAPACIDAD Y EMBARAZADAS	0.571	0.571	0.571	0.571
N° DE PERSONAS EN VIVIENDA	0.143	0.143	0.143	0.143

ÍNDICE DE CONSISTENCIA	IC	0.000
RELACIÓN DE CONSISTENCIA < 0.04 (*)	RC	0.000

Fuente: Elaboración Propia Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

a) INDICADOR DE GRUPO ETARIO.

Las diferentes edades que tienen cada uno de los integrantes de las familiar son un motivo para su análisis, ya que se tienen desde lactantes hasta personas de la tercera edad las, cuales son una condición de vulnerabilidad, aún más cuando el número se incrementa.

GRUPO ETARIO (GR_ETAR)				
PARÁMETRO:	0.286			
< 2	0.503	GEDAD_1	Mayor a 4	0.520
y > 65			3 a 4	0.297
703			1a2	0.124
			0	0.058
3 a 5	0.300	GEDAD_2	Mayor a 4	0.552
			3 a 4	0.255
			1a2	0.128
			0	0.065
6 a 18	0.124	GEDAD_3	Mayor a 5	0.513
			4 a 5	0.280
			1a3	0.148
			0	0.059
19 a 64	0.073	GEDAD_4	Mayor a 9	0.520
			5a9	0.300
			1 a 4	0.131
			0	0.049

Fuente: Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

Grupo Etario

0.286	0.503	0.520	0.075	0.286	0.300	0.552	0.047	0.286	0.124	0.513	0.018	0.286	0.073	0.520	0.011
0.286	0.503	0.297	0.043	0.286	0.300	0.255	0.022	0.286	0.124	0.280	0.010	0.286	0.073	0.300	0.006
0.286	0.503	0.124	0.018	0.286	0.300	0.128	0.011	0.286	0.124	0.148	0.005	0.286	0.073	0.131	0.003
0.286	0.503	0.058	0.008	0.286	0.300	0.065	0.006	0.286	0.124	0.059	0.002	0.286	0.073	0.049	0.001

Fuente: Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

b) INDICADOR DE PERSONAS CON DISCAPACIDAD Y EMBARAZADAS.

Las personas con discapacidad y las madres gestantes son el grupo de mayor importancia para realizar la ponderación debido a las limitaciones que poseen cada una de ellas y así mismo la cantidad dentro de la zona de estudio.

MATRIZ DE NORMALIZACIÓN						
DISCAPACIDAD/ EMBARAZADAS	VISUAL	EXTREM. INF. MENTAL	EXTREM. INF EMBARAZADA	NINGUNO	Vector Priorización	
VISUAL	0.080	0.089	0.056	0.133	0.090	
EXTREM. INF. MENTAL	0.560	0.625	0.667	0.533	0.596	
EXTREM. INF EMBARAZADA	0.320	0.208	0.222	0.267	0.254	
NINGUNO	0.040	0.078	0.056	0.067	0.060	

ÍNDICE DE CONSISTENCIA	IC	0.027
RELACIÓN DE CONSISTENCIA < 0.08 (*)	RC	0.030

Fuente: Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

c) INDICADOR NUMERO DE PERSONAS EN VIVIENDAS

La cantidad de personas que habitan en una vivienda es otro de los elementos a analizar.

	MATRIZ DE NORMALIZACIÓN						
N° DE PERSONAS EN VIVIENDA	MENOR A 5	6-10	11 - 15	MAYOR A 16	Vector Priorización		
MENOR A 5	0.059	0.032	0.037	0.087	0.054		
6 - 10	0.176	0.097	0.074	0.101	0.112		
11 - 15	0.353	0.290	0.222	0.203	0.267		
MAYOR A 16	0.412	0.581	0.667	0.609	0.567		

ÍNDICE DE CONSISTENCIA	IC	0.045
RELACIÓN DE CONSISTENCIA < 0.08 (*)	RC	0.051

Fuente: Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

RESILIENCIA SOCIAL

Los resultados de este análisis nos permiten tener información respeto a la capacidad de reposición o recuperación posterior a un desastre.

INDICADOR RESILIENCIA SOCIAL.

Para la determinación de esta dimensión se ha considerado la afiliación en el sistema de salud, nivel educativo adquirido y permiso a través de licencia de construcción emitida por la autoridad local.

