

2023

"INFORME DE EVALUACION DE RIESGO POR FLUJO DE DETRITOS EN LA QUEBRADA ANTANI A CONSECUENCIA DE LAS FUERTES PRECIPITACIONES, EN EL CENTRO POBLADO DE COCAS, DEL DISTRITO DE VILCANCHOS, PROVINCIA DE VICTOR FAJARDO, DEPARTAMENTO DE AYACUCHO"

MUNICIPALIDAD DISTRITAL DE VILCANCHOS

SR. Pedro Chaupín Fernández Alcalde del distrito de Vilcanchos

ELABORACION DEL INFORME EQUIPO TECNICO

Ing. Civil Lilyan Luza Ortega. Evaluador del Riesgo acreditado por CENEPRED (R.J Nº 039-2021-CENEPRED/J)

Especialista en Geomática: Salas Cáceres, Marcelo Benito

CONTENIDO

PRE	SENTAC	1ÓN	5				
INTR	ODUCCI	IÓN	б				
CAP	ITULO I:	ASPECTOS GENERALES	7				
1.1	Objetiv	vo General	7				
1.2	_	os específicos					
1.3	B Finalidad						
1.4	Justificación						
1.5	Antecedentes						
1.6	Marco	normativo	10				
CAP	ITULO II:	: CARACTERÍSTICAS GENERALES DEL ÁREA DE ESTUDIO	11				
2.1.	Ubicac	ión geográfica	11				
	2.1.1.	Límites	11				
	2.1.2.	Área de estudio	11				
2.2.	Vías de	e acceso	13				
2.3.	Caracte	erísticas sociales	14				
	2.3.1.	Población	14				
	2.3.2.	Vivienda	15				
	2.3.3.	Abastecimiento de agua	16				
	2.3.4.	Disponibilidad de servicios higiénicos					
	2.3.5.	Población según nivel educativo	18				
	2.3.6.	Salud	18				
2.4.	Caracte	erísticas Económicas	19				
2.5.	Caracte	erísticas Físicas del Territorio					
	2.5.1.	Condiciones geológicas					
	2.5.2.	Suelos	22				
	2.5.3.	Caracterización de la rugosidad del terreno	23				
	2.5.4.	Geomorfología	25				
	2.5.5.	Pendiente	27				
	2.5.6.	Hidrología	28				
	2.5.7.	Clasificación climática	31				
	2.5.8.	Hidrograma y solidograma	40				
CAP	ITULO III	I: DETERMINACIÓN DEL NIVEL DE PELIGROSIDAD	52				
3.1	Metodo	ología para la determinación de la peligrosidad	52				
3.2	Recopi	ilación y análisis de la información	52				
3.3	Identific	cación de probable área de influencia del peligro	53				
3.4	Peligro	os generados por fenómenos de origen naturales	55				
3.5	Parámetros de evaluación						

3.6	Suscep	tibilidad del territorio	56
	3.6.1	Análisis del factor desencadenante	56
	3.6.2	Análisis de los factores condicionantes	57
3.7	DEFINI	CIÓN DE ESCENARIOS	60
3.8	NIVELE	S DE PELIGRO	60
EST	RATIFIC	CACIÓN DEL NIVEL DE PELIGRO	60
3.9	Mapa d	e peligro	61
3.10	Análisis	de elementos expuestos	62
	3.10.1	Población	62
	3.10.2	Vivienda	62
	3.10.3	Educación	62
	3.10.4	Salud	62
CAPI	TULO IV	ANÁLISIS DE LA VULNERABILIDAD	64
4.1	Metodo	logía para el análisis de la vulnerabilidad	64
4.2	Análisis	de la dimensión social	64
4.3	Análisis	de la exposición en la dimensión social - ponderación de parámetros	65
	4.3.1	Análisis de la fragilidad en la dimensión social - ponderación de parámetros	65
	4.3.2	Análisis de la resiliencia en la dimensión social - Ponderación de parámetros	68
	4.3.3	Análisis de la dimensión social - ponderación de parámetros	69
4.4	Análisis	de la dimensión económica	70
	4.4.1	Análisis de la exposición en la dimensión económica - ponderación de parámetros	70
	4.4.2	Análisis de la fragilidad en la dimensión económica - ponderación de parámetros	70
	4.4.3	Análisis de la resiliencia en la dimensión económica - ponderación de parámetros	72
	4.4.4	Análisis de la dimensión económica - ponderación de parámetros	72
4.5	Análisis	de la dimensión ambiental	73
	4.5.1	Análisis de la exposición en la dimensión ambiental - ponderación de parámetros	73
	4.5.2	Análisis de la fragilidad en la dimensión ambiental - ponderación de parámetros	74
	4.5.3	Análisis de la resiliencia en la dimensión ambiental - ponderación de parámetros	75
	4.5.4	Análisis de la dimensión ambiental - ponderación de parámetros	76
4.6	Nivel de	e vulnerabilidad	77
4.7	Estratifi	cación de la vulnerabilidad	77
4.8	Mapa d	e Vulnerabilidad	78
CAPI	TULO V:	CÁLCULO DEL RIESGO	79
5.1	Metodo	logía para el cálculo del Riesgo	79
5.2		del riesgo	
5.3	Estratifi	caciòn del Nivel del Riesgo	80
	5.3.1	Estratificación del riesgo	80
	5.3.2	Mapa del Riesgo	82
5.4	Cálculo	de efectos probables (cualitativa y cuantitativa)	83
5.5	Zonifica	ción de Riesgos	83
5.6	Medida	s de prevención de riesgos de desastres (riesgos futuros)	83
	5.6.1	De orden estructural	83

INFORME DE EVALUACION DE RIESGO POR FLUJO DE DETRITOS EN LA QUEBRADA ANTANI A CONSECUENCIA DE LAS FUERTES PRECIPITACIONES, EN EL CENTRO POBLADO DE COCAS, DEL DISTRITO DE VILCANCHOS, PROVINCIA DE VICTOR FAJARDO, DEPARTAMENTO DE AYACUCHO

	5.6.2	De orden no estructural	84
5	.7 Medida	as de reducción de riesgos de desastres (riesgos existentes)	84
		De orden estructural	
	5.7.2	De orden no estructural	85
C	APITULO V	I: CONTROL DEL RIESGO	85
6	.1 Contro	ol de riesgo	85
		Aceptabilidad / Tolerabilidad	
R	RECOMEN	IDACIONES	88
В	BIBLIOGRAF	-ÍA	89
A	NEXO		90
L	ISTA DE CU	JADROS	92
L	ISTA DE GR	RÁFICOS	94
L	ISTA DE FIC	GURAS	94

PRESENTACIÓN

La Municipalidad distrital de vilcanchios , es el órgano de gobierno local, que emana de la voluntad popular, conforme a la Ley Electoral correspondientes ejerce los roles y competencias exclusivas y compartidas que le asigna la Constitución Política del Perú y la Ley N° 27972 (Ley Orgánica de Municipalidades), y del mismo modo ejerce funciones conferidas por la Ley N° 29664 – Ley que crea el SINAGERD, como integrante del SINAGERD, donde formulan, aprueban normas y planes, evalúan, dirigen, organizan, supervisan, fiscalizan y ejecutan los proceso de la Gestión del Riesgo de Desastres en el ámbito de su competencia, en el marco de la Política Nacional de Gestión del Riesgo de Desastres y los lineamientos del ente rector.

Ante contexto, el INFORME DE EVALUACION DE RIESGO POR FLUJO DE DETRITOS EN LA QUEBRADA ANTANI A CONSECUENCIA DE LAS FUERTES PRECIPITACIONES, EN EL CENTRO POBLADO DE COCAS, DEL DISTRITO DE VILCANCHIOS, PROVINCIA DE VICTOR FAJARDO, DEPARTAMENTO DE AYACUCHO. Es desarrollado en el marco del Decreto Supremo que aprueba el Reglamento de la Ley Nº 29664, señala en su artículo 11 numeral 11.3 que los gobiernos regionales, y locales "identifican el nivel de riesgo existente en sus áreas de su jurisdicción y establecen un plan de gestión correctiva del riesgo, en cual establecen medidas de carácter permanente en el contexto del desarrollo e inversión"; y de acuerdo al numeral 6.2.3.1 de los Lineamientos Técnicos del Proceso de Estimación del Riesgo de Desastres, aprobado con Resolución Ministerial N° 334-2012-PCM, establece que es competencia del gobierno regional y gobierno local disponer la realización del referido informe con la metodología vigente desarrollada por el Cenepred.

Para el desarrollo del presente informe se realizó la coordinación con los funcionarios de la Municipalidad Distrital de Vilcanchos, e Instituto de Estadística e Informática (INEI).

En el presente informe se aplica la metodología del "Manual para la evaluación de riesgos originados por Fenómenos Naturales", 2da Versión, el cual permite: analizar parámetros de evaluación y susceptibilidad (factores condicionantes y desencadenantes) de los fenómenos o peligros; analizar la vulnerabilidad de elementos expuestos al fenómeno en función a la fragilidad y resiliencia y determinar y zonificar los niveles de riesgos y la formulación de recomendaciones vinculadas a la prevención y/o reducción de riesgos en las áreas geográficas objetos de evaluación

INTRODUCCIÓN

El presente Informe de Evaluación del Riesgo por Flujo de detritos a consecuencia de las fuertes precipitaciones, permite analizar el impacto originado en el centro poblado cocas del distrito Vilcanchos, provincia de Victor Fajardo, departamento de Ayacucho en caso de presentarse a lo acontecido como el 14 de febrero del 2020 que la quebrada seca Antani se activó generando un flujo de detritos(huaico) afectando al centro poblado coca, de los cuales se cuenta con antecedentes históricos que ocasionaron daños en las localidades cada vez que se activa está quebrada a consecuencia de las fuertes precipitaciones.

En este contexto, nos encontramos ante un evento extremo desencadenado por intensas precipitaciones que han provocado una significativa degradación del suelo en las ciudades y localidades del distrito de Vilcanchos. La posibilidad de desastres ocasionados por el peligro de flujo de detritos, desencadenado por las fuertes precipitaciones, se ha convertido en uno de los factores más preocupantes en esta localidad. Esta situación puede desencadenar graves consecuencias debido a la falta de medidas y acciones que garanticen la estabilidad física en su entorno habitable.

En el primer capítulo del informe, se desarrolla los aspectos generales, entre los que se destaca los objetivos, tanto el general como los específicos, la justificación que motiva la elaboración de la presente evaluación del riesgo y el marco normativo. En el segundo capítulo, se describe las características generales del área de estudio, como ubicación geográfica, geología, geomorfología, pendiente, suelos, hidrología, meteorología, características sociales, económicas, etc

En el tercer capítulo, se desarrolla la determinación de los niveles de peligrosidad, en el cual se identifica su área de influencia en función a sus factores condicionantes y desencadenante para la definición de sus niveles, representándose en el mapa de peligro. El cuarto capítulo comprende el análisis de la vulnerabilidad en sus tres dimensiones, el social, económico y ambiental. Cada dimensión de la vulnerabilidad se evalúa con sus respectivos factores de exposición, fragilidad y resiliencia, para definir los niveles de vulnerabilidad, representándose en el mapa respectivo.

En el quinto capítulo, se contempla el procedimiento para el cálculo del riesgo, que permite determinar los niveles de riesgo por peligro sísmico, cálculo de los efectos probables, el mapa de riesgo, y las medidas de reducción del riesgo de desastres en el centro poblado evaluado.

Finalmente, en el sexto capítulo, se identifica la aceptabilidad o tolerancia del riesgo, así como el control del riesgo.

CAPITULO I: ASPECTOS GENERALES

1.1 Objetivo General

Determinar los niveles del riesgo por flujo de detritos en la quebrada Antani, en el centro poblado de Cocas, del distrito de Vilcanchos, provincia de Víctor Fajardo, departamento de Ayacucho.

1.2 Objetivos específicos

- Identificar y caracterizar el peligro
- Identificar a los elementos expuestos en el área de influencia ante el impacto del peligro.
- Analizar la vulnerabilidad.
- Determinar los niveles del riesgo y calcular los efectos probables,
- Recomendar las medidas de control del riesgo.

1.3 Finalidad

Contribuir con un documento técnico para que la autoridad competente adopte las medidas de prevención y reducción del riesgo de desastres.

1.4 Justificación

En Ayacucho existe la tendencia de subestimar los fenómenos de origen climático que puede afectar a una determinada zona y, por lo general, este aspecto no es considerado durante el proceso de planificación del desarrollo local. Sin embargo, los eventos trágicos desatados por las lluvias en los últimos años en la provincia de Victor Fajardo en el departamento de Ayacucho, han motivado la preocupación tanto del sector gubernamental como de la población en general por incorporar el concepto de peligros como variable indispensable en la formulación y/o redefinición de los planes de ordenamiento local. Por otro lado, el nivel de riesgo hidrológico - conceptualizado como la "probabilidad de ocurrencia de un evento hidrometeorológico que exceda un valor específico de daños sociales, ambientales y económicos en un lugar y tiempo dados"- se ha incrementado considerablemente en las últimas décadas, fundamentalmente como consecuencia de la evolución combinada de tres conjuntos de factores:

- El acelerado crecimiento que ha experimentado la población ayacuchana, cuya principal característica es la desproporcionada concentración demográfica urbana en relación con la población rural, asociada a un proceso de ocupación de terrenos de alta inestabilidad y zonas cercanas a ríos y quebradas, que incluye no solamente las zonas donde se han establecido los sectores de más bajo nivel económico de la población como son en la parte Noreste de la ciudad de Ayacucho.
- La intervención incontrolada de las cuencas altas: a través de la deforestación, la construcción de carreteras y la inadecuada utilización de sus suelos, así como la impermeabilización de los suelos en la cuenca urbana, han ocasionado una alteración progresiva del régimen hidrológico, por lo cual se presentan hidrogramas de avenidas altas, con el consiguiente transporte excesivo de sedimentos, de la parte noreste hacia el centro de la ciudad, cada vez más recurrentes y de mayor magnitud.
- La probabilidad de ocurrencia de lluvias de alta intensidad sobre la cuenca ayacuchana que puedan superar la capacidad de amortiguamiento de la misma, conduciendo por tanto al desbordamiento de la sección hidráulica por el caudal líquido y el transporte de sedimentos provocando flujo de detritos y lodo (huayco)

El primer conjunto citado agrupa los factores de tipo intrínseco que definen la vulnerabilidad o disposición propia del sistema en este caso el sistema rural a ser dañado, y que depende de la acción

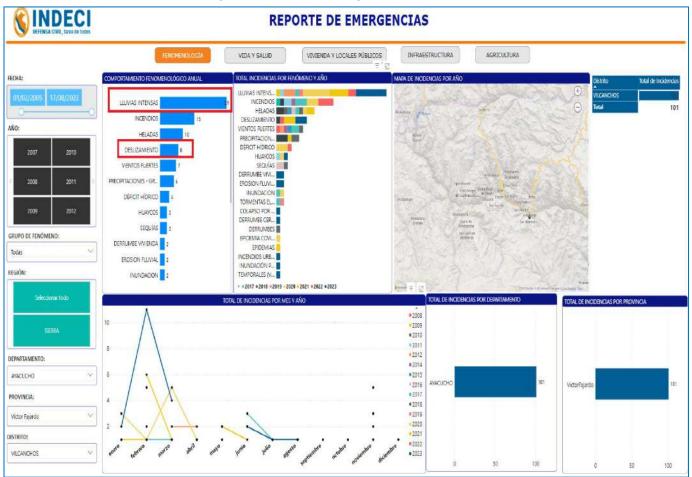
humana en el corto o mediano plazo para hacer que las consecuencias de las amenazas hidrometeorológicas y geológicas sean más o menos graves. En el segundo y tercer conjunto de factores constituyen agentes externos que definen las Amenazas o Peligros, o la potencialidad de ocurrencia de un evento capaz de causar daño al sistema.

La amenaza hidrometeorológica y geológica, referida a la ocurrencia de eventos de lluvia y movimiento de masa destructivos, tiene un carácter incontrolable, pero su componente hidráulico, es decir, la ocurrencia de crecidas destructivas puede ser controlable en el mediano y largo plazo si se aplican técnicas adecuadas de gestión de cuencas hidrográficas y se implementan programas, acciones y obras de corrección de los cauces principales que ingresan a la ciudad.

1.5 Antecedentes

Según SINPAD del INDECI, presenta el listado de emergencias originadas por lluvias intensas en el Distrito de Ayacucho, ocurridas entre el periodo de 2003 al 2016.

Cuadro 1. Emergencias ocurridas en el Distrito de Vilcanchos, provincia victor fajardo, Ayacucho


CÓDIGO SINPAD	TIPO DE EVENTO	PELÍGRO PRINCIPAL	DEPARTAMENTO / PROVINCIA / DISTRITO	NIVEL DE LA EMERGENCIA
178168	EMERGENCIA	DERRUMBE VIVIENDA	AYACUCHO /VICTORFAJARDO / VILCANCHOS	NIVEL 2
169024	EMERGENCIA	DERRUMBE CERROS	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 2
163688	EMERGENCIA	DESLIZAMIENTO	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 3
163108	EMERGENCIA	LLUVIAS INTENSAS	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 4
162963	EMERGENCIA	TEMPORALES (VIENTOS CON LLUVIAS)	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 2
162791	EMERGENCIA	LLUVIAS INTENSAS	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 3
162327	EMERGENCIA	LLUVIAS INTENSAS	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 3
162182	EMERGENCIA	DESLIZAMIENTO	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 3
161790	EMERGENCIA	DESLIZAMIENTO	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 3
151871	EMERGENCIA	LLUVIAS INTENSAS	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 3
148739	EMERGENCIA	LLUVIAS INTENSAS	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 4
141470	EMERGENCIA	TEMPORALES (VIENTOS CON LLUVIAS)	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 3
139865	EMERGENCIA	LLUVIAS INTENSAS	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 3
139736	EMERGENCIA	LLUVIAS INTENSAS	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 3
139034	EMERGENCIA	LLUVIAS INTENSAS	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 3
134989	EMERGENCIA	HELADAS	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 2
134988	EMERGENCIA	HELADAS	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 2
134577	EMERGENCIA	LLUVIAS INTENSAS	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 3

134568	EMERGENCIA	DESLIZAMIENTO	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 3
134528	EMERGENCIA	DESLIZAMIENTO	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 3
134223	EMERGENCIA	DESLIZAMIENTO	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 3
124845	EMERGENCIA	LLUVIAS INTENSAS	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 3
124783	EMERGENCIA	LLUVIAS INTENSAS	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 3
124782	EMERGENCIA	INUNDACIÓN POR DESBORDE DE RIO	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 4
124647	EMERGENCIA	LLUVIAS INTENSAS	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 3
124586	EMERGENCIA	DESLIZAMIENTO	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 3
118759	EMERGENCIA	HUAYCOS	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 3
117728	EMERGENCIA	LLUVIAS INTENSAS	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 3
117672	EMERGENCIA	LLUVIAS INTENSAS	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 3
117413	EMERGENCIA	LLUVIAS INTENSAS	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 3
102048	EMERGENCIA	LLUVIAS INTENSAS	AYACUCHO / VICTORFAJARDO / VILCANCHOS	NIVEL 3

Fuente: SIMPAD -INDECI

Figura 1. Reporte de emergencia en la zona de Estudio

Fuente: SIMPAD -INDECI

De acuerdo con SIMPAD-INDECI la zona de estudio es propensa a fenómenos geometeorológicos, como movimientos de masa y lluvias intensas. En el área de estudio el principal riesgo se relaciona con el flujo de detritos, que se desencadena durante fuertes precipitaciones y provoca la activación de la quebrada Antani considerada una quebrada seca. Esto conlleva al transporte de materiales que afectan a una parte de la población que reside cerca de la quebrada, la cual desemboca en el río pampas.