MATRIZ DE NORMALIZACIÓN						
RESILIENCIA SOCIAL	SEGURO DE SALUD	NIVEL EDUCATIVO	LICENCIA DE CONSTRUCCIÓN	Vector Priorización		
SEGURO DE SALUD	0.652	0.692	0.556	0.633		
NIVEL EDUCATIVO	0.217	0.231	0.333	0.260		
LICENCIA DE CONSTRUCCIÓN	0.130	0.077	0.111	0.106		

ÍNDICE DE CONSISTENCIA	IC	0.019
RELACIÓN DE CONSISTENCIA < 0.04 (*)	RC	0.037

Fuente: Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

a. INDICADOR DE ACCESO A SEGURO DE SALUD.

Es importante contar con información estadística de la cantidad de habitantes de la urbanización que cuentan con seguros de salud.

MATRIZ DE NORMALIZACIÓN						
SISTEMA DE SEGURO	ESSALUD	POLICIAL	SIS - PARTICULAR	SIN SEGURO - NINGUNO	Vector Priorización	
ESSALUD	0.077	0.053	0.045	0.103	0.069	
POLICIAL	0.154	0.105	0.060	0.124	0.111	
SIS - PARTICULAR	0.308	0.316	0.179	0.155	0.239	
SIN SEGURO - NINGUNO	0.462	0.526	0.716	0.619	0.581	

ÍNDICE DE CONSISTENCIA	IC	0.046
RELACIÓN DE CONSISTENCIA < 0.08 (*)	RC	0.052

Fuente: Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

b. INDICADOR DE NIVEL EDUCATIVO.

Este indicador nos dará información respecto al conocimiento que tienen los jefes de familia como representantes para afrontar escenarios de desastre, su nivel educativo aportará para salir de la situación en menor o mayor tiempo.

	MATRIZ DE NORMALIZACIÓN					
NIVEL EDUCATIVO	SIN ESTUDIOS	PRIMARIA COMPLETA	SECUNDARIA COMPLETA - ESTUDIANTE	SUP. TECNICO Y UNIVERSITARIO	Vector Priorización	
SIN ESTUDIOS	0.561	0.638	0.545	0.357	0.525	
PRIMARIA COMPLETA	0.187	0.213	0.273	0.357	0.257	
SECUNDARIA COMPLETA - ESTUDIANTE	0.140	0.106	0.136	0.214	0.149	
SUP. TECNICO Y UNIVERSITARIO	0.112	0.043	0.045	0.071	0.068	

ÍNDICE DE CONSISTENCIA	IC	0.046
RELACIÓN DE CONSISTENCIA < 0.08 (*)	RC	0.053

INDICADOR LICENCIA DE CONSTRUCCIÓN

Dentro de los procedimientos establecidos por la autoridad local están la emisión de licencias de construcción así mismo con la encuesta se identifican las viviendas que cuentan con tal documentación para el cumplimiento de las exigencias.

MATRIZ DE NORMALIZACIÓN							
LICENCIA DE CONSTRUCCIÓN	SI	NO	EN TRAMITE	DESCONOCE	Vector Priorización		
SI	0.071	0.098	0.045	0.057	0.068		
NO	0.357	0.492	0.409	0.566	0.456		
EN TRAMITE	0.214	0.164	0.136	0.094	0.152		
DESCONOCE	0.357	0.246	0.409	0.283	0.324		

ÍNDICE DE CONSISTENCIA	IC	0.035
RELACIÓN DE CONSISTENCIA < 0.08 (*)	RC	0.040

Fuente: Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

4.2.1.2 RESULTADO DE LA DIMENSIÓN SOCIAL

CONSOLIDADO PARA LA FRAGILIDAD SOCIAL

FRAGILIDAD SOCIAL					
GR_ETAR		SONAS CON AD - EMBARAZADA		PERSONAS VIENDA	
VALOR	PARAM	DESCRIP	PARAM	DESCRIP	
0.151	0.571	0.596	0.143	0.567	
0.081	0.571	0.254	0.143	0.267	
0.037	0.571	0.060	0.143	0.112	
0.017	0.571	0.090	0.143	0.054	

CONSOLIDADO PARA LA RESILIENCIA SOCIAL

RESILENCIA SOCIAL						
	URO NIVEL ALUD EDUCATIVO		••••		IA DE JCCIÓN	
PARAM	PARAM	DESCRIP	PARAM	DESCRIP	PARAM	
0.633	0.633	0.581	0.260	0.525	0.106	
0.633	0.633	0.239	0.260	0.257	0.106	
0.633	0.633	0.069	0.260	0.149	0.106	
0.633	0.633	0.111	0.260	0.068	0.106	

Fuente: Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

RESULTADO DE LA VULNERABILIDAD SOCIAL

FRAGILIDAD SOCIAL	RESILIENCIA SOCIAL
VALOR	VALOR
0.573	0.553
0.264	0.253
0.087	0.099
0.076	0.095

VULNERABILIDAD SOCIAL					
VALOR					
0.563					
0.259					
0.093					
0.085					

Fuente: Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

4.2.2 DIMENSIÓN ECONÓMICA

El análisis de la dimensión económica permite identificar las características de las viviendas de posesión (Tenencia de la propiedad, material de construcción, estado de conservación, N° de pisos y altura con respeto al río), el nivel promedio de ingreso económico y la actividad económica actual. Ver organigrama.

Organigrama 4.2: General del análisis de la vulnerabilidad de las urbanizaciones en evaluación

Fuente: Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

4.2.2.1 FRAGILIDAD ECONÓMICA.

Se analiza el tipo de tenencia de la propiedad, material de construcción, estado de conservación, N° de pisos de las viviendas y la altura con respecto al río Chinchichaca.

INDICADOR DE FRAGILIDAD ECONÓMICA

MATRIZ DE NORMALIZACION						
FRAGILIDAD ECONÓMICA	TENENCIA DE LA PROPIEDAD	MATERIAL DE CONSTRUCCIÓN	ESTADO DE CONSERVACIÓN.	N° DE PISOS	ALTURA DE VIVIENDA CON RESPECTO AL RÍO	Vector Priorización
TENENCIA DE LA PROPIEDAD	0.063	0.071	0.080	0.030	0.067	0.062
MATERIAL DE CONSTRUCCIÓN	0.125	0.143	0.080	0.242	0.200	0.158
ESTADO DE CONSERVACIÓN.	0.188	0.429	0.240	0.242	0.200	0.260
N° DE PISOS	0.250	0.071	0.120	0.121	0.133	0.139
ALTURA DE VIVIENDA CON RESPECTO AL RÍO	0.375	0.286	0.480	0.364	0.400	0.381

INDICE DE CONSISTENCIA	IC	0.068
RELACION DE CONSISTENCIA < 0.1 (*)	RC	0.061

Fuente: Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

INDICADOR A LA TENENCIA DE LA PROPIEDAD

Con este indicador se determinará la tenencia de las viviendas por parte de las familias que habitan en las urbanizaciones en evaluación y las condiciones posteriores al desastre.

MATRIZ DE NORMALIZACIÓN						
TENENCIA DE LA PROPIEDAD	ALQUILADO	PROPIO CON TITULO	PROPIO SIN TITULO	SE DESCONOCE - SIN USO	Vector Priorización	
ALQUILADO	0.091	0.069	0.107	0.077	0.086	
PROPIO CON TITULO	0.273	0.207	0.179	0.308	0.241	
PROPIO SIN TITULO	0.455	0.621	0.536	0.462	0.518	
SE DESCONOCE - SIN USO	0.182	0.103	0.179	0.154	0.154	

ÍNDICE DE CONSISTENCIA	IC	0.020
RELACIÓN DE CONSISTENCIA < 0.08 (*)	RC	0.022

a) INDICADOR DE MATERIAL DE CONSTRUCCIÓN

En este parámetro se analiza el tipo de material utilizado durante el proceso de su construcción.

MATRIZ DE NORMALIZACIÓN							
MATERIAL DE CONSTRUCCIÓN	ADOBE - CALAMINA	CONCRETO	SE DESCONOCE	SIN CONSTRUIR	Vector Priorización		
ADOBE - CALAMINA	0.553	0.621	0.480	0.467	0.530		
CONCRETO LADRILLO	0.184	0.207	0.320	0.200	0.228		
SE DESCONOCE	0.184	0.103	0.160	0.267	0.179		
SIN CONSTRUIR	0.079	0.069	0.040	0.067	0.064		

ÍNDICE DE CONSISTENCIA	IC	0.038
RELACIÓN DE CONSISTENCIA < 0.08 (*)	RC	0.043

Fuente: Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

b) INDICADOR DE ESTADO DE CONSERVACIÓN

Este indicador nos permite analizar las características del estado de conservación que tienen cada una de las viviendas que se encuentran en las urbanizaciones en evaluación.

MATRIZ DE NORMALIZACIÓN							
ESTADO DE CONSERVACION	BUENA	MALO - COLAPSADO	REGULAR	SIN CONSTRUCCION	Vector Priorización		
BUENA	0.118	0.136	0.071	0.200	0.131		
MALO - COLAPSADO	0.471	0.545	0.643	0.400	0.515		
REGULAR	0.353	0.182	0.214	0.300	0.262		
SIN CONSTRUCCION	0.059	0.136	0.071	0.100	0.092		

ÍNDICE DE CONSISTENCIA	IC	0.048
RELACIÓN DE CONSISTENCIA < 0.08 (*)	RC	0.055

INDICADOR DE NÚMERO DE PISOS EN VIVIENDA

Este indicador se analizará en base al número de pisos con que cada vivienda cuenta.