1.6 Marco normativo

- Ley N° 29664, que crea el Sistema Nacional de Gestión del Riesgo de Desastres SINAGERD,
- Ley N° 27867, Ley Orgánica de los Gobiernos Regionales y sus modificatorias dispuesta por Ley N° 27902
- Ley N° 27972, Ley Orgánica de Municipalidades y su modificatoria aprobada por Ley N° 28268.
- Ley N° 30556, que aprueba disposiciones de carácter extraordinario para intervenciones del Gobierno Nacional frente a desastres y que dispone la creación de la autoridad para la reconstrucción con cambio.
- Decreto Supremo N° 048-2011-PCM, Reglamento de la Ley del Sistema Nacional de Gestión del Riesgo de Desastres.
- Decreto Supremo N° 115-2013-PCM, aprueba el Reglamento de la Ley N° 29869.
- Decreto Supremo N° 126-2013-PCM, modifica el Reglamento de la Ley N° 29869.
- Decreto Supremo Nº 038–2021–PCM, de fecha 01 de marzo del 2021, que aprueba la Política Nacional de Gestión del Riesgo de Desastres al 2050.
- Decreto Supremo Nº 115–2022–PCM, de fecha 13 de setiembre de 2022, que aprueba el Plan Nacional de Gestión del Riesgo de Desastres 2022 − 2030.
- Resolución Ministerial N° 334-2012-PCM, que Aprueba los Lineamientos Técnicos del Proceso de Estimación del Riesgo de Desastres.
- Resolución Ministerial N° 222-2013-PCM, que Aprueba los Lineamientos Técnicos del Proceso de Prevención del Riesgo de Desastres.
- Resolución Ministerial N° 220-2013-PCM, Aprueba los Lineamientos Técnicos para el Proceso de Reducción del Riesgo de Desastres.
- Resolución Ministerial N°147-2016-PCM, de fecha 18 de julio del 2016, que aprueba los Lineamientos para la Implementación del Proceso de Reconstrucción".
- Resolución Jefatural N° 112 2014 CENEPRED/J, que aprueba el "Manual para la Evaluación de Riesgos originados por Fenómenos Naturales", 2da Versión.
- Resolución Jefatural Nº 080. 2020 CENEPRED/J del 22.09.2020 que aprueba la "Guía para la evaluación de los efectos probables frente al impacto del peligro originado por fenómenos naturales".
- Resolución Jefatural Nº 080. 2020.CENEPRED/J, de fecha 22 setiembre 2020, que aprueba la "Guía para la evaluación de los efectos probables frente al impacto del peligro originado por Fenómenos Naturales".

CAPITULO II: CARACTERÍSTICAS GENERALES DEL ÁREA DE ESTUDIO

2.1. Ubicación geográfica

El distrito de Vilcanchos se encuentra ubicado en la región Sur Central de los Andes, entre las coordenadas: Latitud Sur 13° 36′ 42" y Longitud Oeste 74° 31′55" del meridiano de Greenwich; a una altitud de 2982 m.s.n.m.

Vilcanchos tiene una superficie de 50 000 hectáreas, una de las más pequeñas del departamento de la provincia Víctor Fajardo, se encuentra a una altitud de 2996 msnm; y mientras que el Centro Poblado de Cocas a 3660 m s.n.m.

Respecto a las altitudes referenciales se tiene en cuenta 03 puntos:

La Capital : 2982 m.s.n.m.
Punto más bajo : 2,500 m.s.n.m.
Punto más alto : 4,618 m.s.n.m.

El distrito de Vilcanchos, hidrográficamente se encuentra ubicado dentro de la cuenca pampa.

2.1.1. Límites

El ámbito territorial del Distrito de Vilcanchos tiene los siguientes límites:

- Por el Norte, Con el Distrito de Totos (Provincia de Cangallo)
- Por el Sur, Con el Distrito de Sarhua (Provincia de Víctor Fajardo)
- Por el Este, Con el Distrito de Totos (Provincia de Cangallo).
- Por el Oeste, Con el Distrito de Sarhua (Provincia de Víctor Fajardo).

2.1.2. Área de estudio

El área de estudio que comprende el informe de evaluación de riesgo por flujo de detritos en la quebrada Antani a consecuencia de las fuertes precipitaciones en el centro poblado de cocas, Distrito de Vilcanchos, Provincia de victor fajardo, Departamento de Ayacucho.

Se ubica, entre las coordenadas UTM: 556,918 Este, 8'495,226 Norte, y Zona 18 sur, está ubicado a una altitud de 3660 metros sobre el nivel del mar.

Cuadro 2. características de ubicación de Área de Estudio

Distrito de	Centro	Superficie	Altitud	Longitud	Longitud
Ayacucho	Poblado	m2	m.s.n.m	Sur	Oeste
Vilcanchos	Cocas	91067.23	3660	13°61′10"	74°47′38"

Fuente: Elaboración propia

LILYAN LUZA ORTEGA EVALUADORA DE RIESGOS R.J. N° 039-2021-CENEPREO!

Figura 2. Mapa de ubicación

Elaboración: Equipo Evaluad

2.2. Vías de acceso

Vilcanchos está interconectado al sistema nacional de vías mediante la carretera que une las ciudades de Lima, Pisco, Huaytará, Huamanga, Vilcanchos, en un recorrido de 12 horas 35 minutos aproximadamente.:

Cuadro 3. Accesibilidad al Centro Poblado de Cocas

DESDE	HASTA	DISTANCIA (KM)	TIEMPO (HORA: MIN.)	TIPO DE VIA	ESTADO
Ayacucho	Repartición Vía Libertadores	80	01:00	Carretera asfaltada	Bueno
Repartición Vía Libertadores	Paras	108	1.35	Carretera afirmada	Regular
Paras	Vilcanchos	80	01:00	Carretera afirmada	Regular
Vilcanchos	Cocas	20	00:15	Trocha carrozable	Malo
	Total	288	03:50		

Elaboración: Equipo Evaluador

Por otra parte, partiendo de Huamanga al centro poblado de cocas por carretera 28A y carretera 4h 50min 28D

(26) Ju camarca Chanchara Chanchara Huachocolpa Secolla (3S) (28B) (28D) Carhuapata Santa Ana San Juan de 26B Chaucapara Huachay Ac Recuperada O Ayacucho Madona Morao Cancha Ccohuiyoc Accocucho Chiora 4 h 50 min 4 h 49 min 223 km Mollepampa Ritipata Ticrapo Allpachaca Capilla Incacancha Cusibamba (28A) Ccechca San Anto de Manalla Cusicancha (28A) Quito-Arma Quillahuanca Puruchuco Pampa

Figura 3. Vía de Acceso de Huamanga al Centro Poblado Cocas

Fuente: Google Map - Elaboración Propia

LILYAN LUZA ORTEGA EVALUADORA DE RIESGOS R.J. N° 039-2021-CENEPRED J

2.3. Características sociales

2.3.1.Población

A. Población Total

En el ámbito de estudio se encuentra en el centro poblado cocas en el distrito de vilcanchos, provincia victor fajardo en el departamento de Ayacucho, cuenta con una población de 378 habitantes, que corresponde al centro poblado cocas, la mayor cantidad de población son mujeres que representa el 54.50%, mientras que el 45.50% de la población son hombres

Cuadro 4. Características de la población según sexo

Características de la población	Población total	%
Hombres	172	45.50
Mujeres	206	54.50
Total, de población	378	100

Elaboración: Equipo Evaluador con datos del INEI (2017)

Gráfico 1. Características de la población según sexo

Elaboración: Equipo Evaluador con datos del INEI (2017)

B. Población según grupo de edades

El distrito de Vilcanchos, se caracteriza por tener una población joven con el (47.26%) de la población son menores de 29 años de edad (440 habitantes) que se convierte en una posibilidad de desarrollo para el distrito, y solo el 1.21% de la población son menores de un año. Asimismo, 393 habitantes corresponden a la población adulta que oscilan entre las edades de 30 a 44 años de edad (16.45%), y el restante de la población corresponde a las personas que se encuentran entre las edades de 45 o 64 años y de 65 años a más (23.4%).

Cuadro 5. Población según grupos de edades

Grupos especiales de edad	Cantidad	%
Menores de un año	29	1.21
De 1 a 14 años	689	28.84
De 15 a 29 años	440	18.42
De 30 a 44 años	393	16.45
De 45 a 64 años	508	21.26
De 65 a más años	330	13.81
Total, de población	2389	100.00

Elaboración: Equipo Evaluador con datos del INEI (2017)

LILYAN LUZA ORTEGA EVALUADORA DE RIESGOS R.J. N° 039-2021-CENEPRED J CPI N° 239574

DE 65 a más años
DE 45 a 64 años
DE 30 a 44 años
DE 15 a 29 años
DE 1 a 14 años
Menores de un año

29

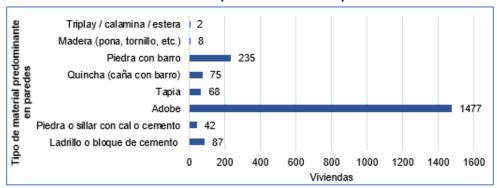
0 100 200 300 400 500 600 700 800

Poblacion

Gráfico 2. Población según grupos de edades

Elaboración: Equipo Evaluador con datos del INEI (2017)

2.3.2. Vivienda


Del mismo modo en el ámbito de estudio cuenta con 1994 viviendas, siendo el porcentaje más significativo del 74.14% con 1477 viviendas que tienen como material predominante adobe, mientras que menor porcentaje del 4.35% se encuentra las viviendas que tienen como material predominante ladrillo o bloque de cemento, y el resto de las viviendas tiene como material la piedra o sillar con cal o cemento, quincha, piedra con barro, madera, y estera.

Cuadro 6. Material predominante en las paredes

Tipo de material predominante en paredes	Viviendas	%
Ladrillo o bloque de cemento	87	4.35
Piedra o sillar con cal o cemento	42	2.10
Adobe	1477	74.14
Tapia	68	3.40
Quincha (caña con barro)	75	3.75
Piedra con barro	235	11.76
Madera (pona, tornillo, etc.)	8	0.40
Triplay / calamina / estera	2	0.10
Total, de viviendas	1994	100.00

Elaboración: Equipo Evaluador con datos del INEI (2017)

Gráfico 3. Material predominante en las paredes

Elaboración: Equipo Evaluador con datos del INEI (2017)

LILYAN LUZA ORTEGA EVALUADORA DE RIESGOS R.J. N° 0.39-2021-CENEPRED) CIPI N° 238674

Cuadro 7. Material predominante de paredes en el centro poblado colcas

Tipo de material predominante en pisos	Viviendas	%
Ladrillo o bloque de cemento	0	0
Adobe	122	98.40
Madera (pona, tornillo, etc)	0	0
Quincha (caña con barro)	0	0
Triplay/calamina/estera	0	0
Piedra con barro	0	0
Piedra o sillar con cal o cemento	1	0.8
Tapia	1	0.8
Otro material	0	0
Total	124	100.00

Elaboración: Equipo Evaluador con datos del INEI (2017)

Asimismo, en las viviendas que se encuentran dentro del área de influencia, el material predominante del techo con el 53.22% son de teja, el 45.98% son de planchas de calamina y con un 0.8 % de madera.

Cuadro 8. Material predominante en los techos

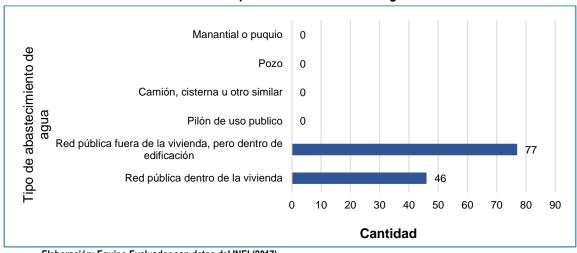
Tipo de material predominante en los techos	Viviendas	%
Concreto armado	0	0
Tejas	66	53.22
Madera	1	0.8
Plancha de calamina	57	45.98
Caña o estera con torta de barro	0	0
Triplay / estera / carrizo	0	0
Paja, hojas de palmera	0	0
Otro material	0	0
Concreto armado	0	0
Total	124	100
Total	124	100.00

Elaboración: Equipo Evaluador con datos del INEI (2017)

2.3.3. Abastecimiento de agua

En el siguiente cuadro, se puede apreciar que el 62.10 % de viviendas con el abastecimiento de agua de red pública fuera de la vivienda, pero dentro de la edificación el 37.10 % representa el abastecimiento de agua y el 0.8 % representa en el vecino.

Cuadro 9. Tipo de abastecimiento de agua


Viviendas con abastecimiento de agua	Cantidad	%
Red pública dentro de la vivienda	46	37.10
Red pública fuera de la vivienda, pero dentro de edificación	77	62.10
Pilón de uso publico	0	0
Camión, cisterna u otro similar	0	0
Pozo	0	0

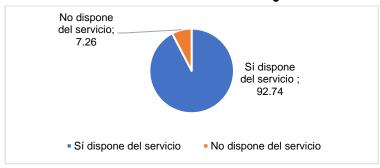
Viviendas con abastecimiento de agua	Cantidad	%
Manantial o puquio	0	0
Río, acequia, lago, laguna	0	0
Vecino	1	0.8
Otro tipo de abastecimiento de agua	0	0
Total	124	100.00

Elaboración: Equipo Evaluador con datos del INEI (2017)

Gráfico 4. Tipo de abastecimiento de agua

Elaboración: Equipo Evaluador con datos del INEI (2017)

2.3.4. Disponibilidad de servicios higiénicos


En el siguiente cuadro se puede observar, que el 12.90 % representa el desagüe dentro de la vivienda, el 34.68 % representa el desagüe fuera de la vivienda, el 4.84 % representa el acceso a pozo séptico, el 31.45 % representa el acceso a letrina, 8.88 % representa el acceso a pozo ciego o negro, el 6045 representa el acceso a campo abierto y asimismo el 0.8 % representa el acceso a otro servicio.

Cuadro 10. Viviendas con servicios higiénicos

Disponibilidad de servicios higiénicos	Cantidad	%
Si dispone de alumbrado eléctrico por red pública	115	92.74
No dispone de alumbrado eléctrico por red pública	9	7.26
Total	124	100.00

Elaboración: Equipo Evaluador con datos del INEI (2017)

Gráfico 5. Viviendas con servicios higiénicos

Elaboración: Equipo Evaluador con datos del INEI (2017)

2.3.5. Población según nivel educativo

El área de influencia cuenta con tres instituciones educativas de Nivel Inicial, Primaria y Secundaria de acuerdo con el siguiente gráfico.

Cuadro 11. Instituciones Educativas Publicas Presentes En Centro Poblado De Cocas

ID	Nombre de la IE	Nivel /	Gestión /	Alumnos	Docentes	Seccio	coorde	enadas	
		Modalidad	Dependenc ia	(2022)	(2022)	nes (2022)	Latitud	Longitud	
1	430-04	Inicial - Jardín	Sector Educación	20	1	3	-13.606622	-74.47484	
2	38535	Primaria	Sector Educación	67	5	6	-13.606351	-74.475174	
3	MANUEL SEOANE CORRALES	Secundaria	Sector Educación	69	7	5	-13.60772	-74.47537	
	TO	156	13	14					

Elaboración: Equipo Evaluador con datos del Minedu

Figura 4. Vista de la Institución Educativa

Elaboración: Equipo Evaluador

2.3.6. Salud

El centro Poblado de Cocas cuenta con un puesto de salud, La oferta del servicio aún no es óptima, debido a la deficiencia en cuanto a personal, equipamiento e infraestructura, actualmente la cobertura del servicio asistencial es regular, aunque no se hace hincapié en labores preventivo-promocionales.

Figura 5. Vista de la Institución Educativa

2.4. Características Económicas

La población en edad de trabajar en el centro poblado cocas, se concentra en las actividades de comercio y agricultura.

Cuadro 12. Población en edad de trabajar según rama de actividad

Descripción	PEA	Porcentaje
Agricultura, ganadería, silvicultura y pesca	282	74.60
Explotación de minas y canteras	2	0.53
Industrias manufactureras	15	3.97
Construcción	5	1.32
Comercio al por mayor	36	9.52
Comercio al por menor	25	6.61
Actividades de alojamiento y de servicio de comidas	12	3.17
Información y comunicaciones	1	0.26
Total	378	100,0%

Fuente: INEI 2017

Gráfico 6. Población en edad de trabajar según rama de actividad

Elaboración: Equipo Evaluador con datos del INEI (2017)

LILYAN LUZA ORTEGA EVALUADORA DE RIESGOS R.J. N° 039-2021-CENEPRED J CPP N° 239574

2.5. Características Físicas del Territorio

2.5.1. Condiciones geológicas¹

En el área de estudio se han identificado tres unidades geológicas:

Deposito Aluvial (Qh-al). - Estos depósitos son del Holoceno, están compuestos por gravas redondeadas a subredondeadas en matriz areno-limosa conformando terrazas aluviales. Su afloramiento se encuentra en ambas márgenes de las quebradas Antani y Uchujucha

Depósitos Coluvial (Qh-co). - Son depósitos que se encuentran acumulados al pie de laderas prominentes, como material de escombros constituidos por bloques de gravas, guijarros con clastos subangulosos a angulosos y matriz areno-limosa que han sufrido

transporte por gravedad. Los depósitos de esta unidad están conformados por los depósitos de movimientos en masa antiguos.

Depósitos Proluvial (Qh-pl).- Compuestos por fragmentos rocosos heterométricos (arenas, gravas, bloques, etc.), con relleno limo arenosoarcilloso

Formación Cachios (Jm-ca).- Esta unidad está conformada por intercalaciones de areniscas, areniscas cuarcíticas oscuras, lutitas, y limolitas. De edad Jurásico medio-Cretáceo, se localiza al sur del centro poblado de Cocas, donde se observó rocas de color beige con estratificación a favor de la pendiente.

Grupo Pucarà (Ts-Ji-p).- Esta unidad está conformada por calizas de color gris, intercaladas con proporciones subordinarias de areniscas, lutitas, presencia de margas y ocasionalmente lentes de evaporitas y horizontes de conglomerados; se le asigna a este grupo una edad Triásico superior-Jurásico inferior. Esta unidad aflora mayormente en el centro poblado de Cocas, donde se aprecian calizas de color gris oscura, en bancos medios a gruesos con nódulos. El substrato se encuentra medianamente meteorizado (A3), según la tabla de rango de meteorización, donde se observó que la roca se encuentra fresca y no se desintegra fácilmente al golpe del martillo.

Las unidades geológicas antes descritas han sido cartografiadas en campo y representadas en el mapa geológico siguiente:

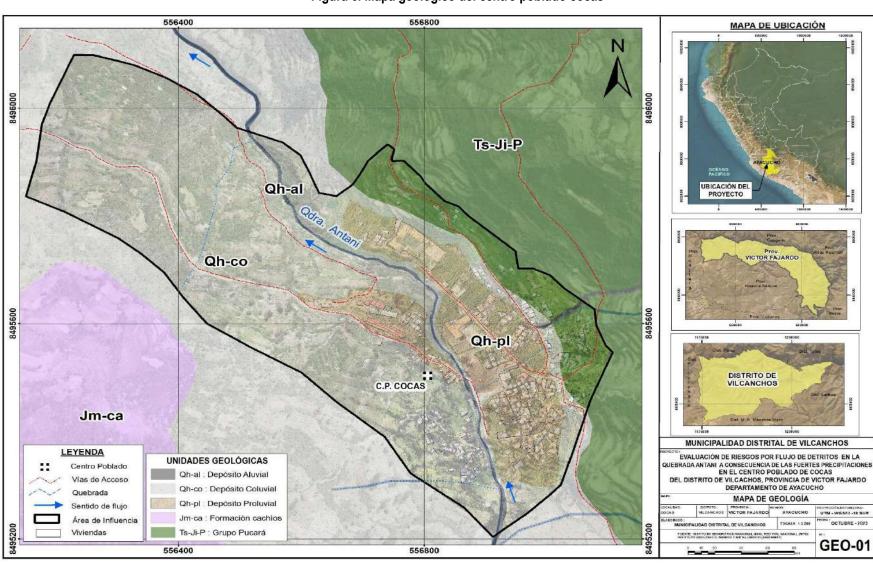


Figura 6. Mapa geológico del centro poblado cocas

Elaboración: Equipo Evaluador con datos del Ingemmet

2.5.2. Suelos

A Los afloramientos de areniscas, areniscas limosas y limolitas, resultantes de la meteorización, se clasifican por su textura y permeabilidad a fin de facilitar el análisis condicionante para los movimientos en masa (flujo de detritos, deslizamiento).