MATRIZ DE NORMALIZACIÓN						
N° DE PISOS	0	1-2	3-4	MAYOR A 5	Vector Priorización	
0	0.100	0.140	0.071	0.053	0.091	
1-2	0.400	0.561	0.643	0.526	0.532	
3 - 4	0.300	0.187	0.214	0.316	0.254	
MAYOR A 5	0.200	0.112	0.071	0.105	0.122	

ÍNDICE DE CONSISTENCIA	IC	0.050
RELACIÓN DE CONSISTENCIA < 0.08 (*)	RC	0.056

Fuente: Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

c) INDICADOR DE ALTURA DE VIVIENDA RESPECTO AL RÍO

Este indicador es analizado ya que se necesita saber la ubicación en altura de la vivienda respecto al río.

MATRIZ DE NORMALIZACIÓN							
ALTURA DE VIVIENDA RESPECTO AL RIO	MENOR A 1 M	2 A 4	5 A 7	MAYOR A 8 M	Vector Priorización		
MENOR A 1 M	0.649	0.723	0.581	0.471	0.606		
2 A 4	0.162	0.181	0.290	0.294	0.232		
5 A 7	0.108	0.060	0.097	0.176	0.110		
MAYOR A 8 M	0.081	0.036	0.032	0.059	0.052		

ÍNDICE DE CONSISTENCIA	IC	0.050
RELACIÓN DE CONSISTENCIA < 0.08 (*)	RC	0.056

RESILIENCIA ECONÓMICA

Es la capacidad de reposición económica ante un evento catastrófico, este indicador nos ayudará a identificar la cantidad de viviendas a ser repuestas en el menor tiempo posible.

A) INDICADOR DE LA ACTIVIDAD ECONÓMICA

La actividad económica de las familias determinará el tiempo para la recuperación ante el evento de movimiento en masa (reptación).

- Actividad económica de la vivienda 0.5
- Promedio de ingreso económico 0.5

B) INDICADOR DE ACTIVIDAD ECONÓMICA DE LA VIVIENDA

Este indicador se analizará en base a la actividad económica que se realizan en sus viviendas.

		MATRIZ DE NO	RMALIZACIÓN		
ACTIV. ECONOMICA DE VIVIENDA	ALQUILER, TALLER, EN CONSTRUCCIÓN	COMERCIO, TIENDA, CARPINTERIA	CUNA GUARDERIA, DEPARTAMENTO	SE DESCONOCE, IGLESIA,COLEGIO DE ABOG., FISCALIA, CASA COMUNAL, OTROS	Vector Priorización
ALQUILER, TALLER, EN CONSTRUCCIÓN	0.063	0.028	0.075	0.087	0.063
COMERCIO, TIENDA, CARPINTERIA	0.313	0.139	0.132	0.130	0.178
CUNA GUARDERIA, DEPARTAMENTO	0.438	0.556	0.528	0.522	0.511
SE DESCONOCE, IGLESIA,COLEGIO DE ABOG., FISCALIA, CASA COMUNAL, OTROS	0.188	0.278	0.264	0.261	0.248

ÍNDICE DE CONSISTENCIA	IC	0.056
RELACIÓN DE CONSISTENCIA < 0.08 (*)	RC	0.064

C) INDICADOR DE INGRESO ECONÓMICO FAMILIAR

Este indicador se analizará en base promedio de ingresos económico que tiene la familia de manera mensual de acuerdo a la actividad que genera el jefe de familia.

		MATR	IZ DE NORMALIZACIÓN		
PROMEDIO DE INGRESO ECONÓMICO	0 A 600	601 - 1,000	1,001 A 2,000	2,001 A 3,500	Vector Priorización
0 A 600	0.588	0.662	0.536	0.400	0.546
601 A 1,000	0.196	0.221	0.321	0.333	0.268
1,001 A 2,000	0.118	0.074	0.107	0.200	0.125
2,001 A 3,500	0.098	0.044	0.036	0.067	0.061