SUELO LIMOSOS

Los suelos limosos retienen el agua por más tiempo, así como los nutrientes. Su color es marrón oscuro, los limos se componen de una mezcla de arena fina y arcilla que forma una especie de barro junto al lodo y restos vegetales. Este tipo de suelos se suele dar en el lecho de los ríos.

SUELO ORGANICO

es aquel tipo de superficie de la corteza terrestre que está compuesto por el sedimento clástico incoherente como el limo, cuyo tamaño pequeño no excede los 0,05 ml y que es trasportado por medio de los ríos, vientos y lluvias.

DEPOSTIO ALUVIAL

Es una masa de sedimentos detríticos que ha sido transportada y sedimentada por un flujo o aluvión. Usualmente el termino aluvión se usa para los depósitos de arena, sedimento, grava y barro arrojado por los ríos y arroyos.

DEPOSITO COLUVIAL

Acumulación de material transportado y depositado por el agua de escorrentía. Normalmente estos depósitos están formados por arenas y gravas y se encuentran en las laderas y en las vaguadas de las corrientes efímeras.

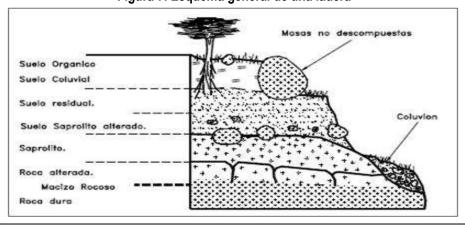


Figura 7. Esquema general de una ladera

Fuente: Deslizamientos y estabilidad de taludes suelos tropicales, Cap. 6 Suárez, J-1998

El suelo del sector de Cocas presenta una naturaleza de suelo ricos en nutrientes y son muy adecuados para la agricultura, ya que tienden a ser fértiles debido a la acumulación de materia orgánica y minerales transportados por los agentes erosivo, formada por bloques, gravas y arenas con matriz arcilloso-limosa medianamente saturada, de fácil erosión y remoción. Además, en la zona, se pueden identificar calizas de tonalidad gris oscuro que se presentan en capas de grosor medio a grueso, con presencia de nódulos. El sustrato exhibe un grado de meteorización moderado, tal como se indica en la escala de meteorización.

Se puede notar que la roca conserva su integridad y no muestra signos evidentes de descomposición ni degradación cuando se la somete al impacto de un martillo o al proceso de erosión.

2.5.3. Caracterización de la rugosidad del terreno

La importancia de la caracterización de la rugosidad del terreno radica en que distintos tipos de terreno ejercen más o menos esfuerzo a que el flujo fluya sobre él. Para la selección del valor del número de Manning en el cauce de las quebradas y de las áreas aledañas se utilizó el método de técnicas de campo en superficie de agua por el Servicio Geológico de los Estados Unidos y la tabla de coeficiente de rugosidad de Manning propuesta por Ven Te Chow(Ven Te Chow, 1988) respectivamente.

Rugosidad superficial: Se refiere a la textura o aspereza de la superficie de un material o terreno. Es una medida de cuán irregular o áspera es la superficie de un objeto o terreno en comparación con una superficie completamente lisa. La rugosidad superficial puede influir en diversos procesos y fenómenos, como la resistencia al flujo de fluidos (como el agua o el aire), la erosión, la infiltración del agua en el suelo y la interacción entre los materiales y su entorno.

En hidrología, la rugosidad superficial del lecho de un río o arroyo puede afectar la velocidad del flujo del agua y la erosión de las partículas del lecho.

La rugosidad superficial en una quebrada seca se refiere a la textura o aspereza de la superficie del lecho de la quebrada que ha quedado seco debido a la ausencia de flujo de agua. La rugosidad superficial en este contexto puede variar según diferentes factores, como el tipo de suelo o material que conforma el lecho de la quebrada, la vegetación presente o la erosión pasada.

La rugosidad superficial en una quebrada seca puede ser relevante en diversos aspectos:

Efecto en el flujo de agua: La rugosidad superficial influye en la velocidad y la dirección del flujo de agua cuando la quebrada está activa durante eventos de lluvia. Superficies rugosas pueden causar turbulencia y resistencia al flujo, lo que afecta la forma en que el agua se desplaza por la quebrada.

Sedimentación: Una rugosidad superficial significativa puede influir en la acumulación de sedimentos en el lecho de la quebrada. La rugosidad puede ralentizar el flujo del agua, permitiendo que los sedimentos se depositen más fácilmente.

Efecto en la erosión: La rugosidad del lecho de la quebrada puede influir en la erosión del suelo circundante durante eventos de lluvia intensa. Una superficie más rugosa puede retener el suelo de manera más efectiva, reduciendo la erosión.

Impacto en la vegetación: La rugosidad superficial también puede tener un efecto en la vegetación que crece en el lecho de la quebrada seca, ya que puede afectar la retención de humedad y la distribución de nutrientes en el suelo.

Por lo tanto, la rugosidad superficial en una quebrada seca es un factor importante a considerar en la gestión y la evaluación de riesgos asociados a eventos climáticos, como las lluvias intensas, ya que puede influir en la dinámica de la quebrada y en cómo está reacciona a las precipitaciones y al transporte de materiales.

A continuación, se muestra el número de Manning de acuerdo a sus valores en función a las tablas de los autores antes mencionados.

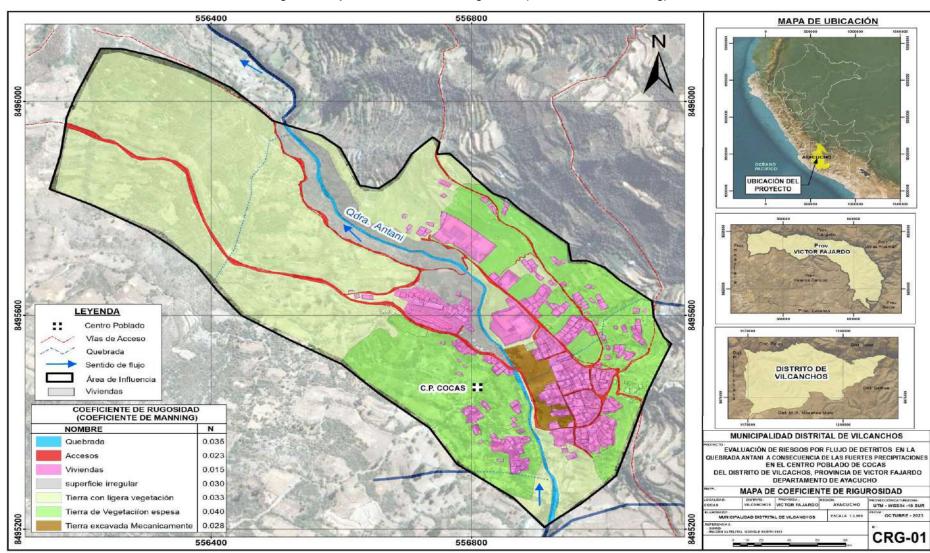


Figura 8. Mapa de Coeficiente de Rugosidad (Coeficiente de Manning)

Elaboración: Equipo Evaluador con datos del IGP (2022).

2.5.4. Geomorfología

La cartografia geomorfológica y la delimitacion de unidades y subunidades geomorfológicas se realizó utilizando el criterio principal de homogeneidad relativa y la caracterización de aspectos de origen del relieve (erosión, denudación y sedimentación (Vílchez et al., 2019).

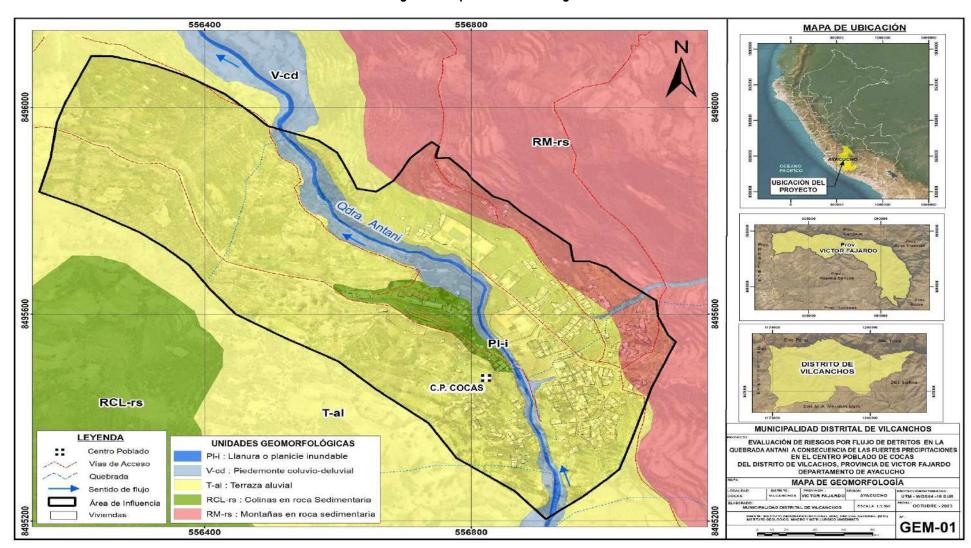
Llanura o planicie Inundable (PI-i).- Las llanuras de inundación son áreas de superficie adyacentes a ríos o riachuelos, sujetas a inundaciones recurrentes. Debido a su naturaleza siempre cambiante, las llanuras de inundación y otras áreas inundables deben ser examinadas para precisar la manera en que pueden afectar al desarrollo o ser afectadas por él. Este capítulo presenta una visión general de los conceptos importantes relacionados con las evaluaciones del peligro de inundaciones y explora el uso de datos de percepción remota de satélites para complementar las técnicas tradicionales de evaluación.

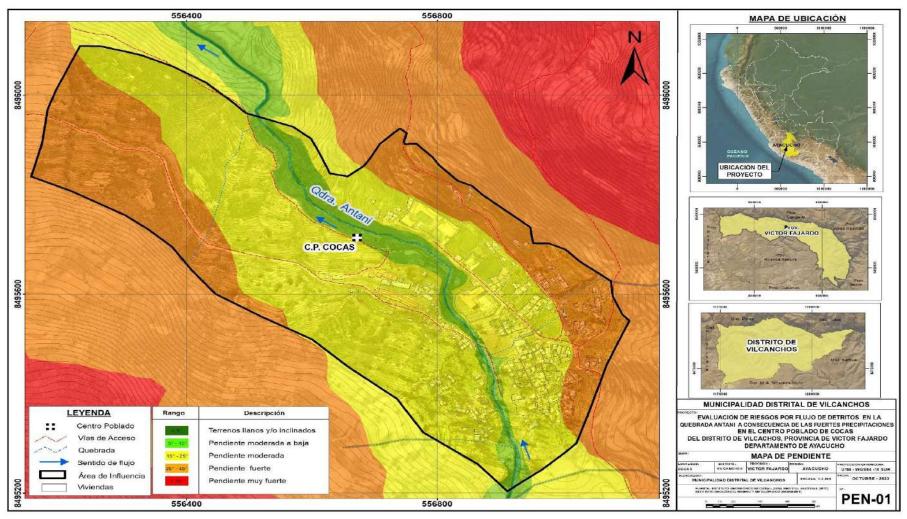
Piedemonte coluvial - deluvial (V-cd). - Son aquellos depósitos que se encuentran acumulados al pie de laderas prominentes, como material de escombros constituidos por bloques de gravas, guijarros con clastos subangulosos a angulosos y matriz areno-limosa que han sufrido transporte; se presentan con cierta irregularidad.

Terraza Aluvial (T-al) - Porciones de terreno que se encuentran dispuestas cerca de la llanura de inundación o del lecho principal de un río, pero a mayor altura, representan niveles antiguos de sedimentación fluvial, los cuales han sido disectados por las corrientes como consecuencia de la profundización del valle. Sobre estos terrenos se asientan y desarrollan viviendas y actividad agrícola.

Colinas en roca Sedimentaria (RCL-rs). - Esta unidad se ubica próxima a la unidad de montañas y viene a formar parte de la cordillera. Estas geoformas presentan baja a moderada susceptibilidad a ser afectados por movimientos en masa

Montaña en roda sedimentaria (RM-rsl). - Corresponde a afloramiento de roca sedimentaria, residuos por procesos denudativos, se encuentran conformando elevaciones alargadas, con laderas disectadas y de pendiente altas, moderada a baja. Estas geoformas son resultado del conjunto de procesos geomórficos que se puede denominar constructivos determinados por fuerzas de desplazamiento, como por agentes móviles tales como: el agua de escorrentía y los vientos; los cuales tienden a nivelar hacia arriba la superficie de la tierra, mediante el depósito de materiales solidos resultantes de la denudación de terrenos más elevados.




Figura 9. Mapa de Geomorfología

Elaboración: Equipo Evaluador con datos del Ingemmet

2.5.5. Pendiente

La pendiente de la zona de estudio del centro poblado cocas, se caracteriza por ser llano y/o inclinados con pendiente fuerte.

Figura 10. Mapa de Pendiente

EVALUADORA DE RIESGOS R.J. N° 039-2021-CENEPRED

2.5.6. Hidrología

La caracterización hidrológica comprende la descripción hidrográfica de los principales drenes (ríos, quebradas y escorrentías), así como la cuantificación de sus caudales y comportamiento de estos en forma espacial y temporal. En este estudio describiremos la hidrografía que forman parte de la Red hidrográfica de la Intercuenca del río Pampas 49987 de la cual pertenece a la cuenca alto pampa, donde se encuentran el área de estudio. Tal como se puede observar en la siguiente figura:

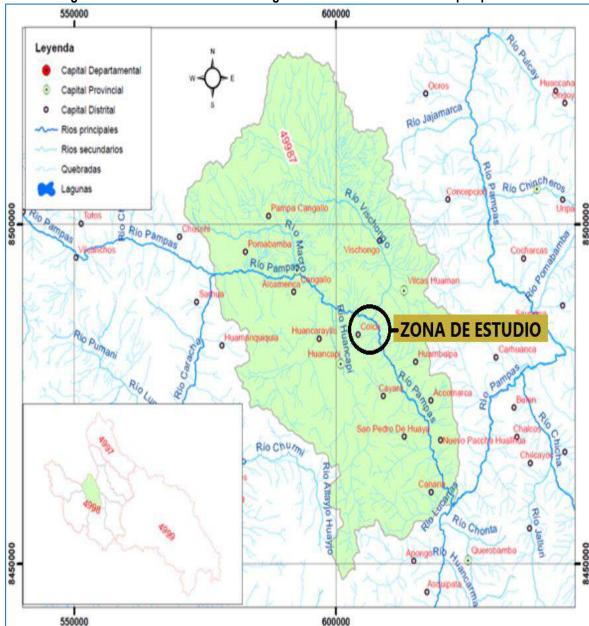


Figura 11. Identificación de Red Hdrográfica de la Intercuenca del río pampas 49987

Fuente: ANA

En la imagen se puede observar que Corresponden al tramo del rio Pampas, desde la unión con el rio Caracha hasta la unión con el rio Lucanas (Sondondo); entre estos dos puntos, cuenta con los ríos tributarios principales Macro, Vischongo y Huancapi, y que, desde las nacientes de aguas en ambos extremos laterales, forma el espacio geográfico de la Unidad Hidrográfica Intercuenca del rio Pampas 49987, que presenta un perímetro de 270.03 Km y un área de drenaje de 2188.44 Km2

El cauce del tramo río presenta una longitud de 74.07 Km con una pendiente media de 0.45%, en su recorrido presenta formas meándricas a consecuencia de la baja pendiente del río.

La Zona de estudio se encuentra ubicado en una quebrada seca que desemboca al rio pampas, esta quebrada seca se esconde y solo despierta de su letargo en respuesta a eventos extremos. Este frágil curso de agua, que yace inmóvil la mayor parte del tiempo, cobra vida en raras ocasiones cuando la naturaleza desafía los límites de lo común.

Sus lechos secos, son testimonios silenciosos de largos periodos de sequía, donde las piedras y guijarros permanecen intactos bajo el implacable sol. Sin embargo, cuando la tormenta se desata en todo su esplendor, esta quebrada olvidada despierta, cargadas de energía y sedimentos arrastrados desde las alturas.

En conclusión, la quebrada Antani se clasifica en quebrada seca es un término que se utiliza para describir un cauce o lecho de un curso de agua que normalmente está desprovisto de agua, al menos durante la mayor parte del año.

Estas quebradas solo presentan flujo de agua en ocasiones específicas, generalmente en respuesta a eventos extremos, como lluvias torrenciales. En períodos de sequía o climas secos, las quebradas pueden aparecer completamente secas, con lechos de río vacíos o con solo pequeñas cantidades de agua en charcos o pozas.

En esta misma área se puede distinguir claramente, hasta tres ambientes morfológicos bien diferenciados, como son Mesetas (Superficies planas o ligeramente inclinadas a gran altitud con escarpes o bordes abruptos), Delta fluvial (Áreas donde los ríos desembocan, creando un sistema de afluentes y Cañadones de ríos (Ambientes formados por la erosión, con cañones profundos y meandros). En siguiente mapa se observa que la quebrada se nutre de afluentes que se materializan como drenes de escorrentía (3,4 y5), a través de los cuales el agua fluye por la quebrada Antani (2) y esta desemboca al río pampas (1)

Uno de los aspectos más destacados de esta quebrada es su capacidad para albergar una biodiversidad excepcionalmente adaptada a las condiciones de sequedad. Aquí, es común encontrar una variada flora y fauna que han desarrollado estrategias únicas de supervivencia en un entorno desafiante. Además, esta quebrada seca desempeña un papel fundamental en dos aspectos clave del ecosistema:

Recarga de acuíferos: Durante los períodos de lluvia, estas quebradas actúan como conductos naturales, permitiendo que el agua se filtre y recargue los acuíferos subterráneos. Esto contribuye a mantener el suministro de agua en la región y es esencial para la sustentabilidad de los recursos hídricos.

Transporte de sedimentos: La quebrada también son esenciales para el ciclo de transporte de sedimentos en el paisaje. Durante las lluvias intensas, recogen y transportan sedimentos, desempeñando un papel fundamental en la redistribución de materiales en el entorno, lo que influye en la formación de suelos y la topografía de la región.

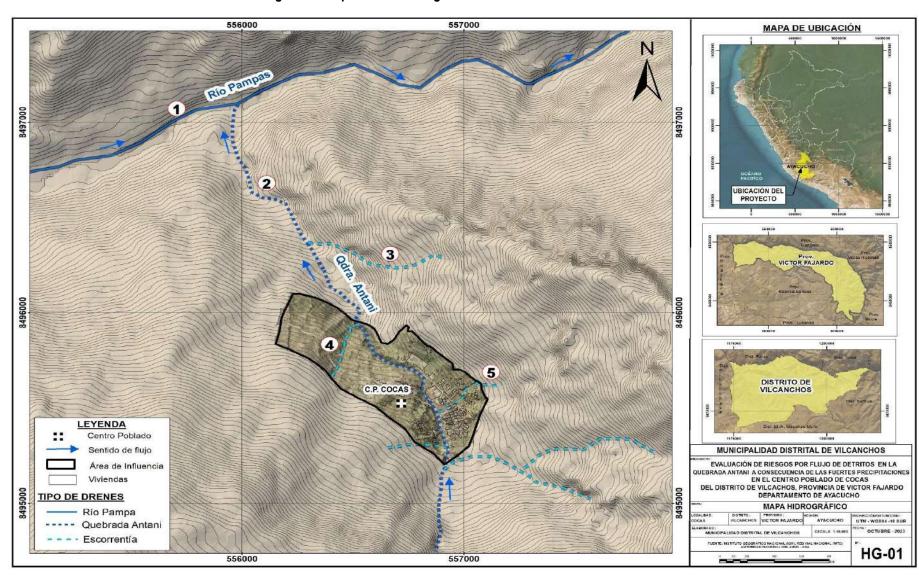


Figura 12. Mapa de Red Hidrográfico en la Zona de Estudio

EVALUADORA DE RIESGOS R.J. Nº 039-2021-CENEPRED

2.5.7. Clasificación climática

En base al Mapa de Clasificación Climática del Perú (SENAMHI, 1988), desarrollado a través del Sistema de Clasificación de Climas de Warren Thornthwaite, el centro poblado Cocas del distrito Vilcanchos de la provincia Victor fajardo, se caracteriza por presentar un clima frío, lluvioso, con deficiencia de lluvias en otoño e invierno, con humedad relativa calificada como húmeda.Clima (B(o,i) C' H3)

2.5.7.1. Clima

La descripción climática general de nuestro territorio de paisajes muy variados, sólo puede lograrse, con alguna precisión, mediante la expresión gráfica que constituye un mapa de carácter del que se presenta.

La información base de esta Clasificación está apoyada en datos meteorológicos de veinte años (1965-2017), a partir de la cual se procedió a formular los "Índices Climáticos" y al trazado de los mismos de acuerdo con el sistema de clasificación de climas de Werren Thornthwaite.

La información tomada en consideración de acuerdo al registro del Senamhi. La precipitación y la temperatura del aire, por ser las más características para la descripción de un clima, incluvéndose, además, la humedad del aire.

De acuerdo con los datos climáticos (clasificación climática por el método de Thornthwaite), en el ámbito del centro poblado de Cocas se encuentra rodeado por los siguientes tipos de climas:

B(i) D' H3: Zona de clima semifrígido, lluvioso, con deficiencia de lluvia en invierno con humedad relativa calificada como húmeda.

B(o,i) C' H3: Zona de clima frío, lluvioso, con deficiencia de lluvias en otoño e invierno, con humedad relativa calificada como húmeda.

B(o,i) D' H3: Zona de clima semifrígido lluvioso, con deficiente lluvias en otoño e invierno, con humedad relativa calificada como húmeda.

C(o,i) B'2 H3 : Zona simiesca, templada, con deficiencia de lluvias en otoño e invierno, con humedad relativa calificada como húmeda

C(o,i,p) B'3 H3 : Zona semiseca, semifría, con deficiencia de lluvias en otoño, invierno y primavera, con humedad relativa calificada como húmeda.

En resumen, la zona de estudio se encuentra en B (o, i) C' H3 : Zona de clima frío, lluvioso, con deficiencia de lluvias en otoño e invierno, con humedad relativa calificada como húmeda, dentro del ámbito se encuentra cuatro estaciones meteorológicas Paras, Chuschi, Cangallo.

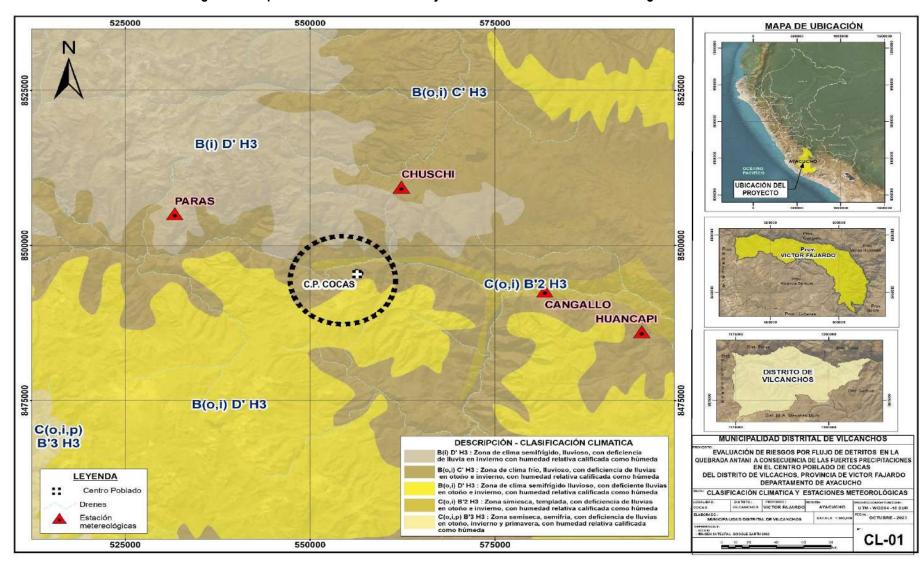


Figura 13. Mapa de Clasificación climática y Ubicación de Estaciones Meteorológicas

EVALUADORA DE RIESGOS R.J. Nº 039-2021-CENEPRED

2.5.7.2. Precipitaciones

Figura 14. Registro Histórico – Estación Huancapi

CUADRO N° 2.1.1. REGISTRO HISTÓRICO ESTACIÓN HUANCAPI

Estación: HUANCAPI Longitud: -74.068 "W" Dpto. AYACUCHO PRECIPITACIÓN MÁXIMA EN 24 HORAS (mm) VICTOR FAJARDO HUANCAPI Parámetro: Latitud: -13.748 "S" Prov. m.s.n.m Altitud: Dist. JUL AGO. 136.8 33.5 16.5 82.6 1.2 8.8 7.8 103.8 103.8 75.5 72.5 4.2 8.6 2.4 33.5 47.4 44 7 207. 22.9 14.2 207 5 109.3 109.3 24.2 91.1 1.9 2.4 26.3 3.8 16.7 18.6 19.3 24.4 389.0 96.0 Δ 229 0 157.0 211.0 163.0 241 0 191.0 158.0 71 183.0 194.0 134.0 221.0 200.0 166.0 194 0 199.0 210.0 154.0 176.0 173 0 128.0 234.0 192.0 229.0 161.0 255 57 347.0 318.0 156.0 50 10 165.0 ROMEDIC 138.6 149.8 41.8 9.7 193.2 DESV. EST 73.3 347.0 28.1 14 1 20.0 19 5 62.5 79.0 47.0 204.0 MAXIMO 126.0 36.0 63.0 74.0 389.0 389.0 207.5 56.0 191.0 MINIMO 0.0 0.0 0.0 16.5 0.0 0.0

FUENTE: SENAMHI.

LILYAN LUZA ORTEGA EVALUADORA DE RIESGOS R.J. N° 039-2021-CENEPREDI CPI N° 239574

Figura 15. Registro Histórico – Estación Cangallo

					ES	TACIÓN CA	ANGALLO												
Estación : Parámetro :	CANGALLO PRECIPITACIÓN MÁXIMA EN 24 HORAS (mm)					- 18 18 18 18 18 18 18 18 18 18 18 18 18				[18] [18] [18] [18] [18] [18] [18] [18]					"W" "S" m.s.n.m.		Dpto. Prov. Dist.	AYACUCI CANGALI LOS MOF	
ANO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SET.	OCT.	NOV.	DIC.	MAXIMO						
1976	188.4	185.9	136.8	29	50.6	11.6	13.9	8.6	8.2	3.3	27.8	84.5	188.4						
1977	78	192.2	87.2	20.3	34.1	0.1	7.5	0.4	47.3	30.3	138.2	72.1	192.2						
1978	157.6	96.1	110.8	68.6	1.3	10.3	0.2	2.5	49.1	91	97.3	65.6	157.6						
1979	77.7	129.3	234.7	63.3	33.6	14.9	24	13.4	41.3	53.9	81.7	66.2	234.7						
1980	161.6	118	110.4	54.5	16.2	3.2	39.7	15	13.1	22.8	34.8	43.4	161.6						
1981	202.5	290.2	129.1	46.5	4.8	10.5	0	75.7	90.8	66.1	96.2	182.6	290.2						
1982	137.3	222.4	85.2	68.6	7.1	1.2	0	43.4	39.1	61.6	67.2	71.4	222.4						
1983	130.8	77.4	120.4	65.7	20.2	16.8	2.2	1.5	78.7	15.9	6.8	34.3	130.8						
1984	147.6	179.2	28.6	14.5	10.6	21.7	0	21.4	8.7	55.3	66.3	65.2	179.2						
1985	65.4	124.8	143.1	134.3	17.6	21.2	22.1	0	56.5	8.6	13.2	113.6	143.1						
1986	179.1	189.2	162.3	67.7	40	0	45.2	37.2	58.9	31.9	26.8	112.2	189.2						
1987	103.8	51.4	58.1	87.7	78.2	12.6	6.7	8.7	0.2	53.9	94.7	56.8	103.8						
1988	148.1	146.4	183.5	62.3	2.1	1.2	0	0	0	88.1	25.7	109.2	183.5						
1989	199.1	121.8	242.7	84.2	15.3	14.4	1.7	19.3	29.9	52.3	37.9	28.9	242.7						
1990	150.5	16.1	61.4	50.2	19.6	9.8	7.3	31.9	46.6	64.5	162.9	158.3	162.9						
1991	122.1	172.51	130.37	41.58	15.29	6.13	6.96	4.97	17.15	42.07	60.97	42.95	172.5						
1992	99.97	137.32	107.4	24.42	1.93	12.54	12.52	24.76	12.78	60.88	39.66	72.36	137.3						
1993	202.68	123.4	165.88	66.54	15.36	4.63	15.89	17.89	41.25	59.49	120.52	156.14	202.7						
1994	156.1	151.51	151.52	54.81	10.33	3.33	0.58	2.9	26.29	18.71	59.39	72.94	156.1						
1995	129.43	127.4	141.5	63.2	1.6	0	0.8	9.1	19.8	20.8	131.9	84.8	141.5						
1996	218.8	175.4	146.3	58.6	0	1	3.8	5.5	29.5	21.4	22.6	73.4	218.8						
1997	163	104.1	70.6	21.2	13.3	0	2.6	46.7	36.7	9.1	59.4	102.4	163.0						
1998	163.2	153.1	143.8	51.7	1.2	13.3	0	1.5	6.3	40.7	46	62.8	163.2						
1999	98	225.9	144.1	70	2.6	1.7	6.2	0	58.2	32.9	39.7	67.34	225.9						
2000	134.68	262.97	137,41	29.06	24.05	15.08	3.51	22.49	3.51	96.85	20.02	84.63	263.0						
2001	195	81.77	218.79	37.05	39.78	7.28	11.83	8.06	15.73	39.78	59.8	28.6	218.8						
2002	130.78	155.61	134.03	23.79	10.53	1.95	46.54	13.6	73.19	31.07	132.37	243.1	243.1						
2003	155.3	131.4	136.8	52.2	9.5	0	0	18.5	37.4	40.4	53.8	135.8	155.3						
2004	56.8	170.5	131.1	27.3	2.8	9.8	10.9	8.4	37.1	44.1	69.7	119.9	170.5						
2005	80.9	67.1	120.8	38.6	0.1	0	4.1	34.4	43.9	43	29.3	118.5	120.8						
2006	220.6	124.3	171.5	41.3	2.1	3.3	0	22.8	33	37	57	46	220.6						
2007	78.7	87.7	169.6	57.13	10.5	0.5	4.7	2.4	32.6	46.6	54.7	128.3	169.6						
2008	190.6	175.2	92.1	27.8	6.9	4.8	0	3.9	13.1	33.5	66	98.7	190.6						
2009	111.3	118.2	141.7	57.4	0.2	0	15.8	0	11.3	38.5	100	102.7	141.7						
2010	258.6	136.5	107.3	31.7	2.9	0	0	3.3	14	36.5	23.6	170.2	258.6						
2011	306.7	260.7	124.5	90.1	8	0	13.3	4.4	34.5	34.5	89.3	89.5	306.7						
2012	114	253.5	165.8	69.3	5.7	13.2	3.1	1.2	21.2	23.4	14.2	215.8	253.5						
2013	156.1	140.8	132	19.3	28.6	8.9	7.5	20.4	11.6	42	24.3	191	191.0						
2014	165.1	112.1	87.9	60.1	46.4	6.2	13.4	14.4	62.1	88.7	15.6	94.1	165.1						
2015	187.9	160.1	144.4	60.3	21.6	1.7	3.3	19.3	3.9	27.3	27.4	109.5	187.9						
PROMEDIO	150.6	148.7	132.8	52.3	15.8	6.6	9.0	14.7	31.6	42.7	59.9	99.4	190.5						
DESV. EST.	53.3	58.9	44.0	23.9	16.9	6.4	12.0	15.9	22.6	22.5	39.2	50.7	46.4						
MÁXIMO	306.7	290.2	242.7	134.3	78.2	21.7	46.5	75.7	90.8	96.9	162.9	243.1	306.7						
MÍNIMO	56.8	16.1	28.6	14.5	0.0	0.0	0.0	0.0	0.0	3.3	6.8	28.6	103.8						
Nº Datos	40	40	40	40	40	40	40	40	40	40	40	40	40						

FUENTE: SENAMHI.

LILYAN LUZA ORTEGA
EVALUADORA DE RIESCOS
R.J. N'039-2021-CENEPRED
CPL PY 238574

Figura 16. Registro Histórico – Estación Chusqui ESTACIÓN CHUSCHI

Estación : CHUSCHI Longitud: -74.35 Dpto. AYACUCHO Parámetro : PRECIPITACIÓN MÁXIMA EN 24 HORAS (mm) Latitud: -13.58 Prov. CANGALLO Altitud : 3141 Dist. CHUSCHI m.s.n.m.

ANO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SET.	OCT.	NOV.	DIC.	MAXIMO
1974	261.1	243.4	96.8	79.1	6.3	7.1	2.2	64	21.2	34	35.5	69.4	261.1
1975	136.7	212.8	158.9	16.8	45.7	8.2	1.2	8.1	21	24.8	65	127.5	212.8 227.1
1976	227.1	198.2	155.7	41.4	9.5	3.9	27.3	8.8	108.1	1.8	22.3	91.3	
1977	106.8	256.1	130	20.6	11.7	0	6.7	0	20	12.3	121.7	65.2	256.1
1978	167.2	61.1	89.4	50.9	13.8	4.6	0.3	0	6	55.73	54.66	117.06	167.2
1979	181.57	184.18	143.51	57.54	0	2.6	30.2	10.5	9.4	1.7	43.2	55.1	184.2
1980	181.57	74.9	64.9	0	15.2	2.2	27.1	9.4	24.2	114.1	62.4	81.3	181.6
1981	211.1	315	104.8	161.5	7.1	8.2	3.8	82.7	29.8	54.8	74.8	334.2	334.2
1982	155.7	124.2	112.5	41.9	0.4	7.8	0.2	5.4	33.49	55.73	54.66	117.06	155.7
1983	150.82	152.99	119.21	47.8	13.87	3.86	7.93	15.15	27.82	46.29	45.41	97.23	153.0
1984	181.57	184.18	143.51	57.54	16.69	4.65	9.54	18.24	33.49	55.73	54.67	117.06	184.2
1985	181.57	184.18	143.51	57.54	16.69	4.65	9.54	18.24	33.49	55.73	54.67	117.06	184.2
1986	181.52	184.13	143.47	57.52	16.69	4.65	9.54	18.23	33.48	55.72	54.65	117.02	184.1
1987	146.48	148.58	115.77	46.42	13.47	3.75	7.7	14.71	27.02	44.96	44.1	94.43	148.6
1988	189.07	191.78	149.43	59.92	17.38	4.84	9.93	18.99	34.87	58.03	56.92	121.89	191.8
1989	259.21	262.93	204.87	82.14	23.83	6.64	13.62	26.03	47.81	79.56	78.04	167.1	262.9
1990	202.39	205.3	159.96	64.14	118.61	5.19	10.63	20.33	37.33	62.12	60.93	130.47	205.3
1991	162.39	164.72	128.35	51.46	14.93	4.16	8.83	16.31	29.95	49.84	48.89	104.69	164.7
1992	117.11	118.7	92.56	37.11	10.77	3	6.15	11.76	21.6	35.95	35.26	75.5	118.7
1993	233.13	236.48	184.26	73.88	21.43	5.97	12.25	23.41	43	71.56	70.19	150.29	236.5
1994	177.29	179.84	140.13	56.18	16.3	4.54	9.32	17.81	32.7	54.42	53.38	114.3	179.8
1995	191.27	194.02	151.17	60.61	17.59	4.9	10.05	19.21	35.28	58.71	57.58	123.31	194.0
1996	178.84	181.41	141.35	56.67	16.44	4.58	9.4	17.96	32.98	54.89	53.84	115.29	181.4
1997	183.19	185.82	144.79	58.05	16.84	4.69	9.63	18.4	33.79	56.23	55.15	118.1	185.8
1998	128.77	130.62	101.78	40.81	11.84	3.3	6.77	12.93	23.75	39.53	38.77	83.02	130.6
1999	112.43	114.04	88.86	35.63	10.34	2.88	5.91	11.29	20.74	34.51	33.83	72.48	114.0
2000	131.06	132.95	103.59	41.53	12.05	3.36	6.89	13.16	24.17	40.23	39.46	84.49	133.0
2001	131.3	133.19	103.78	41.61	12.07	3.36	6.9	13.19	24.22	40.3	39.53	84.65	133.2
2002	199.79	202.66	157.91	63.31	18.37	5.12	10.5	20.06	36.85	61.32	60.15	128.8	202.7
2003	171.5	173.96	135.55	54.35	15.77	4.39	9.01	17.22	31.63	52.64	51.63	110.56	174.0
2004	177.71	180.26	140.46	56.32	16.34	4.55	9.34	17.85	32.77	54.55	53.5	114.57	180.3
2005	173.98	176.48	137.51	55.13	16	4.46	9.14	17.47	32.09	53.4	52.38	112.16	176.5
2006	211.8	214.84	167.4	67.12	19.47	5.43	11.13	21.27	39.06	65.01	63.76	136.54	214.8
2007	179.02	181.59	141.49	56.73	16.46	4.59	9.41	17.98	33.02	54.95	53.9	115.41	181.6
2008	168.01	170.42	132.79	53.24	15.45	4.31	8.83	16.87	30.99	51.57	50.58	108.31	170.4
2009	195.58	198.39	154.58	61.98	17.98	5.01	10.28	19.64	36.07	60.03	58.88	126.09	198.4
2010	186.15	188.83	147.13	58.99	17.12	4.77	9.78	18.7	34.33	57.14	56.04	120.01	188.8
2011	231.85	235.18	183.25	73.47	21.32	5.94	12.18	23.28	42.76	71.17	69.8	149.47	235.2
2012	234.42	237.79	185.28	74.29	21.55	6.01	12.32	23.54	43.23	71.95	70.57	151.12	237.8
2013	183.62	186.26	145.13	58.19	16.88	4.71	9.65	18.44	33.86	56.36	55.28	118.37	186.3
PROMEDIO	179.5	182.6	136.1	55.7	18.0	4.7	9.8	18.7	32.4	51.5	55.1	115.9	190.3
DESV. EST.	37.0	49.2	29.7	23.5	17.8	1.6	6.2	14.1	14.9	19.7	15.9	43.2	43.2
MÁXIMO	261.1	315.0	204.9	161.5	118.6	8.2	30.2	82.7	108.1	114.1	121.7	334.2	334.2
MÍNIMO	106.8	61.1	64.9	0.0	0.0	0.0	0.2	0.0	6.0	1.7	22.3	55.1	114.0
Nº Datos	40	40	40	40	40	40	40	40	40	40	40	40	40
n Datos	40	40	40	40	40	40	40	40	40	40	40	40	40

FUENTE: SENAMHI.

I II VAN LUZA ORTEGA

Figura 17. Registro Histórico – Estación Paras

ESTACIÓN PARAS

Longitud: -74.63 Latitud: -13.55 PARAS AYACUCHO Estación: Dpto. CANGALLO PRECIPITACIÓN MÁXIMA EN 24 HORAS (mm) -13.55 "S" Parámetro: Prov. PARAS Altitud: 3330 Dist. m.s.n.m.