ÍNDICE DE CONSISTENCIA	IC	0.051
RELACIÓN DE CONSISTENCIA < 0.08 (*)	RC	0.058

Fuente: Elaboración Propia. Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

4.2.2.2 RESULTADOS DE LA DIMENSIÓN ECONÓMICA

CONSOLIDADO PARA LA FRAGILIDAD ECONÓMICA

	N. DE LA PIEDAD		RIAL DE RUCCION		DO DE RVACIÓN	N° DE POR VIV		ALTURA DE RESPECT	
PARAM	DESCRIP	PARAM	DESCRI P	PARAM	DESCRI P	PARAM	DESCRI P	PARAM	DESCRIP
0.062	0.518	0.158	0.530	0.260	0.515	0.139	0.532	0.381	0.606
0.062	0.241	0.158	0.228	0.260	0.262	0.139	0.254	0.381	0.232
0.062	0.154	0.158	0.179	0.260	0.131	0.139	0.122	0.381	0.110
0.062	0.086	0.158	0.064	0.260	0.092	0.139	0.091	0.381	0.052

CONSOLIDADO PARA LA RESILIENCIA ECONÓMICA

RESILENCIA ECONOMICA						
	ONÓMICA IVIENDA		OM. DE ECONÓMICO			
PARAM	DESCRIP	PARAM	DESCRIP			
0.5	0.178	0.5	0.546			
0.5	0.511	0.5	0.268			
0.5	0.063	0.5	0.125			
0.5	0.248	0.5	0.061			

RESULTADO DE LA VULNERABILIDAD ECONÓMICA

FRAGILIDAD ECONOMICA	RESILIENCIA ECONOMICA
VALOR	VALOR
0.554	0.362
0.243	0.389
0.131	0.094
0.072	0.154

Fuente: Elaboración Propia. Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

VULNERABILIDAD ECONOMICA
0.458
0.316
0.112
0.113

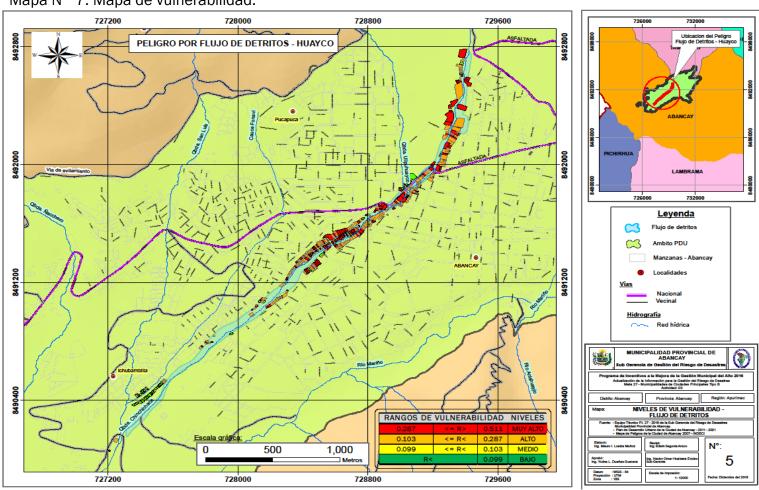
4.2.3 ANALISIS DE VULNERABILIDAD

Para el cálculo de la Vulnerabilidad total, se está considerando la vulnerabilidad social y económica, no se está tomando la vulnerabilidad ambiental por carencia de información.

VULNERABILIDAD SOCIAL	PESO	VULNERABILIDAD ECONOMICA	PES0	VULNERABILIDAD TOTAL
0.563	0.5	0.458	0.5	0.511
0.259	0.5	0.316	0.5	0.287
0.093	0.5	0.112	0.5	0.103
0.085	0.5	0.113	0.5	0.099

Fuente: Elaboración Propia. Equipo Técnico Meta 27 PI 2016 de la Sub Gerencia de Gestión del Riesgo de Desastres – Municipalidad Provincial de Abancay.

4.2.4 CALCULO DEL NIVEL DE VULNERABILIDAD


RANGOS DE VULNERABILIDAD			NIVELES
0.287	≤ R >	0.511	MUY ALTO
0.103	≤ R <	0.287	ALTO
0.099	≤ R <	0.103	MEDIO
R	<	0.099	BAJO