1976 1977 1978 1979 1980 1981 1982 1983 1984	38 166.6 51.9 89.6 161.8 81 75 45	239.3 81.4 74.9 172.4 232.2 308	152.1 86.9 140.5 133 78.5	58.3 41.1 9.2 32.1	17.9 0 0	0	6.2	0	67.4	79.1	157.1	50.2	239.3
1978 1979 1980 1981 1982 1983	51.9 89.6 161.8 81 75 45	74.9 172.4 232.2 308	140.5 133	9.2	and the same of th	0	6.3				6		
1979 1980 1981 1982 1983	89.6 161.8 81 75 45	172.4 232.2 308	133		0		0.2	2.1	15.1	58.1	37.5	79.8	166.6
1980 1981 1982 1983	161.8 81 75 45	232.2 308		32.1		0.3	5.3	30.7	54.7	13.1	42	71.8	140.5
1981 1982 1983	81 75 45	308	78.5		10.2	16.6	24.1	22.3	22.1	125.7	24.9	155.1	172.4
1982 1983	75 45			94.5	4.1	0	0	50.4	8.2	31.2	94.9	228.7	232.2
1983	45	124	76	48	5	5	2	43	14	40	38	67	308.0
		124	58	34	4	4	2	8	13	55	62	30	124.0
1984	O.C.	75	106	54	13	6	3	3	14	9	18	54	106.0
2557	95	268	103	22	12	17	3	12	6	24	63	41	268.0
1985	30	112	70	43	13	10	5	5	15	4	12	114	114.0
1986	126	202	126	54	14	2	5	19	15	13	20	62	202.0
1987	126	51	41	10	6	7	11	7	6	16	20	32	126.0
1988	98	127	113	40	14	3	1	2	8	9	18	62	127.0
1989	114	114	152	58	15	9	3	14	15	29	22	28	152.0
1990	76	15	51	19	18	49	5	26	18	53	92	108	108.0
1991	64	38	96	28	18	12	4	1	8	24	37	21	96.0
1992	38	44	46	14	2	13	5	38	16	16	18	27	46.0
1993	97	72	82	61	11	8	8	12	21	33	78	98	98.0
1994	119	111	150	46	9	4	1	6	16	32	22	68	150.0
1995	101	64	125	15	12	5	2	6	18	22	69	69	125.0
1996	105	119	120	63	8	2	2	11	19	15	31	56	120.0
1997	123	123	78	29	11	2	4	34	40	20	57	88	123.0
1998	129	110	111	26	3	11	1	11	6	20	42	61	129.0
1999	90	218	111	44	11	5	9	3	28	51	23	77	218.0
2000	141	191	134	25	26	4	10	11	14	58	20	152	191.0
2001	135	120	79	20	29	2	25	10	17	32	53	44	135.0
2002	55	143	123	40	26	5	38	14	30	33	57	82	143.0
2003	82	146	133	32	19	1	1	16	9	11	26	99	146.0
2004	44	107	108	28	6	11	17	13	30	27	39	133	133.0
2005	67	93	135	24	4	1	3	3	30	15	24	116	135.0
2006	166	111	142	40	5	4	1	14	18	37	68	110	166.0
2007	77	72	185	57	23	2	7	3	17	40	42	75	185.0
2008	158	110	47	17	4	11	1	9	10	35	25	68	158.0
2009	108	143	88	50	19	2	12	10	21	35	79	96	143.0
2010	174	117	91	41	15	4	1	10	12	37	11	88	174.0
2011	207	223	163	80	13	2	10	7	28	24	54	87	223.0
2012	78	274	114	95	2	10	2	4	9	40	21	198	274.0
2013	130	149	116	6	31	10	8	27	15	36	30	130	149.0
2014	105	98	204	34	10	4	12	13	36	42	41	91	204.0
2015	167	137	130	27	16	8	11	22	12	21	36	29	167.0
2016	41	149	66	42	10	2	9	7	1	14	10	53	160.4
DESV. EST.	43.2	68.3	37.6	21.2	7.9	8.2	7.8	12.0	12.8	22.0	28.8	45.3	53.6
MÁXIMO	207.0	308.0	204.0	95.0	31.0	49.0	38.0	50.4	67.4	125.7	157.1	228.7	308.0
MÍNIMO	30.0	15.0	41.0	6.0	0.0	0.0	0.0	0.0	6.0	4.0	11.0	21.0	46.0
Nº Datos	40	40	40	40	40	40	40	40	40	40	40	40	40

FUENTE: SENAMHI.

HISTOGRAMA DEL REGISTRO HISTÓRICO ESTACIÓN PARAS

Figura 18. Registro Histórico – Estación Pampas

		ESTACIÓN	PISCO	•		
Estación:	PISCO	Longitud:	-74.25	"W"	Dpto.	AYACUCHO
Parametro:	PRECIPITACIÓN MÁXIMA EN 24 HORAS (mm)	Latitud:	-13.52	"S"	Prov.	VICTOR FAJARDO
		Altitud:	3280	m.s.n.m.	Dist.	VILCACHOS

						Anntua :	3280		m.s.n.m.		DIST.	VILCACHO	0
ANO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SET.	OCT.	NOV.	DIC.	MAXIMO
1976	38	239.3	152.1	58.3	17.9	0	0	0	67.4	79.1	157.1	50.2	239.3
1977	166.6	81.4	86.9	41.1	0	0	6.2	2.1	15.1	58.1	37.5	79.8	166.6
1981	84.81	186.93	88.3	82.12	2.83	2	1.48	30.27	18.07	25.57	46.15	80.67	186.9
1982	78.52	102.79	60.31	46.53	4.62	3.29	3.66	9.81	18.63	33.55	65.21	56.09	102.8
1983	85.59	80.22	104.73	68.08	6.92	3.01	3.73	9.22	24.11	11.7	20.52	83.52	104.7
1984	114.35	245.65	149.05	46.5	12.39	9.7	4.52	17.51	8.87	37.64	50.59	66.23	245.7
1985	49.86	93.86	93.46	61.71	12.55	6.57	4.71	13.07	18.54	16.43	29.81	96.4	96.4
1986	132.83	123.66	162.26	98.06	11.23	1.34	4.54	28.18	12.6	12.05	36.22	85	162.3
1987	137.3	68.9	64.44	21.54	8.24	4.22	9.66	11.81	10.21	16.85	31.02	37.47	137.3
1988	113.18	110.67	142.25	52.8	12.76	0.91	1.84	2.2	12.47	16.75	17.54	64.01	142.3
1989	130.61	143.38	124.99	97.98	12.4	4.55	7.07	23.03	15.57	22.83	26.37	30.39	143.4
1990	64.67	39.12	74.79	27.68	9.95	20.75	4.77	24.42	19.94	34.62	99.4	71.02	99.4
1991	68.13	69.65	92.22	33.99	10.26	7.64	4.54	4.9	12.53	22.76	46.82	32.05	92.2
1992	42.2	40.45	45.74	32.44	1.14	5.11	5.24	23.08	10.2	25.65	28.89	38.85	45.7
1993	103.35	90.63	96.28	82.21	12.37	3.43	5.79	17.29	20.21	39.81	70.67	97.84	103.4
1994	126.36	142.87	121.02	72.22	10.58	2.63	3.55	5.91	12.4	14.27	30.87	75.92	142.9
1995	94.06	72.26	138.05	32.86	14.73	2.3	5.53	10.24	19.31	19.88	98.24	69.09	138.1
1996	113.29	118.12	84.89	88.51	10.3	1.71	2.57	22.92	16.51	18.49	28.08	59.25	118.1
1997	80.14	178.44	80.92	33.91	7.96	0.66	3.68	43.65	35.45	14.17	52.41	131.64	178.4
1998	147.97	136.12	128.64	47.46	0.79	5.31	0.8	6.4	9.38	19.23	42.61	64.62	148.0
1999	103.32	209.69	136.24	83.67	11.51	2.47	5.79	4.16	28.12	43.77	24.34	89.74	209.7
2000	117.16	167.49	131.92	34.76	17.16	2.45	9.82	19.95	13.65	42.3	23.84	135.9	167.5
2001	154.21	136.99	202.31	56.42	13.6	3.11	11.86	18.38	19.35	28.66	56.43	46.64	202.3
2002	56.34	193.55	142.88	58.82	13.23	2.68	31.62	20.18	24.75	25.94	56.17	78.05	193.6
2003	78.29	131.99	133.7	56.32	11.92	0.23	4.01	22.87	13.29	13.38	31.77	111.21	133.7
2004	52.95	103.9	72.37	31.92	3.71	8.52	18.71	20.91	20.44	20.34	35.45	116.15	116.2
2005	72.96	93.28	89.41	42.15	6.56	0.38	3.16	12.38	24.75	22.46	28.13	96.84	96.8
2006	111.51	123.49	150.09	66.4	1.79	4.92	1.21	24.36	17.67	26.99	53.74	83.17	150.1
2007	70.21	72.52	163.93	75.34	9.09	1.28	5.4	10.91	23	24.69	40.41	66.47	163.9
2008	152.09	151.41	104.35	39.25	6.06	4.3	1.96	6.66	7.98	18.84	30.96	73.74	152.1
2009	110.14	144.8	99.39	60.69	9.03	1.37	11.81	8.1	12.19	26.02	75.84	84.99	144.8
2010	124.85	114.9	85.18	57.36	9.45	1.96	1.27	7.28	11.59	24.09	24.21	90.03	124.9
2011	174.46	234.9	119.64	103.47	12.58	0.75	9.55	9.41	22.72	16.8	61.77	98.31	234.9
2012	117.09	298.63	167.51	106.61	6.04	4.45	4.57	6.93	18.08	27.58	29.69	146.87	298.6
2013	112.93	161.9	144.13	19.85	27.22	6.33	7.01	23.11	9.73	37.23	31.31	99.86	161.9
2014	141.08	115.65	180.56	56.31	14.34	1.12	8.28	19.67	43.43	32.81	35.26	88.73	180.6
2015	127.42	137.9	157.43	54.14	14.49	3.36	6.09	23.6	12.12	19.5	40	85.76	157.4
2016	38.84	155.62	94.33	68.34	6.88	3.35	6.6	11.92	11.94	16.59	17.35	68.17	155.6
2017	197.27	182.2	230.88	55.21	19.05	2.83	6.49	6.76	22.35	40.48	35.38	68.23	230.9
2018	120.01	130.32	174.6	71.11	10.15	11.13	13.84	31.56	9.37	35.3	36.85	44.49	174.6
2019	126.62	198.95	120.3	55.91	10.57	3.27	8.04	2.54	19.22	31.68	54.18	147.51	156.1
DESV. EST.	38.8	57.3	41.0	22.7	5.4	3.8	5.6	9.6	10.8	13.3	26.6	27.0	49.9
MÁXIMO	197.3	298.6	230.9	106.6	27.2	20.8	31.6	43.7	67.4	79.1	157.1	146.9	298.6
MÍNIMO	38.0	39.1	45.7	19.9	0.0	0.0	0.0	0.0	8.0	11.7	17.4	30.4	45.7
Nº Datos	40	40	40	40	40	40	40	40	40	40	40	40	40
FUENTE: SENA	LATER												

FUENTE: SENAMHI.

HISTOGRAMA DEL REGISTRO HISTÓRICO

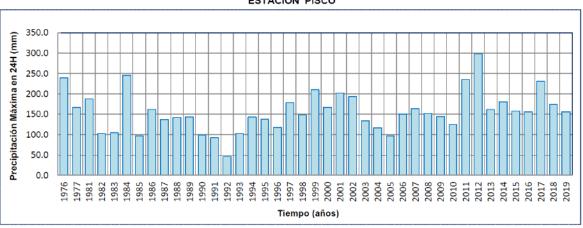


Figura 19. Registro Histórico – Estación Pisco ESTACIÓN PISCO

					E	STACION	PISCO						
Estación : Parámetro :	PISCO PRECIPITA	CIÓN MÁXIN	MA EN 24 H	ORAS (mm)		Longitud : Latitud : Altitud :	-74.25 -13.52 3280		"W" "S" m.s.n.m.		Dpto. Prov. Dist.	AYACUCHO VICTOR FA VILCACHO	JARDO
ANO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SET.	OCT.	NOV.	DIC.	MAXIMO
1976	38	239.3	152.1	58.3	17.9	0	0	0	67.4	79.1	157.1	50.2	239.3
1977	166.6	81.4	86.9	41.1	0	0	6.2	2.1	15.1	58.1	37.5	79.8	166.6
1981	84.81	186.93	88.3	82.12	2.83	2	1.48	30.27	18.07	25.57	46.15	80.67	186.9
1982	78.52	102.79	60.31	46.53	4.62	3.29	3.66	9.81	18.63	33.55	65.21	56.09	102.8
1983	85.59	80.22	104.73	68.08	6.92	3.01	3.73	9.22	24.11	11.7	20.52	83.52	104.7
1984	114.35	245.65	149.05	46.5	12.39	9.7	4.52	17.51	8.87	37.64	50.59	66.23	245.7
1985	49.86	93.86	93.46	61.71	12.55	6.57	4.71	13.07	18.54	16.43	29.81	96.4	96.4
1986	132.83	123.66	162.26	98.06	11.23	1.34	4.54	28.18	12.6	12.05	36.22	85	162.3
1987	137.3	68.9	64.44	21.54	8.24	4.22	9.66	11.81	10.21	16.85	31.02	37.47	137.3
1988	113.18	110.67	142.25	52.8	12.76	0.91	1.84	2.2	12.47	16.75	17.54	64.01	142.3
1989	130.61	143.38	124.99	97.98	12.4	4.55	7.07	23.03	15.57	22.83	26.37	30.39	143.4
1990	64.67	39.12	74.79	27.68	9.95	20.75	4.77	24.42	19.94	34.62	99.4	71.02	99.4
1991	68.13	69.65	92.22	33.99	10.26	7.64	4.54	4.9	12.53	22.76	46.82	32.05	92.2
1992	42.2	40.45	45.74	32.44	1.14	5.11	5.24	23.08	10.2	25.65	28.89	38.85	45.7
1993	103.35	90.63	96.28	82.21	12.37	3.43	5.79	17.29	20.21	39.81	70.67	97.84	103.4
1994	126.36	142.87	121.02	72.22	10.58	2.63	3.55	5.91	12.4	14.27	30.87	75.92	142.9
1995	94.06	72.26	138.05	32.86	14.73	2.3	5.53	10.24	19.31	19.88	98.24	69.09	138.1
1996	113.29	118.12	84.89	88.51	10.3	1.71	2.57	22.92	16.51	18.49	28.08	59.25	118.1
1997	80.14	178.44	80.92	33.91	7.96	0.66	3.68	43.65	35.45	14.17	52.41	131.64	178.4
1998	147.97	136.12	128.64	47.46	0.79	5.31	0.8	6.4	9.38	19.23	42.61	64.62	148.0
1999	103.32	209.69	136.24	83.67	11.51	2.47	5.79	4.16	28.12	43.77	24.34	89.74	209.7
2000	117.16	167.49	131.92	34.76	17.16	2.45	9.82	19.95	13.65	42.3	23.84	135.9	167.5
2001	154.21	136.99	202.31	56.42	13.6	3.11	11.86	18.38	19.35	28.66	56.43	46.64	202.3
2002	56.34	193.55	142.88	58.82	13.23	2.68	31.62	20.18	24.75	25.94	56.17	78.05	193.6
2003	78.29	131.99	133.7	56.32	11.92	0.23	4.01	22.87	13.29	13.38	31.77	111.21	133.7
2004	52.95	103.9	72.37	31.92	3.71	8.52	18.71	20.91	20.44	20.34	35.45	116.15	116.2
2005	72.96	93.28	89.41	42.15	6.56	0.38	3.16	12.38	24.75	22.46	28.13	96.84	96.8
2006	111.51	123.49	150.09	66.4	1.79	4.92	1.21	24.36	17.67	26.99	53.74	83.17	150.1
2007	70.21	72.52	163.93	75.34	9.09	1.28	5.4	10.91	23	24.69	40.41	66.47	163.9
2008	152.09	151.41	104.35	39.25	6.06	4.3	1.96	6.66	7.98	18.84	30.96	73.74	152.1
2009	110.14	144.8	99.39	60.69	9.03	1.37	11.81	8.1	12.19	26.02	75.84	84.99	144.8
2010	124.85	114.9	85.18	57.36	9.45	1.96	1.27	7.28	11.59	24.09	24.21	90.03	124.9
2011	174.46	234.9	119.64	103.47	12.58	0.75	9.55	9.41	22.72	16.8	51.77	98.31	234.9
2012	117.09	298.63	167.51	106.61	6.04	4.45	4.57	6.93	18.08	27.58	29.69	146.87	298.6
2013	112.93	161.9	144.13	19.85	27.22	6.33	7.01	23.11	9.73	37.23	31.31	99.86	161.9
2014	141.08	115.65	180.56	56.31	14.34	1.12	8.28	19.67	43.43	32.81	35.26	88.73	180.6
2015	127.42	137.9	157.43	54.14	14.49	3.36	6.09	23.6	12.12	19.5	40	1000000	157.4
2016	38.84	155.62	94.33	68.34	6.88	3.35	6.6	11.92	11.94	16.59	17.35	68.17	155.6
2017	197.27	182.2	230.88	55.21	19.05	2.83	6.49	6.76	22.35	40.48	35.38	68.23	230.9
2018	120.01	130.32	174.6	71.11	10.15	11.13	13.84	31.56	9.37	35.3	36.85	44.49	174.6
2019	126.62	198.95	120.3	55.91	10.57	3.27	8.04	2.54	19.22	31.68	54.18	147.51	156.1
DESV. EST.	38.8	57.3	41.0	22.7	5.4	3.8	5.6	9.6	10.8	13.3	26.6	27.0	49.9
MÁXIMO	197.3	298.6	230.9	106.6	27.2	20.8	31.6	43.7	67.4	79.1	157.1	146.9	298.6
MÍNIMO	38.0	39.1	45.7	19.9	0.0	0.0	0.0	0.0	8.0	11.7	17.4	30.4	45.7
Nº Datos	40	40	40	40	40	40	40	40	40	40	40	40	40

FUENTE: SENAMHI.

HISTOGRAMA DEL REGISTRO HISTÓRICO ESTACIÓN PISCO

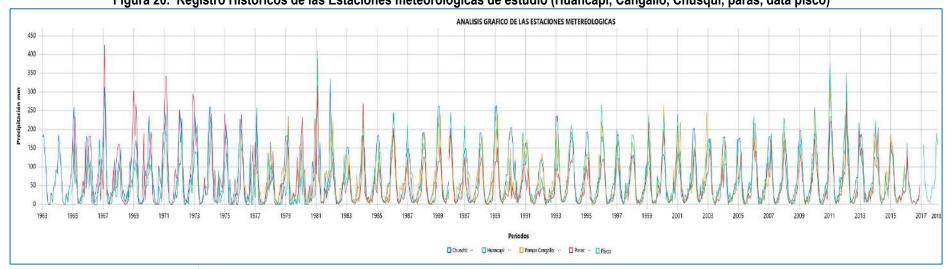


Figura 20. Registro Históricos de las Estaciones meteorológicas de estudio (Huancapi, Cangallo, Chusqui, paras, data pisco)

Fuente: SENAMHI – Elaboración Propia

De acuerdo con los datos de precipitación de las cinco estaciones que se analizaron incluida data pisco para completar la serie en el área de estudio se tomaran los promedios máximos para así poder desarrollar el análisis de precipitación y análisis de caudales probables máximos para así desarrollar el Hidrograma y solidograma de estudios.

Figura 21. Hidrograma del registro histórico del promedio máximo de las estaciones de estudio.

Fuente: Elaboración Propia

Para el análisis de los factores desencadenantes, se ha considerado a los umbrales de precipitación identificados según la estación de análisis el Promedio Máximo (fuente del SENAMHI).

Cuadro 13. Umbrales de precipitación

umbrales de precipitación	Caracterización de las Lluvias	Umbrales Calculados
RR/día>99p	Extremadamente Iluvioso	RR>300 mm
95p <rr día≤99p<="" td=""><td>Muy Iluvioso</td><td>200 mm<rr≤300 mm<="" td=""></rr≤300></td></rr>	Muy Iluvioso	200 mm <rr≤300 mm<="" td=""></rr≤300>
90p <rr día≤95p<="" td=""><td>Lluvioso</td><td>100 mm<rr≤200 mm<="" td=""></rr≤200></td></rr>	Lluvioso	100 mm <rr≤200 mm<="" td=""></rr≤200>
75p <rr día≤90p<="" td=""><td>Moderadamente Iluvioso</td><td>50 mm<rr≤100 mm<="" td=""></rr≤100></td></rr>	Moderadamente Iluvioso	50 mm <rr≤100 mm<="" td=""></rr≤100>
75p <rr día<="" td=""><td>Ligeramente Lluvioso</td><td>50 mm<rr< td=""></rr<></td></rr>	Ligeramente Lluvioso	50 mm <rr< td=""></rr<>

Fuente: SENAMHI

2.5.8. Hidrograma y solidograma

2.5.8.1. Análisis de máximas avenidas

El análisis de máximas avenidas se llevó a cabo siguiendo un proceso exhaustivo de recopilación y consolidación de datos meteorológicos. En un primer paso, se aprovechó la información proporcionada por las estaciones meteorológicas cercanas al área de estudio, que desempeñaron un papel central en la obtención de datos fundamentales. Además, se enriqueció este conjunto de datos con información adicional proveniente de data pisco para completar la serie. Histograma del registro histórico promedio máximo de las Estaciones de Estudio.

Figura 22. Registro Histórico – Promedio máximo de las Estaciones de Estudio

REGISTRO HISTÓRICO
PROMEDIO MAXIMO DE LAS ESTACIONES DE ESTUDIO

ANO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SET.	OCT.	NOV.	DIC.	MAXIMO
1980	109.3	24.2	91.1	1.9	0	2.4	26.3	3.8	16.7	18.6	19.3	24.4	109.3
1981	84.81	186.93	88.3	82.12	2.83	2	1.48	30.27	18.07	25.57	46.15	80.67	186.9
1982	78.52	102.79	60.31	46.53	4.62	3.29	3.66	9.81	18.63	33.55	65.21	56.09	102.8
1983	85.59	80.22	104.73	68.08	6.92	3.01	3.73	9.22	24.11	11.7	20.52	83.52	104.7
1984	114.35	245.65	149.05	46.5	12.39	9.7	4.52	17.51	8.87	37.64	50.59	66.23	245.7
1985	49.86	93.86	93.46	61.71	12.55	6.57	4.71	13.07	18.54	16.43	29.81	96.4	96.4
1986	132.83	123.66	162.26	98.06	11.23	1.34	4.54	28.18	12.6	12.05	36.22	85	152.3
1987	137.3	68.9	64.44	21.54	8.24	4.22	9.66	11.81	10.21	16.85	31.02	37.47	137.3
1988	113.18	110.67	142.25	52.8	12.76	0.91	1.84	2.2	12.47	16.75	17.54	64.01	142.3
1989	130.61	143.38	124.99	97.98	12.4	4.55	7.07	23.03	15.57	22.83	26.37	30.39	143.4
1990	64.67	39.12	74.79	27.68	9.95	20.75	4.77	24.42	19.94	34.62	99.4	71.02	99.4
1991	68.13	69.65	92.22	33.99	10.26	7.64	4.54	4.9	12.53	22.76	46.82	32.05	92.2
1992	42.2	40.45	45.74	32.44	1.14	5.11	5.24	23.08	10.2	25.65	28.89	38.85	45.7
1993	103.35	90.63	96.28	82.21	12.37	3.43	5.79	17.29	20.21	39.81	70.67	97.84	103.4
1994	126.36	142.87	121.02	72.22	10.58	2.63	3.55	5.91	12.4	14.27	30.87	75.92	142.9
1995	94.06	72.26	138.05	32.86	14.73	2.3	5.53	10.24	19.31	19.88	98.24	69.09	138.1
1996	113.29	118.12	84.89	88.51	10.3	1.71	2.57	22.92	16.51	18.49	28.08	59.25	118.1
1997	80.14	178.44	80.92	33.91	7.96	0.66	3.68	43.65	35.45	14.17	52.41	131.64	178.4
1998	147.97	136.12	128.64	47.46	0.79	5.31	0.8	6.4	9.38	19.23	42.61	64.62	148.0
1999	103.32	209.69	136.24	83.67	11.51	2.47	5.79	4.16	28.12	43.77	24.34	89.74	209.7
2000	117.16	167.49	131.92	34.76	17.16	2.45	9.82	19.95	13.65	42.3	23.84	135.9	167.5
2001	154.21	136.99	202.31	56.42	13.6	3.11	11.86	18.38	19.35	28.66	56.43	46.64	202.3
2002	56.34	193.55	142.88	58.82	13.23	2.68	31.62	20.18	24.75	25.94	56.17	78.05	193.6
2003	78.29	131.99	133.7	56.32	11.92	0.23	4.01	22.87	13.29	13.38	31.77	111.21	133.7
2004	52.95	103.9	72.37	31.92	3.71	8.52	18.71	20.91	20.44	20.34	35.45	116.15	116.2
2005	72.96	93.28	89.41	42.15	6.56	0.38	3.16	12.38	24.75	22.46	28.13	96.84	96.8
2006	111.51	123,49	150.09	66.4	1.79	4.92	1.21	24.36	17.67	26.99	53.74	83.17	150.1
2007	70.21	72.52	163.93	75.34	9.09	1.28	5.4	10.91	23	24.69	40.41	66.47	163.9
2008	152.09	151.41	104.35	39.25	6.06	4.3	1.96	6.66	7.98	18.84	30.96	73.74	152.1
2009	110.14	144.8	99.39	60.69	9.03	1.37	11.81	8.1	12.19	26.02	75.84	84.99	144.8
2010	124.85	114.9	85.18	57.36	9.45	1.96	1.27	7.28	11.59	24.09	24.21	90.03	124.9
2011	174.46	234.9	119.64	103.47	12.58	0.75	9.55	9.41	22.72	16.8	61.77	98.31	234.9
2012	117.09	298.63	167.51	106.61	6.04	4.45	4.57	6.93	18.08	27.58	29.69	146.87	298.6
2013	112.93	161.9	144.13	19.85	27.22	6.33	7.01	23.11	9.73	37.23	31.31	99.86	161.9
2014	141.08	115.65	180.56	56.31	14.34	1.12	8.28	19.67	43.43	32.81	35.26	88.73	180.6
2015	127.42	137.9	157.43	54.14	14.49	3.36	6.09	23.6	12.12	19.5	40	85.76	157.4
2016	38.84	155.62	94.33	68.34	6.88	3.35	6.6	11.92	11.94	16.59	17.35	68.17	155.6
2017	197.27	182.2	230.88	55.21	19.05	2.83	6.49	6.76	22.35	40.48	35.38	68.23	230.9
2018	120.01	130.32	174.6	71.11	10.15	11.13	13.84	31.56	9.37	35.3	36.85	44.49	174.6
2019	126.62	198.95	120.3	55.91	10.57	3.27	8.04	2.54	19.22	31.68	54.18	147.51	199.0
PROMEDIO	105.9	133.2	121.1	57.1	9.9	3.9	7.0	15.5	17.4	24.9	41.6	79.6	153.7
DESV. EST.	36.1	57.9	40.6	24.2	5.3	3.7	6.3	9.5	7.3	9.0	19.8	30.0	49.0
MÁXIMO	197.3	298.6	230.9	106.6	27.2	20.8	31.6	43.7	43.4	43.8	99.4	147.5	298.6
MINIMO	38.8	24.2	45.7	1.9	0.0	0.2	0.8	2.2	8.0	11.7	17.4	24.4	45.7
Nº Datos	40	40	40	40	40	40	40	40	40	40	40	40	40

FUENTE: SENAMHI.

LIYAN LUZA ORTEGA EVALUADORA DE RIESGOS R.J. N'039-2021-CENEPRED I

Fuente: Elaboración Propia

El análisis de datos de las cinco estaciones meteorológicas se realizó con un enfoque meticuloso, asegurando la coherencia y la consistencia de la información. Esta fase fue esencial para la posterior evaluación de las precipitaciones máximas, un elemento crítico en la estimación de los caudales. Así, los resultados de este análisis alimentaron tanto el estudio de precipitación como el análisis de caudales.

Los datos derivados de estas etapas sirvieron de base para el desarrollo de un modelo hidráulico que simuló el flujo de detritos en el área de estudio. Este modelo permitió calcular con precisión tanto los caudales como las precipitaciones necesarias para comprender y prever el comportamiento de las avenidas. Además, se consideraron diversos intervalos de periodos de retorno, lo que proporcionó una perspectiva integral y diversificada de los escenarios posibles, contribuyendo a la formulación de estrategias de mitigación y preparación ante eventos extremos.

Tomando en cuenta las metodologías propuestas por: el Ministerio de Transporte y Comunicaciones en el Manual de Hidrología, Hidráulica y Drenaje aprobado mediante el Decreto Supremo N° 034 – 2008 – MTC; y el Ministerio de Economía y Finanzas en la Guía Metodológica para Proyectos de Protección y/o Control de Inundaciones en Áreas Agrícolas o Urbanas aprobada por la Dirección General de Programación Multianual del Sector Público; y otras a nivel internacional, se presenta la siguiente metodología para la estimación de áreas inundables ante la ocurrencia de eventos hidrometeorológicos extremos.

Como dato básico se utilizaron las precipitaciones máximas en 24 horas para los años registrados (multianuales), las cuales pasan por un análisis de frecuencias que son validadas a través de una prueba de bondad de ajuste, que consiste en determinar que la correlación de la curva generada y los datos reales se ajuste al nivel mínimo de significancia (correlación menor a 0.05) para las distintas distribuciones probabilísticas.

Determinada la distribución probabilística que más se ajusta al registro de datos, se pronostica una precipitación (mm) para un determinado período de retorno. Con esta altura, se procede a realizar el diseño de la tormenta por medio del método de tormentas hipotéticas del Servicio de Conservación del suelo de los Estados Unidos (US-SCS, 1986) con la distribución del tipo I, debido a que este método; calibrado por pruebas empíricas, presenta semejanza del medio geográfico y del clima marítimo del Pacífico, con inviernos húmedos y veranos secos.

Con la aplicación de este método se obtiene el hietograma de la tormenta de diseño, el cual se le restará el agua infiltrada con el método de Número de curva del SCS (1972).

éste es utilizado por la facilidad en el manejo e ingreso de datos. Este modelo se desarrolló en base resultados empíricos de subcuenca s experimentales en donde relaciona el potencial de infiltración en una subcuenca y la infiltración máxima,

obteniendo ecuaciones empíricas con distintos coeficientes para los distintos tipos de suelo y condiciones de humedad.

El próximo paso implica la transformación de este nuevo hietograma en un hidrograma, un proceso que se lleva a cabo utilizando el modelo de hidrograma sintético unitario desarrollado por el Servicio de Conservación de Suelos (SCS) en 1972. Este modelo es ampliamente aceptado y utilizado en la hidrología debido a su capacidad para producir hidrogramas que se asemejan de manera significativa a lo que podríamos esperar en una cuenca de la vida real.

El mérito de este modelo se sustenta en su sólida base de datos, ya que ha sido calibrado y validado minuciosamente con mediciones de caudales en zonas rurales de gran extensión, así como en cuencas más pequeñas. Este proceso de calibración asegura que el hidrograma sintético unitario sea una herramienta confiable y precisa para estimar los flujos de agua en diversas condiciones hidrológicas. Por lo tanto, la aplicación de este modelo ofrece una representación significativa de los eventos hidrológicos en la vida real, lo que lo convierte en una herramienta valiosa en la gestión y análisis de recursos hídricos y en la evaluación de las características de las cuencas fluviales.

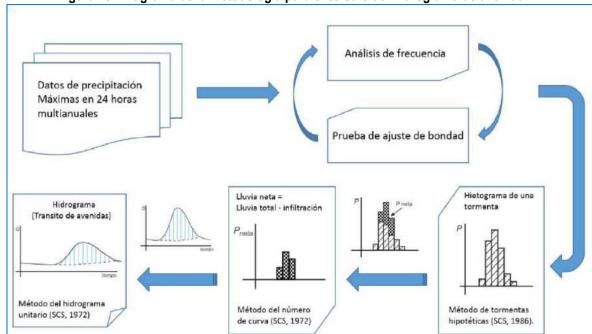


Figura 23. Diagrama de la metodología para el cálculo del hidrograma de avenida

Fuente: Libro de hidrología- para el cálculo del hidrograma hidrometeorológico extremo

Cuadro 14. Resultado prueba de la Bondad de Ajuste – precipitaciones

							EST	TACIONE	S DE ESTUDIO	0					
				Promedio :	χ=	153.653	y =	2.164			Coeficiente	e de correcc	ion de Pma	x por Nº de	lecturas (OMM)
			Desviació	n estándar :	s =	49.035	sy=	0.147				f (2	lecturas) =	1.1	3
				Cs/6:	k =	0.104	k =	-0.129							
T	P(X≤x _T)	DISTRIB	NORMAL	DISTRIB.	GUMBELL	DISTRI	B. LOGNO	DRMAL	DISTRIB. P	EARSON III	DISTRIB	LOG PEA	RSON III	PMAX	P _{MAX} (corregida
(años)	L(VZYI)	K _T	XT	K _T	$x_{\rm T}$	K _T	XT	10^x _T	K _T	XT	K _T	Xt	10^x _T	mm	mm
2	0.500	0.0000	153.7	-0.1643	145.6	0.00	2.1638	145.8	-0.1031	148.6	0.1266	2.1824	152.2	152.2	172.0
3	0.667	0.4307	174.8	0.2538	166.1	0.43	2.2273	168.8	0.3378	170.2	0.5201	2.2405	174.0	174.0	196.6
5	0.800	0.8416	194.9	0.7195	188.9	0.84	2.2879	194.0	0.7955	192.7	0.8542	2.2898	194.9	194.9	220.2
10	0.900	1.2816	216.5	1.3046	217.6	1.28	2.3528	225.3	1.3277	218.8	1.1697	2.3363	216.9	216.9	245.1
20	0.950	1.6449	234.3	1,8658	245.1	1.64	2.4064	254.9	1.8012	242.0	1.3994	2.3702	234.5	234.5	265.0
25	0.960	1.7507	239.5	2.0438	253.9	1.75	2.4220	264.2	1.9451	249.0	1.4614	2.3793	239.5	239.5	270.6
50	0.980	2.0537	254.4	2.5923	280.8	2.05	2.4667	292.9	2.3724	270.0	1.6267	2.4037	253.3	253.3	286.3
100	0.990	2.3263	267.7	3.1367	307.5	2.33	2.5069	321.3	2.7765	289.8	1.7609	2.4235	265.1	265.1	299.6
200	0.995	2.5758	280.0	3.6791	334.1	2.58	2.5437	349.7	3.1629	308.7	1.8722	2.4399	275.4	275.4	311.2
300	0.997	2.7131	286.7	3,9959	349.6	2.71	2.5639	366.4	3.3824	319.5	1.9289	2.4483	280.7	280.7	317.2
500	0.998	2.8782	294.8	4.3947	369.1	2.88	2.5883	387.5	3.6531	332.8	1.9931	2.4577	286.9	286.9	324.2
1000	0.999	3.0902	305.2	4.9355	395.7	3.09	2.6196	416.4	4.0116	350.4	2.0693	2.4690	294.4	294.4	332.7

Fuente: Elaboración propia

LILYAN LUZA ORTEGA EVALUADORA DE RIESGOS R.J. N° 039- 2021- CENEPRED J CPP N° 239574

Fuente: Elaboración propia

Cuadro 15. Resultado prueba de la Bondad de Ajuste – Qmax (Caudales máximos)

CAUDALES MÁXIMOS


ESTACIÓN HIDROMETRICA DE ESTUDIO

Promedio: x = 170.562 y = 2.219 Coeficiente de corrección de Pmax por Nº de lecturas (OMM)

Desviación estándar: s = 44.372 sy = 0.109 f (2 lecturas) = 1.13Cs/6: k = 0.164 k = 0.023

T	P(X≤x _⊤)	DISTRIB.	NORMAL	DISTRIB.	GUMBELL	DISTR	IB, LOGN	ORMAL	DISTRIB. P	EARSON III	DISTRIB	LOG PEA	RSON III	QMAX	Q _{MAX} (corregida)
(años)	r(vzv1)	K_T	X _T	K _T	ΧŢ	K_T	X_{T}	10^x _T	K _T	X _T	K _T	Xt	10^x _T	mm	mm
2	0.500	0.0000	170.6	-0.1643	163.3	0.00	2.2185	165.4	-0.1596	163.5	-0.0229	2.2160	134.5	134.5	152.0
3	0.667	0.4307	189.7	0.2538	181.8	0.43	2.2656	184.3	0.2786	182.9	0.4117	2.2636	163.5	163.5	184.7
5	0.800	0.8416	207.9	0.7195	202.5	0.84	2.3106	204.4	0.7557	204.1	0.8342	2.3098	184.1	184.1	208.0
10	0.900	1.2816	227.4	1.3046	228.4	1.28	2.3587	228.4	1.3350	229.8	1.2953	2.3602	209.2	209.2	236.4
20	0.950	1.6449	243.5	1.8658	253.4	1.64	2.3984	250.3	1.8697	253.5	1.6829	2.4026	232.7	232.7	262.9
25	0.960	1.7507	248.2	2.0438	261.3	1.75	2.4100	257.0	2.0355	260.9	1.7970	2.4150	240.0	240.0	271.2
50	0.980	2.0537	261.7	2.5923	285.6	2.05	2.4431	277.4	2.5362	283.1	2.1267	2.4511	262.6	262.6	296.7
100	0.990	2.3263	273.8	3.1367	309.7	2.33	2.4729	297.1	3.0201	304.6	2.4271	2.4839	284.7	284.7	321.8
200	0.995	2.5758	284.9	3.6791	333.8	2.58	2.5002	316.4	3.4920	325.5	2.7051	2.5143	306.8	306.8	346.7
300	0.997	2.7131	290.9	3.9959	347.9	2.71	2.5152	327.5	3.7636	337.6	2.8592	2.5312	319.8	319.8	361.4
500	0.998	2.8782	298.3	4.3947	365.6	2.88	2.5333	341.4	4.1021	352.6	3.0460	2.5516	336.1	336.1	379.8
1000	0.999	3.0902	307.7	4.9355	389.6	3.09	2.5565	360.1	4.5558	372.7	3.2878	2.5781	358.5	358.5	405.1

Fuente: Elaboración propia

Fuente: Elaboración propia

LILYAN LUZA ORTEGA EVALUADORA DE RIESGOS R.J. N° 0.3 • 2021 - CEREPRED J CIPIN° 238674 Tras un minucioso procesamiento de los datos meteorológicos, hemos obtenido información valiosa sobre las probables precipitaciones máximas que desencadenan caudales máximos en la quebrada antani. Con estos datos en mano, estamos listos para construir un escenario que describa la probabilidad de ocurrencia de flujos de detritos en el ámbito de estudio del centro poblado cocas. Para lograr esto, hemos considerado diferentes periodos de retorno, específicamente, periodos de 2, 5, 10, 25, 50 y 100 años.

Cuadro 16. Resumen de los Caudales máximos probables para diferentes periodos de retorno, quebrada Antani

T (años)	QMAX (m3/s)
2	151.99
3	184.72
5	207.99
10	236.38
20	262.93
25	271.25
50	296.68
100	321.76

Fuente: Elaboración propia

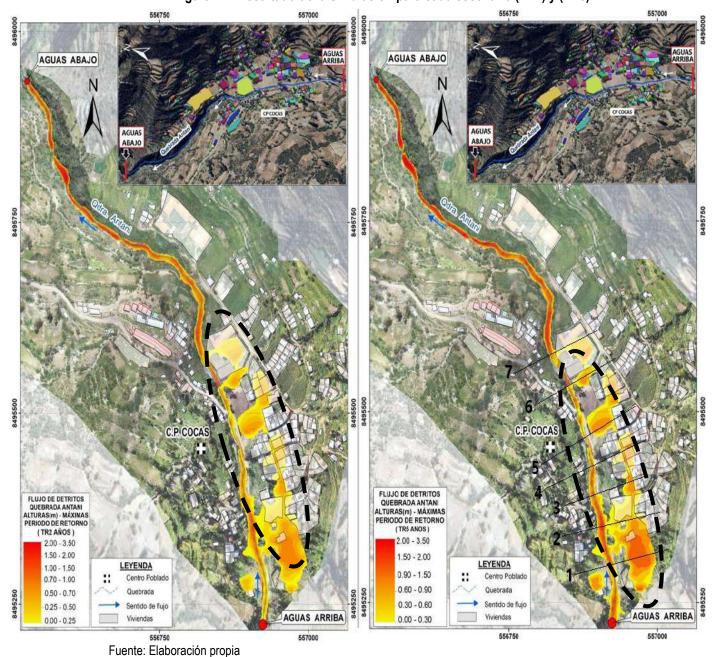
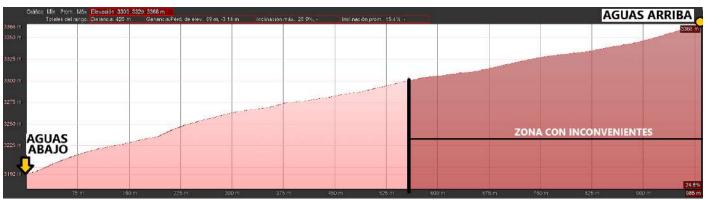
Este análisis nos brinda una perspectiva detallada y estructurada de cómo las áreas circundantes podrían experimentar impactos diversos en función de la frecuencia en la que se presenten estos eventos a lo largo de los años. Esta información es esencial para la planificación y la toma de decisiones, ya que nos permite evaluar el riesgo y diseñar estrategias de mitigación adecuadas, adaptadas a las necesidades cambiantes del entorno.