	MATRIZ DE VULNERABILIDAD.		RANGOS	
MUY ALTO	El número de personas por vivienda es mayor a 16, viviendas habitadas por más de 4 personas cuyo grupos etarios están entre 0 a 2 años y mayores de 65 años, más de 4 personas de edades entre 3 a 5 años, más de 6 personas entre 6 y 18 años, y más de 10 personas cuyo grupo etario esta entre 19 y 64 años, se tiene personas con discapacidad en las extremidades inferiores y discapacidad mental, no tienen acceso a seguros de salud de ningún tipo, no cuentan con estudios y en otros casos se desconoce, su vivienda es propio y sin título, no cuentan con licencia de construcción, la vivienda que ocupan es propia pero no cuentan con título de propiedad, las viviendas están construidas con materiales de adobe y calamina, el estado de conservación del terreno es malo y en otros lados colapsado, las viviendas tienen uno y dos niveles, la altura de la vivienda con respecto al río es menor a 1 metro, la actividad económica de la vivienda es cuna, guardería y departamento. Las familias tienen un ingreso económico menos a 600 soles.	0.287	≤R>	0.511
ALTO	El número de personas por vivienda está entre 11 y 15, viviendas habitadas por 3 y 4 personas cuyo grupos etarios están entre 0 a 2 años y mayores de 65 años, entre 3 y 4 personas con edades entre 3 a 5 años, 4 y 5 personas entre 6 y 18 años y 5 a 9 personas cuyo grupo etario esta entre 19 y 64 años, se tiene personas con discapacidad en las extremidades inferiores y otras embarazadas, tienen acceso al SIS o particular, cuentan con primaria completa, su vivienda es propio con título, se desconoce si tienen licencia de construcción, las viviendas están construidas con materiales de concreto o ladrillo, el estado de conservación es regular, las viviendas tienen entre 3 y 4 niveles, la altura de la vivienda con respecto al río esta entre 2 y 4 metros, a actividad económica de la vivienda en algunos casos, iglesia, colegio de abogado, vivienda, fiscalía casa comunal y otros. Las familias tienen un ingreso económico entre 601 y 1,000 soles.	0.103	≤R<	0.287
MEDIO	El número de personas por vivienda está entre 6 y 10, viviendas habitadas entre 1 y 2 personas cuyo grupos etarios están entre 0 a 2 años y mayores de 65 años, 1 a 2 personas con edades entre 3 a 5 años, entre 1 y 3 personas entre 6 y 18 años, y 1 y 4 personas cuyo grupo etario esta entre 19 y 64 años, se tiene personas con discapacidad visual, tienen acceso al seguro policial, el nivel de estudios del jefe es la secundaria completa, se desconoce la tenencia de la propiedad, la licencia de construcción se encuentra en trámite, no se cuenta con información de respecto al material usado, el estado de conservación es buena, las viviendas tienen niveles mayor a 5, la altura de la vivienda con respecto al río está entre 5 y 7 metros, la actividad de la vivienda es el uso como comercio, tienda y carpintería, Las familias tienen un ingreso económico entre 1,001 y 2,000 soles.	0.099	≤R<	0.103
BAJO	El número de personas por vivienda es menor a 5, se desconoce la edad de los habitantes, no se tiene personas con discapacidad, tienen acceso al ESSALUD, su nivel de educación es superior universitario y técnico superior, la propiedad es alquilado, si tienen licencia de construcción, la propiedad es alquilada, no se tiene construcción en el terreno, la altura de la vivienda con respecto al río es mayor a 8 metros, la vivienda está en alquiler, taller, en proceso de construcción. Las familias tienen un ingreso económico superior a 2,001 soles.	R<		0.099

Mapa N° 7: Mapa de vulnerabilidad.

5. RIESGO Y RESULTADOS

5.1 CÁLCULO DEL NIVEL DE RIESGO POR INUNDACIÓN EN LA ZONA DE ESTUDIO.

El peligro se desarrollado del capítulo III obteniendo un resultado de niveles de peligro, como se ve el resumen en el cuadro 0.8 y la matriz en el cuadro N° 0.9 además se tiene la vulnerabilidad del capítulo IV, de la multiplicación de lo mencionado se obtiene el riesgo como se describe en la formula siguiente:

$$R_{ie} = f(P_i, V_e)$$

R=Riesgo

f= Función

Pi=Peligro con la intensidad mayor o igual a, durante un periodo de exposición.

Ve= Vulnerabilidad de un elemento expuesto.

Fuente: Manual de Evaluación de Riesgo Originado por Fenómenos Naturales. - CENEPRED

CÁLCULO DEL RIESGO

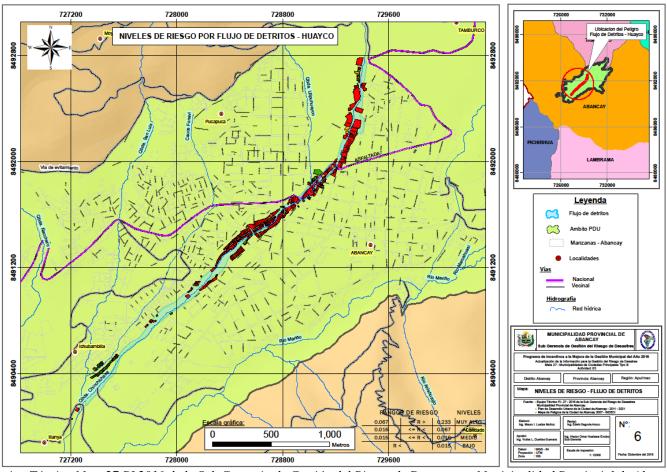
PELIGRO	VULNERABILIDAD
TOTAL	TOTAL
0.457	0.513
0.234	0.286
0.157	0.102
0.152	0.099
RIESGO	
TOTAL	
0.234	
0.067	
0.016	
0.015	

RANGOS Y NIVELES DE RIESGO.

Se han establecido los siguientes rangos para cada uno de los niveles de riesgo por inundación en las Urbanizaciones Pueblo Joven Centenario, Urbanizaciones Las Américas, Vallecito el Olivo I y II etapa, Chinchichaca, Virgen del Carmen, Micaela Bastidas, Patibamba Alta, Cercado, La Victoria, Magisterial, Manuel Escorza, Vallecito El Olivo y Las Palmeras del Distrito Abancay – Apurímac.

RANGOS DE RIESGO			NIVELES
0.067	≤ R >	0.233	MUY ALTO
0.016	≤ R <	0.067	ALTO
0.015	≤ R <	0.016	MEDIO
R	<	0.015	BAJO

5.1.1 MATRIZ DE RIESGO


MATRIZ DE RIESGO			RANGO		
MUY ALTO	Geomorfológicamente corresponde a laderas empinadas, litológicamente compuesto por depósitos morrénico, el ancho y la altura del cauce es menos a los 5m, la pendiente es menor a 10%, se observa centros poblados e infraestructuras para riego; las precipitaciones son mayores a 50 mm/24hr, con periodos de retorno entre 50 y 100 años. El número de personas por vivienda es mayor a 16, viviendas habitadas por más de 4 personas cuyo grupos etarios están entre 0 a 2 años y mayores de 65 años, más de 4 personas de edades entre 3 a 5 años, más de 6 personas entre 6 y 18 años, y más de 10 personas cuyo grupo etario esta entre 19 y 64 años, se tiene personas con discapacidad en las extremidades inferiores y discapacidad mental, no tienen acceso a seguros de salud de ningún tipo, no cuentan con estudios y en otros casos se desconoce, su vivienda es propio y sin título, no cuentan con licencia de construcción, la vivienda que ocupan es propia pero no cuentan con título de propiedad, las viviendas están construidas con materiales de adobe y calamina, el estado de conservación del terreno es malo y en otros lados colapsado, las viviendas tienen uno y dos niveles, la altura de la vivienda con respecto al río es menor a 1 metro, la actividad económica de la vivienda es cuna, guardería y departamento. Las familias tienen un ingreso económico menos a 600 soles.	0.067	≤R>	0.233	
ALTO	Geomorfológicamente corresponde a laderas de montaña, litológicamente compuesto por depósitos aluviales, la altura del cauce esta entre 5 y 7 m, el ancho esta entre 5 y 6 m, la pendiente esta entre 10 y 20%, se observa áreas de cultivos y cultivos; las precipitaciones están entre 40 y 50 mm/24hr, con periodos de retorno mayor a 100 años. El número de personas por vivienda está entre 11 y 15, viviendas habitadas por 3 y 4 personas cuyo grupos etarios están entre 0 a 2 años y mayores de 65 años, entre 3 y 4 personas con edades entre 3 a 5 años, 4 y 5 personas entre 6 y 18 años y 5 a 9 personas cuyo grupo etario esta entre 19 y 64 años, se tiene personas con discapacidad en las extremidades inferiores y otras embarazadas, tienen acceso al SIS o particular, cuentan con primaria completa, su vivienda es propio con título, se desconoce si tienen licencia de construcción, las viviendas están construidas con materiales de concreto o ladrillo, el estado de conservación es regular, las viviendas tienen entre 3 y 4 niveles, la altura de la vivienda con respecto al río esta entre 2 y 4 metros, a actividad económica de la vivienda en algunos casos, iglesia, colegio de abogado, vivienda, fiscalía casa comunal y otros. Las familias tienen un ingreso económico entre 601 y 1,000 soles.	0.016	≤ R <	0.067	
MEDIO	Geomorfológicamente se asienta sobre laderas aluviales, litológicamente compuesto por depósitos coluviales, la altura del cauce esta entre 7 y 9 m, el ancho esta entre 6 y 8 m, tiene una pendiente entre 20 y 35%, se tiene bosques mixtos y matorral mixto; las precipitaciones están entre 30 y 40 mm/24hr, con periodo de retorno entre 20 y 50 años. El número de personas por vivienda está entre 6 y 10, viviendas habitadas entre 1 y 2 personas cuyo grupos etarios están entre 0 a 2 años y mayores de 65 años, 1 a 2 personas con edades entre 3 a 5 años, entre 1 y 3 personas entre 6 y 18 años, y 1 y 4 personas cuyo grupo etario esta entre 19 y 64 años, se tiene personas con	0.015	≤R<	0.016	