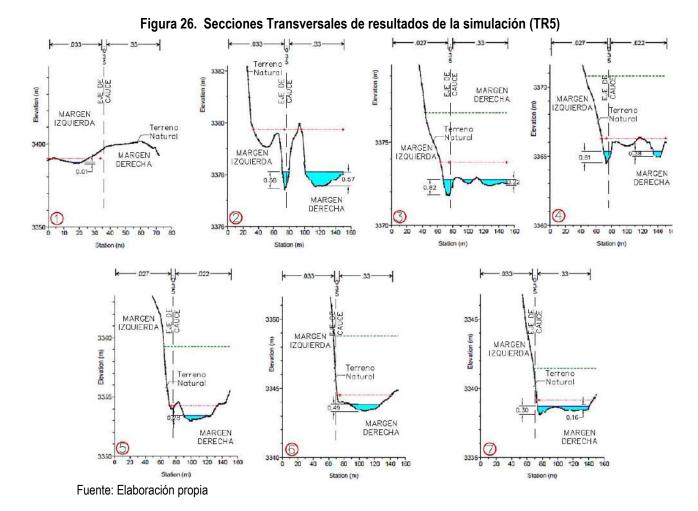
Resultados para periodo de retorno 2 años (TR2) y 5 años (TR5): Tras analizar los resultados de la simulación de flujo de detritos, se obtuvieron dos escenarios distintos:

En el primer escenario (TR2), se consideró un caudal pico de 151.99 m³/s con concentraciones volumétricas variables de sólidos, que oscilaron entre 0.00 y 3.5 metros cúbicos de concentración de sólidos. En la margen izquierda, se presenta una ladera inclinada, mientras que, en la margen derecha, la superficie no es tan pronunciada, lo que generó concentraciones de volumen más bajas, entre 0.00 y 0.50 metros cúbicos. Este escenario afectó parcialmente a las viviendas. El flujo siguió su curso por la pendiente inclinada, discurriendo a través del cauce de la quebrada, que tiene una mayor profundidad.

En el segundo escenario (TR5), se empleó un caudal pico de 207.99m³/s con concentraciones volumétricas variables de sólidos, en el rango de 0.00 a 3.5 metros cúbicos de concentración de sólidos. Nuevamente, en la margen izquierda se encuentra una ladera inclinada, mientras que en la margen derecha la superficie no presenta una inclinación tan pronunciada, lo que generó concentraciones de volumen que oscilaron entre 0.00 y 0.60 metros cúbicos. En este caso, también se observó un impacto parcial en las viviendas. El flujo, debido a la pendiente inclinada, continuó su recorrido a lo largo del cauce de la quebrada, que mantiene una mayor profundidad.

A continuación, se presenta los resultados de las simulaciones para cada escenario (TR2 Y (TR5) de peligro por flujo de detritos.


Figura 24. Resultado de la simulación para cada escenario (TR2) y (TR5)

Fuente: Elaboración propia

En el análisis del perfil longitudinal de la quebrada revela una pendiente notoriamente inclinada que, en situaciones de eventos de flujo de detritos, favorece de manera significativa el transporte de sedimentos. La pendiente pronunciada actúa como un factor que impulsa la aceleración y la movilidad de los materiales arrastrados por el flujo.

Cuando examinamos las secciones transversales, podemos identificar con mayor detalle que la margen derecha de la quebrada es particularmente vulnerable a los efectos del flujo de detritos. Esta zona presenta segmentos donde la afectación por los sedimentos arrastrados es más evidente, lo que puede dar lugar a daños a la infraestructura o a áreas de asentamiento cercanas. Por lo tanto, se requiere una atención especial en esta área para implementar medidas de mitigación y protección adecuadas.

Resultados para periodo de retorno 20 años (TR20) y 50 años (TR50): Tras analizar los resultados de la simulación de flujo de detritos, se obtuvieron dos escenarios distintos:

En el primer escenario (TR20), se consideró un caudal pico de 262.93 m³/s con concentraciones volumétricas variables de sólidos, que oscilaron entre 0.00 y 4.00 metros cúbicos de concentración de sólidos. En la margen izquierda, se presenta una ladera inclinada, mientras que en la margen derecha, la superficie no es tan pronunciada, lo que generó concentraciones de volumen más bajas, entre 0.00 y 0.70 metros cúbicos. Este escenario afectó parcialmente a las viviendas. El flujo siguió su curso por la pendiente inclinada, discurriendo a través del cauce de la quebrada, que tiene una mayor profundidad.

En el segundo escenario (TR50), se empleó un caudal pico de 296.68 m³/s con concentraciones volumétricas variables de sólidos, en el rango de 0.00 a 5.00 metros cúbicos de concentración de sólidos. Nuevamente, en la margen izquierda se encuentra una ladera inclinada, mientras que en la margen derecha la superficie no presenta

una inclinación tan pronunciada, lo que generó concentraciones de volumen que oscilaron entre 0.00 y 2.00 metros cúbicos. En este caso, también se observó un impacto considerado en las viviendas. El flujo, debido a la pendiente inclinada, continuó su recorrido a lo largo del cauce de la quebrada, que mantiene una mayor profundidad.

A continuación, se presenta los resultados de las simulaciones para cada escenario (TR20 Y TR50) de peligro por flujo de detritos.

556750 AGUAS ABAJO AGUAS ABAJO C.P. COO C.P. COCAS FLUJO DE DETRITOS FLUJO DE DETRITOS QUEBRADA ANTANI ALTURAS(m) - MÁXIMAS QUEBRADA ANTANI ALTURAS(m) - MÁXIMAS PERIODO DE RETORNO PERIODO DE RETORNO (TR50 AÑOS) 2.50 - 5.00 2.00 - 4.00 2.00 - 2.50 1.60 - 2.00 LEYENDA EYENDA 1.60 - 2.00 1.30 - 1.60 Centro Poblado 1.20 - 1.60 1.00 - 1.30 Quebrada 0.80 - 1.20 0.70 - 1.00 Sentido de fluid 0.40 - 0.80 Sentido de flujo 0.35 - 0.70 GUAS ARRIBA AGUAS ARRIBA Viviendas Viviendas 0.00 - 0.40 0.00 - 0.35

Figura 27. Resultado de la simulación para cada escenario (TR20) y (TR50)

Fuente: Elaboración propia

556750

557000

556750

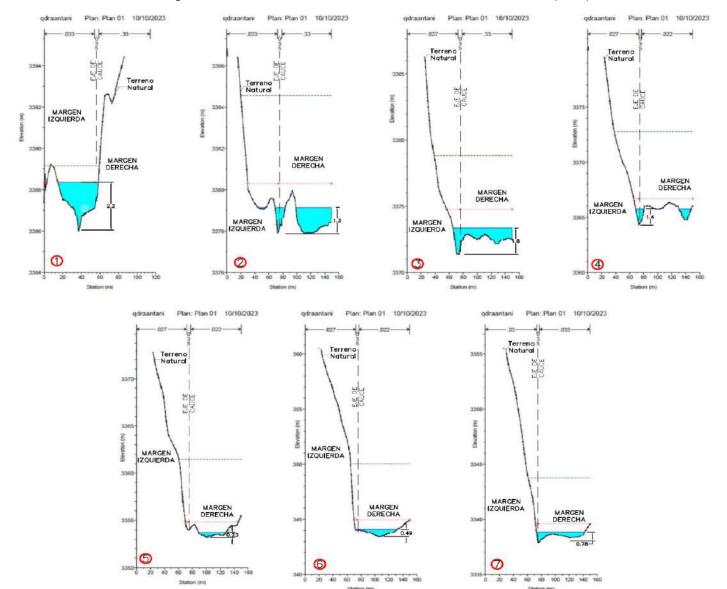


Figura 28. Secciones Transversales de resultados de la simulación (TR50)

Fuente: Elaboración propia.

Cuando examinamos las secciones transversales, podemos identificar con mayor detalle que la margen derecha de la quebrada es particularmente vulnerable a los efectos del flujo de detritos. Esta zona presenta segmentos donde la afectación por los sedimentos arrastrados es más evidente, lo que puede dar lugar a daños a la infraestructura o a áreas de asentamiento cercanas. Por lo tanto, se requiere una atención especial en esta área para implementar medidas de mitigación y protección adecuadas.

Resultados para periodo de retorno 100 años (TR100): Tras analizar los resultados de la simulación de flujo de detritos, se consideró un caudal pico de 321.76 m³/s con concentraciones volumétricas variables de sólidos, que oscilaron entre 0.00 y 5.00 metros cúbicos de concentración de sólidos. En la margen izquierda, se presenta una ladera inclinada, mientras que, en la margen derecha, la superficie no es tan pronunciada, lo que generó concentraciones de volumen más bajas, entre 0.00 y 2.50 metros cúbicos. En este caso, también se observó un impacto considerado en las viviendas. El flujo, debido a la pendiente inclinada, continuó su recorrido a lo largo del cauce de la quebrada, que mantiene una mayor profundidad.

A continuación, se presenta los resultados de las simulacion un periodo de retorno de 100 años (TR100) por flujo de detritos.

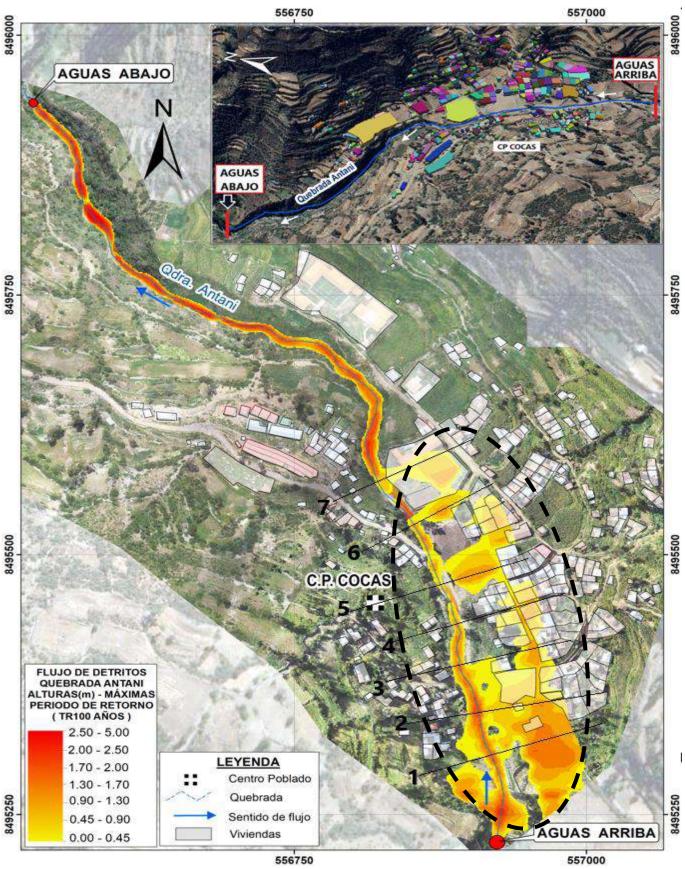


Figura 29. Resultado de la simulación para cada escenario (TR100)

Fuente: Elaboración propia

Plan: Plan 01 10/10/2023 Plan: Plan 01 10/10/2023 Plan: Plan 01 10/10/2023 Plan: Plan 01 10/10/2023 Terreno Natural 35 MARGEN IZQUIERDA Sevator MARGEN DERECHA MARGEN DERECHA MARGEN DERECHA 3 4 Plan: Plan 01 10/10/2023 10/10/2023 Plan: Plan 01 10/10/2023 Terrenc Natural MARGEN IZQUIERDA MARGEN IZQUIERDA MARGEN IZQUIERDA MARGEN

Figura 30. Secciones Transversales de resultados de la simulación (TR100)

Fuente: Elaboración propia

En resumen, la simulación hidráulica por flujo de detritos proporciona información valiosa sobre la dinámica de las aguas durante eventos extremos. En este análisis, observamos que, en la margen derecha, la topografía muestra una curvatura plana, caracterizada por una pendiente que no presenta inclinaciones significativas hacia adentro ni hacia afuera. Esta particularidad tiene un impacto directo en la distribución del agua y los sedimentos durante fuertes precipitaciones.

Cuando se desencadenan fuerte lluvias, se activa la quebrada seca, y el flujo de agua se desplaza por la margen derecha, recorriendo esta área de pendiente medianamente suave. A medida que el flujo progresa, alcanza una parte inclinada donde la topografía muestra un perfil convexo, es decir, la pendiente se inclina hacia afuera hasta llegar al punto más bajo del perfil. Esta característica influye en la dispersión del agua y la sedimentación en las áreas circundantes.

COCAS

TR2 ANOS

AGUAS ARRIBA

TR5 AÑOS

AGUAS ARRIBA

TR20 ANOS

AGUAS ARRIBA

COCAS

Figura 31. Discusión De Los Resultados

Fuente: Elaboración Propia

AGUAS ARRIBA

TR50 AÑOS

Es importante destacar que, durante un período de 100 años, se observa que la margen derecha es la más afectada. La distancia desde el curso del flujo varía desde menos de 1 metro hasta más de 15 metros. Esto se traduce en alturas variables del flujo, oscilando entre 0.00 y 1.50 metros en los primeros 410 metros de recorrido. A medida que el flujo avanza y encuentra un cambio en la pendiente, su altura se incrementa, pero este aumento no impacta significativamente en las márgenes, tanto derecha como izquierda. Esto se debe a la forma convexa del perfil topográfico que se ilustra en la imagen del perfil longitudinal de la quebrada Antani.

TR100 AÑOS

AGUAS ARRIBA

El conocimiento de la topografía y su influencia en la acumulación de agua y sedimentos es esencial en la evaluación de la gestión de riesgos en áreas montañosas con pendientes pronunciadas. La identificación del tipo de curvatura de perfil, en este caso, un perfil convexo, nos permite comprender mejor cómo la topografía afecta la hidrología y la geomorfología en esta región específica. Esta información es crucial para desarrollar estrategias de mitigación y adaptación ante posibles eventos extremos relacionados con flujos de detritos, Se recomienda la construcción de muros de gaviones , muros de tierra reforzada , sistemas de terrazas y proteger el cauce natural de la quebrada Antani, asimismo proteger y mantener la vegetación existente debido que a esta actuara como una barrera natural que ayudara a reducir las velocidades del flujo y así evitar posibles formaciones de flujos de detritos.

MARGEN

DERECHA

AGUAS ARRI

MARGEN

ZQUIERDA

CAPITULO III: DETERMINACIÓN DEL NIVEL DE PELIGROSIDAD

Evaluar el peligro es estimar o valorar la ocurrencia de un fenómeno con base en el estudio de su mecanismo generador, el monitoreo del sistema perturbador y/o el registro de sucesos (se refiere al fenómeno mismo en términos de sus características y su dimensión) en el tiempo y ámbito geográfico determinado.

La estratificación que se establecerá para la evaluación del peligro permite cuantificar en términos de la magnitud del acontecimiento, o en términos del efecto que el acontecimiento tendrá en el área del centro poblado cocas, del distrito de Vilcanchos, y es válido para el momento de realizada la presente evaluación es decir el tiempo de validez es determinado (debido a los posibles cambios posteriores).

Para el presente Informe de Evaluación de Riesgo, se ha determinado un modelo del peligro más significativo producto de los fenómenos naturales, y de acuerdo a las afectaciones producidas, por lo que se analizará el peligro por flujo de detritos a consecuencia de las fuertes precipitaciones , tomando en cuenta la ubicación del área de estudio cuyas condiciones de peligro se basan en los eventos geometeorologicos , los cuales afectaron los medios de vida de los pobladores e infraestructura del centro poblado cocas.

3.1 Metodología para la determinación de la peligrosidad

Para determinar el nivel de peligrosidad por el fenómeno de sismo, se utilizó la siguiente metodología descrita en el gráfico 7.

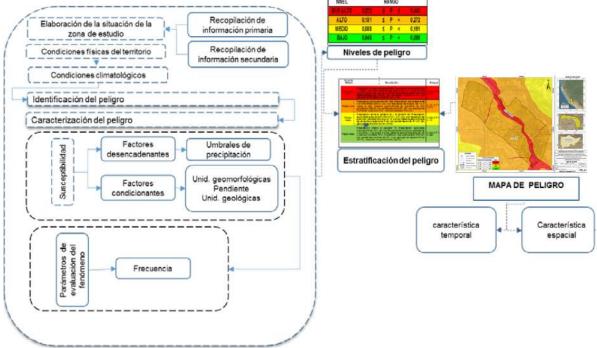
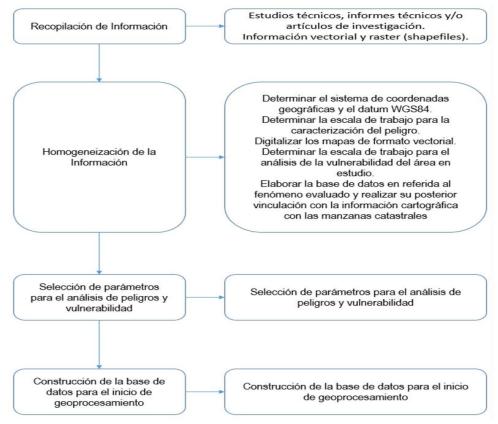


Gráfico 7. Metodología general para determinar el nivel de peligrosidad

Fuente: Adaptado del Manual de Evaluación de Riesgo del Cenepred (2014).


3.2 Recopilación y análisis de la información

Se ha realizado la recopilación de información disponible: Estudios publicados por entidades técnico científicas competentes (INGEMMET, INEI, SENAMHI), información histórica, estudio de peligros, cartografía, climatología, geología, suelos, geomorfología y cobertura vegetal, del centro poblado cocas, del distrito Vilcanchos para el peligro por flujo de detritos (Gráfico 10).

Así también, se ha realizado el análisis de la información proporcionada de entidades técnicascientíficas y estudios publicados acerca de las zonas evaluadas.

Gráfico 8. Flujograma general del proceso de análisis de información

Fuente: CENEPRED

3.3 Identificación de probable área de influencia del peligro

Para identificar y caracterizar el peligro, se ha considerado la información generada por la recopilación de información en gabinete previa a la visita de campo. En el trabajo de campo se contrastó la información y se validó la información recopilada.

Ejiama Pillahun ÁREA DE ESTUDIO

SUSCEPTIBILIDAD A MOVIMIENTOS EN MASA

Muy baja Baja

Media Atta

Muy data

Muy data

Movimientos en Masa

Muy baja Baja

Media Atta

Muy data

Santa Rosa de Gocia

Chacachaea

Chacachaea

Chacachaea

AYARCAY

AYARCAY

AYARCAY

SANTACO DE LUCANAMARDA

AYARCAY

AYARCAY

AYARCAY

SANTACO DE LUCANAMARDA

AYARCAY

AYARCAY

SANTACO DE LUCANAMARDA

SANTACO DE LUCANAMARDA

AYARCAY

SANTACO DE LUCANAMARDA

SANTACO DE LUCANAMARDA

AYARCAY

SANTACO DE LUCANAMARDA

SANTACO DE LUCANAMARDA

SANTACO DE LUCANAMARDA

SANTACO DE LUCANAMARDA

AYARCAY

SANTACO DE LUCANAMARDA

SAN

Figura 32. Susceptibilidad a movimientos de masa reporte del IGEMMET - 2021

Fuente: Susceptibilidad a movimientos en masa de las zonas evaluadas, Fuente: Vilchez et al.(2019)

LILYAN LUZA ORTEGA EVALUADORA DE RIESGOS R.J. N°039-2021-CENEPRED J CP № 239574

Figura 33. Emergencias ocurridas en el periodo del 2003 - 2023

Fuente: COEN - SINPAD - INDECI

De acuerdo la identificación de riesgos llevada a cabo por las entidades pertinentes y la evaluación de campo registrada desde 2003 hasta la fecha, se ha determinado que el peligro más común y recurrente en nuestra área de estudio es la ocurrencia de movimientos de masa, directamente relacionados con las intensas precipitaciones. Estos eventos climáticos han provocado deslizamientos, huaycos, caídas de tierra y otros incidentes similares. En este contexto, se ha identificado un peligro específico, el flujo de detritos, que se desencadena cuando se producen lluvias intensas, activando la quebrada seca de Antani

PELIGROS GENERADOS POR FENÓMENOS DE ORIGEN NATURAL Por Fenómenos Por Fenómenos Por Fenómenos de Geodinámica Hidrometeorológicos y de Geodinámica Externa Oceanográficos Interna INUNDACIONES CAIDAS TSUNAMIS O LLUVIAS INTENSAS VIENTOS FUERTES VOLCAMIENTO OLFAIFS EROSION VULCANISMO INCENDIOS FORESTALES PROPAGACION SEQUIAS DESCENSO DE OLAS DE CALORY GRANIZADAS DEGLACIACION Elaboración: CENEPRED

Gráfico 9. Identificación de peligros en el centro poblado cocas

54

3.4 Peligros generados por fenómenos de origen naturales

Teniendo en cuenta que el área de evaluación se tiene ya determinado, y de acuerdo con los antecedentes históricos el peligro recurrente es por movimiento de masa (flujo de detritos). A continuación, evaluaremos los parámetros que intervienen en la dinámica del proceso generador del peligro.