	discapacidad visual, tienen acceso al seguro policial, el nivel de estudios del jefe es la secundaria completa, se desconoce la tenencia de la propiedad, la licencia de construcción se encuentra en trámite, no se cuenta con información de respecto al material usado, el estado de conservación es buena, las viviendas tienen niveles mayor a 5, la altura de la vivienda con respecto al río está entre 5 y 7 metros, la actividad de la vivienda es el uso como comercio, tienda y carpintería, Las familias tienen un ingreso económico entre 1,001 y 2,000 soles.		
BAJO	Corresponde a fondos de montañas, litológicamente compuesto por materiales del Grupo Mitu, el cauce tiene una altura superior a 9m, el ancho es superior a 8 m, la pendiente es superior a 35%, se tiene matorrales arbolados; las precipitaciones son menores a 30 mm/24hr, con periodos de retorno menores a 20 años. El número de personas por vivienda es menor a 5, se desconoce la edad de los habitantes, no se tiene personas con discapacidad, tienen acceso al ESSALUD, su nivel de educación es superior universitario y técnico superior, la propiedad es alquilado, si tienen licencia de construcción, la propiedad es alquilada, no se tiene construcción en el terreno, la altura de la vivienda con respecto al río es mayor a 8 metros, la vivienda está en alquiler, taller, en proceso de construcción. Las familias tienen un ingreso económico superior a 2,001 soles.	R<	0.015

5.1.2 MAPA DE RIESGO DE LA ZONA DE ESTUDIO.

Mapa N° 8: Mapa de nivel de riesgo por flujo de detritos en la zona de estudio.

6. BIBLIOGRAFÍA.

- Perú (2015) Decreto Supremo Nº 111-2012-PCM Decreto Supremo que incorpora la Política Nacional de Gestión del Riesgo de Desastres como Política Nacional de obligatorio Cumplimiento para las entidades del Gobierno Nacional.
- Perú (2014) Ley N° 29664. Ley que crea el Sistema Nacional de Gestión de Riesgo de Desastres (SINAGERD).
- Perú (2013) Directiva N° 001-2013-CENEPRED/J que regula los Procedimientos Administrativos para la Evaluación de Riesgos Originados por Fenómenos Naturales.
- Perú (2003). Ley N° 27867, Ley Orgánica de Gobiernos Regionales.
- Perú (2003). Ley 27972. Ley Orgánica de Municipalidades.
- CENEPRED (2014) Manual para la Evaluación de Riesgos Originados por Fenómenos Naturales – 2da Versión – Lima - Perú
- SIGRID-CENEPRED (2015), de la página de internet
 http://sigrid.cenepred.gob.pe/
- INEI Censos Nacionales 2007: XI de Población y VI de Vivienda.
- Geomorfología, Elorza, Guitierrez Mateo.
- Programa Ciudades Sostenibles, Mapa de Peligros de la Ciudad de Abancay INDECI PNUD PER/02/051.
- Movimientos en Masa en la Región Andina, Una Guía Para La Evaluación De Amenazas.

7. ANEXOS

QUEBRADA DE CHINCHICHACA.

Material fluvial depositado en las márgenes del río, suelo con cobertura vegetal del tipo matorral mixto.

Muros de contención construidos en el cauce del río.

Puentes que estrechan el cauce del río Chinchichaca

Bosque y matorral mixto en el margen izquierda dotando de cierta resistencia al material fluvial y en el margen derecha infraestructura que estrecha el cauce del río.

Obras públicas, viviendas y acumulación de basura estrechan el cauce a 2.5 m aproximadamente.

Viviendas construidas sobre el cauce del río.

Galería comercial El Olivo construido sobre el cauce del Río de Chinchichaca.

Ancho del cauce del río 2.5 a 2 m.

Altura del cauce del río de 3 m aproximadamente.

Vivienda construida sobre el cauce del río Chinchichaca.

Altura del cauce del río y ancho irregular debido a las construcciones existentes, a esto se añade la acumulación de material suelto depositado.