3.5 Parámetros de evaluación

Figura 34. Parámetro de evaluación general del peligro por flujo de detritos

Elaboración: Equipo técnico

Para la obtención de los pesos ponderados del parámetro de "distancia al curso de flujo", se utilizó el proceso de análisis jerárquico. Los resultados obtenidos son los siguientes

Cuadro 17. Matriz de comparación de pares del parámetro Distancia al curso de flujo

Distancia al curso de flujo	mayor a 20m	15m a 20m	10m a 15m	5m a 10m	menor a 5m
menor a 5m	1.00	5.00	6.00	7.00	9.00
5m a 10m	0.20	1.00	5.00	6.00	7.00
10m a 15m	0.17	0.20	1.00	5.00	6.00
15m a 20m	0.14	0.17	0.20	1.00	5.00
mayor a 20m	0.11	3.5	0.17	0.20	1.00
suma	1.62	6.56	11.42	18.25	27.00
1/suma	0.62	0.15	0.09	0.05	0.04

Elaboración: Equipo Evaluador

Cuadro 18. Matriz de normalización de pares del parámetro Distancia al curso de flujo

budano no mania do mornama do paros dos paramono Diotamona di odros do majo									
Distancia al curso de flujo	mayor a 20m	15m a 20m	10m a 15m	5m a 10m	menor a 5m	VECTOR DE PRIORIZACIÓN			
menor a 5m	0.617	0.762	0.526	0.384	0.33	0.524			
5m a 10m	0.123	0.152	0.350	0.329	0.250	0.243			
10m a 15m	0.103	0.038	0.088	0.219	0.222	0.134			
15m a 20m	0.088	0.025	0.022	0.055	0.148	0.068			
mayor a 20m	0.069	0.022	0.015	0.014	0.037	0.031			
suma	1	1	1	1	1	1.00			

Elaboración: Equipo Evaluador

Cuadro 19. Índice (IC) y Relación de Consistencia (RC) del parámetro de evaluación

IC	0.019
RC	0.017

Elaboración: Equipo Evaluador

LILYAN LUZA ORTEGA EVALUADORA DE RIESGOS R.J. N° 039-2021-CENEPRED J

3.6 Susceptibilidad del territorio

Para la evaluación de la susceptibilidad del área de influencia por flujo de detritos a consecuencia de fuertes precipitaciones en el centro poblado Cocas del distrito de Vilcanchos, se consideraron los factores desencadenantes y condicionantes:

Cuadro 20. Parámetros a considerar en la evaluación de la susceptibilidad

Factor Desencadenante	Factores Condicionantes		
	Pendiente		
Umbrales de precipitación	Unidad geológica		
	Unidad geomorfológica		

La metodología a utilizar tanto para la evaluación del peligro, como para el análisis de la vulnerabilidad es el procedimiento de análisis jerárquico mencionado en el Manual para la Evaluación de Riesgos Originados por Fenómenos Naturales, 2da versión. (CENEPRED, 2014).

3.6.1 Análisis del factor desencadenante

Para la obtención de los pesos ponderados del parámetro del factor desencadenante, se utilizó el proceso de análisis jerárquico. Los resultados obtenidos son los siguientes:

a) Parámetro: Umbrales de precipitación

Cuadro 21. Matriz de comparación de pares del parámetro umbrales de precipitaciones

umbrales de precipitación	Extremadame nte Iluvioso >300mm	Muy Iluvioso > 200 mm <= 300 mm	Lluvioso > 100 mm <= 200mm	Moderadame nte Iluvioso >50mm y <= 100 mm	Ligeramente Lluvioso<= 50mm
Extremadamente Iluvioso >300mm	1.00	3.00	5.00	6.00	9.00
Muy Iluvioso > 200 mm <= 300 mm	0.33	1.00	2.00	4.00	6.00
Lluvioso > 100 mm <= 200mm	0.20	0.50	1.00	2.00	3.00
Moderadamente Iluvioso >50mm y <= 100 mm	0.17	0.25	0.50	1.00	2.00
Ligeramente Lluvioso<= 50mm	0.11	0.17	0.33	0.50	1.00
SUMA	1.81	4.92	8.83	13.50	21.00
1/SUMA	0.55	0.20	0.11	0.07	0.05

Elaboración: Equipo Evaluador.

Cuadro 22. Matriz de normalización del parámetro umbrales de precipitación

umbrales de precipitación	Extremadamente Iluvioso >300mm	Muy Iluvioso > 200 mm <= 300 mm	Lluvioso > 100 mm <= 200mm	Moderadamente Iluvioso >50mm y <= 100 mm	Ligeramente Lluvioso<= 50mm	Vector Priorización
Extremadamente Iluvioso >300mm	0.552	0.610	0.566	0.444	0.429	0.520
Muy Iluvioso > 200 mm <= 300 mm	0.184	0.203	0.226	0.296	0.286	0.239
Lluvioso > 100 mm <= 200mm	0.110	0.102	0.113	0.148	0.143	0.123
Moderadamente Iluvioso >50mm y <= 100 mm	0.092	0.051	0.057	0.074	0.095	0.074
Ligeramente Lluvioso<= 50mm	0.061	0.034	0.038	0.037	0.048	0.044

Cuadro 23. Índice de Consistencia (IC) y Relación de Consistencia (RC) para el parámetro umbrales de precipitación

IC	0.018
RC	0.016

Elaboración: Equipo Evaluador.

3.6.2 Análisis de los factores condicionantes

Para la obtención de los pesos ponderados de los parámetros de los factores condicionantes se utilizó el proceso de análisis jerárquico. Los resultados obtenidos son los siguientes:

a) Parámetro: Pendiente

Cuadro 24. Matriz de comparación de pares del parámetro Pendiente

DESCRIPTORES	Pendiente muy Fuerte (> 45°)	Pendien te fuerte (25° - 45°)	Pendient e moderad o(15° - 25°)	Pendiente moderada a baja (5° - 15°)	Terrenos llanos y/o inclinados (<5°)
Pendiente muy Fuerte (> 45°)	1.00	4.00	5.00	6.00	7.00
Pendiente fuerte (25° - 45°)	0.25	1.00	3.00	4.00	5.00
Pendiente moderado(15° - 25°)	0.20	0.33	1.00	3.00	4.00
Pendiente moderada a baja (5° - 15°)	0.17	0.25	0.33	1.00	3.00
Terrenos llanos y/o inclinados (<5°)	0.14	0.20	0.25	0.33	1.00
SUMA	1.76	5.78	9.58	14.33	20.00
1/SUMA	0.57	0.17	0.10	0.07	0.05

Elaboración: Equipo Evaluador.

Cuadro 25. Matriz de normalización del parámetro Pendiente

DESCRIPTORES	Pendient e muy Fuerte (> 45°)	Pendient e fuerte (25° - 45°)	Pendient e moderad o(15° - 25°)	Pendient e moderad a a baja (5° - 15°)	Terrenos Ilanos y/o inclinado s (<5°)	Vector Priorización
Pendiente muy Fuerte (> 45°)	0.568	0.692	0.522	0.419	0.350	0.510
Pendiente fuerte (25° - 45°)	0.142	0.173	0.313	0.279	0.250	0.231
Pendiente moderado(15° - 25°)	0.114	0.058	0.104	0.209	0.200	0.137
Pendiente moderada a baja (5° - 15°)	0.095	0.043	0.035	0.070	0.150	0.079
Terrenos llanos y/o inclinados (<5°)	0.081	0.035	0.026	0.023	0.050	0.043

Elaboración: Equipo Evaluador.

LILYAN LUZA ORTEGA EVALUADORA DE RIESGOS R.J. N. '039-2021-CEMEPRED' CIPN' 238674

Cuadro 26. Índice de Consistencia (IC) y Relación de Consistencia (RC) para el parámetro pendiente

IC	0.089
RC	0.080

b) Parámetro: Unidad Geológica

Cuadro 27. Matriz de comparación de pares del parámetro unidad geológica

UNIDAD GEOLÓGICA	Qh-al : Depósito Aluvial	Qh-col : Depósito Coluvial	Qh-pl : Depósito Proluvial	Jm-ca : Formación cachíos	Ts-Ji-P : Grupo Pucar
Qh-al : Depósito Aluvial	1.00	2.00	4.00	5.00	7.00
Qh-col : Depósito Coluvial	0.50	1.00	2.00	3.00	5.00
Qh-pl : Depósito Proluvial	0.25	0.50	1.00	2.00	4.00
Jm-ca : Formación cachíos	0.20	0.33	0.50	1.00	3.00
Ts-Ji-P : Grupo Pucará	0.14	0.20	0.25	0.33	1.00
SUMA	2.09	4.03	7.75	11.33	20.00
1/SUMA	0.48	0.25	0.13	0.09	0.05

Elaboración: Equipo Evaluador.

Cuadro 28. Matriz de normalización del parámetro unidad geológica

UNIDAD GEOLÓGICA	Qh-al : Depósito Aluvial	Qh-col : Depósito Coluvial	Qh-pl : Depósito Proluvial	Jm-ca : Formación cachíos	Ts-Ji-P : Grupo Pucar	Vector Priorización
Qh-al : Depósito Aluvial	0.478	0.496	0.516	0.441	0.350	0.456
Qh-col : Depósito Coluvial	0.239	0.248	0.258	0.265	0.250	0.252
Qh-pl : Depósito Proluvial	0.119	0.124	0.129	0.176	0.200	0.150
Jm-ca : Formación cachíos	0.096	0.083	0.065	0.088	0.150	0.096
Ts-Ji-P : Grupo Pucará	0.068	0.050	0.032	0.029	0.050	0.046

Elaboración: Equipo Evaluador.

Cuadro 29. Índice de Consistencia (IC) y Relación de Consistencia (RC) para el parámetro unidad geológica

IC	0.025
RC	0.023

Elaboración: CENEPRED

c) Parámetro: Unidad geomorfológica

Cuadro 30. Matriz de comparación de pares del parámetro unidad geomorfológica

UNIDAD GEOMORFOLÓGICA	PI-i- Llanura o planicie inundable	V-cd : Piedemonte coluvial - deluvial	T-al : Terrazas Aluviales	RCL-rs : Colinas en roca Sedimentaria	RM- rs : Montañas en roca sedimentaria
PI-i- Llanura o planicie inundable	1.00	2.00	3.00	4.00	5.00
V-cd : Piedemonte coluvial - deluvial	0.50	1.00	2.00	3.00	4.00
T-al : Terrazas Aluviales	0.33	0.50	1.00	2.00	3.00

LILYAN LUZA ORTEGA EVALUADORA DE RIESGOS R.J. N° 039-2021-CENEPREO J CPP 238674

RCL-rs : Colinas en roca Sedimentaria	0.25	0.33	0.50	1.00	2.00
RM- rs : Montañas en roca sedimentaria	0.20	0.25	0.33	0.50	1.00
SUMA	2.28	4.08	6.83	10.50	15.00
1/SUMA	0.44	0.24	0.15	0.10	0.07

Cuadro 31. Matriz de normalización del parámetro unidad geomorfológica

UNIDAD GEOMORFOLÓGICA	PI-i- Llanura o planicie inundable	V-cd : Piedemont e coluvial - deluvial	T-al : Terrazas Aluviales	RCL-rs : Colinas en roca Sedimentaria	RM- rs : Montañas en roca sedimentaria	Vector Priorización
PI-i- Llanura o planicie inundable	0.438	0.490	0.439	0.381	0.333	0.416
V-cd : Piedemonte coluvial - deluvial	0.219	0.245	0.293	0.286	0.267	0.262
T-al : Terrazas Aluviales	0.146	0.122	0.146	0.190	0.200	0.161
RCL-rs : Colinas en roca Sedimentaria	0.109	0.082	0.073	0.095	0.133	0.099
RM- rs : Montañas en roca sedimentaria	0.088	0.061	0.049	0.048	0.067	0.062

Elaboración: Equipo Evaluador.

Cuadro 32. Índice de Consistencia (IC) y Relación de Consistencia (RC) para el parámetro unidad geomorfológica

_	-
IC	0.017
RC	0.015

Elaboración: Equipo Evaluador.

d) Análisis de los parámetros del factor condicionante

Cuadro 33. Matriz de comparación de pares de los parámetros utilizados en el factor condicionante

PARÁMETROS	Tipo de suelo	Unidad Geológica	Unidad Geomorfológica
Pendiente	1.00	3.00	7.00
Unidad Geológica	0.33	1.00	3.00
Unidad Geomorfológica	0.14	0.33	1.00
SUMA	1.48	4.33	11.00
1/SUMA	0.68	0.23	0.09

Elaboración: Equipo Evaluador.

Cuadro 34. Matriz de normalización de los parámetros utilizados en el factor condicionante

PARÁMETROS	Tipo de suelo	Unidad Geológica	Unidad Geomorfológica	Vector Priorización
Pendiente	0.677	0.692	0.636	0.669
Unidad Geológica	0.226	0.231	0.273	0.243
Unidad Geomorfológica	0.097	0.077	0.091	0.088

Cuadro 35. Índice de Consistencia (IC) y Relación de Consistencia (RC) para los parámetros utilizados en el factor condicionante

IC	0.004
RC	0.007

Elaboración: Equipo Evaluador.

3.7 DEFINICIÓN DE ESCENARIOS

El área evaluada, se plantea una hipótesis con las características más críticas identificadas en su particular entorno físico ambiental que condicionan y desencadenan fenómenos probablemente dañinos, por lo cual el escenario describe una diferencia relacionada con el desarrollo del flujo de detritos a consecuencia de las fuertes precipitaciones que produce que la quebrada seca Antani se active, relacionado a un evento de 1 a 3 veces por año, según se describe a continuación:

Escenario: Flujo de detritos a consecuencia de las fuertes precipitaciones en la quebrada Antani "Durante la temporada correspondiente al periodo lluvioso en la zona del distrito de Vilcanchos, en el centro poblado cocas, se registran días extremadamente lluviosos que superan el registro máximo de 250 mm, durante 24 horas, lo cual ocasiona la sobresaturación de suelos, asimismo la aparición de surgimientos de agua subterránea, acumulación de agua pluvial en zonas afectadas y aumento de la humedad; que produce el flujo de detritos en los taludes de pendientes muy escarpadas provocando el descenso de materiales, afectando el bienestar y salud de la población y ocasionando posibles daños en la dimensión social, económica y ambiental.

3.8 NIVELES DE PELIGRO

Para el presente caso, se ha considerado los parámetros y descriptores de los fenómenos de origen natural y la susceptibilidad para flujo de detritos a consecuencia de las fuertes precipitaciones, para poder obtener los límites de los rangos de peligro y por ende los niveles de peligro.

Cuadro 38.-Niveles de Peligro

NIVEL	RANGO				
MUY ALTO	0.262	≤	Р	≤	0.478
ALTO	0.142	≤	Р	<	0.262
MEDIO	0.076	≤	Р	<	0.142
BAJO	0.042	≤	Р	<	0,076

Fuente: Equipo Evaluador

ESTRATIFICACIÓN DEL NIVEL DE PELIGRO

En el siguiente cuadro se muestra la matriz de peligros obtenido:

Cuadro 39. -Matriz de peligro

Nivel de Peligro	Descripción	Rangos
Peligro Muy Alto	Precipitación superior al percentil 95 (Precipitación acumulada diaria > 250mm, con una frecuencia de 1 a 3 veces al año; presenta geomorfología de Llanura o planicie inundable (PI-i); con pendientes mayores a 45°; con geología de depósitos Aluvial (Qh-al),	
Peligro Alto	Precipitación superior percentil 95 (Precipitación acumulada diaria > 250 mm, con una frecuencia de 1 a 3 veces al año; presenta geomorfología Piedemonte coluvial - deluvial (V-cd); con pendientes entre 25°-45°, con geología de depósito Coluvial (Qh-col) y depósito proluvial (Qh-pl)	
Peligro Medio	Precipitación superior percentil 95 (Precipitación acumulada diaria > 250mm), con una frecuencia en periodos de mayor a 1 a 3 años; presenta geomorfología de Terrazas Aluviales (T-al) y Piedemonte coluvial - deluvial (V-cd); con pendientes entre 15°- 25°; con geología de formación cachios(Jm-ca)	
Peligro Bajo	Precipitación superior percentil 95 (Precipitación acumulada diaria > 250mm), con una frecuencia del evento de 1 a 3 años, y mayores a 3 años; presenta geomorfología de llanura o planicie inundable (Pl-i), Montaña en roda sedimentaria (RM-rsl); con pendientes menores de 15°; y con geología del Grupo Pucará (Ts-Ji-P) Y formación cachios (Jm-ca)	0.042 ≤ P < 0.076

3.9 Mapa de peligro

556400 556800 MAPA DE UBICACIÓN UBICACIÓN DEL PROYECTO C.P. COCAS DISTRITO DE VILCANCHOS MUNICIPALIDAD DISTRITAL DE VILCANCHOS LEYENDA EVALUACIÓN DE RIESGOS POR FLUJO DE DETRITOS EN LA Centro Poblado EN EL CENTRO POBLADO DE COCAS
DEL DISTRITO DE VILCACHOS, PROVINCIA DE VICTOR FAJARDO NIVELES DE PELIGROSIDAD Vías de Acceso DEPARTAMENTO DE AYACUCHO NIVELES DE PELIGROSIDAD NIVEL MAPA DE PELIGRO ≤ P ≤ 0.478 Sentido de flujo ALTO 0.142 ≤ P < 0.262 Área de Influencia 0.076 ≤ P < 0.142 MEDIO Viviendas 0.042 ≤ P < 0.076 PEL-01 556400 556800

Figura 35. Mapa de peligro del centro poblado Cocas

EVALUADORA DE RIESGOS R.J. Nº 039-2021-CENEPRED

3.10 Análisis de elementos expuestos

Los elementos expuestos inmersos en el área de influencia han sido identificados en base a la información del Censo del 2017 realizado por el Instituto Nacional de Estadística e Informática – INEI, y de la información recopilada en campo, y que se muestra a continuación.

3.10.1 Población

Se muestra a continuación la población total expuesta del sector evaluado:

Cuadro 36. Población Expuesta

N°	CENTRO POBLADO	TOTAL
01	Centro poblado Cocas	378

3.10.2 Vivienda

El Centro Poblado de Cocas cuenta con 242 lotes urbanos de acuerdo al plano de trazado y lotización de COFOPRI dentro de los cuales existen 175 viviendas ocupadas como tal, el resto de lotes es usado como terrenos de cultivo e instituciones gubernamentales, educativas y eclesiásticas. la mayor parte de las viviendas son casa independiente y cuentan con los servicios de agua potable y energía eléctrica hasta antes de flujo de detritos (huaico).

Cuadro 37. Viviendas expuestas

N°	CENTRO POBLADO	TOTAL
01	Centro poblado Cocas	250

3.10.3 Educación

El Centro Poblado de Cocas cuenta con 03 Instituciones Educativas del tipo inicial, primaria y secundaria, registrando al año 201 un total de 93 alumnos y 09 docentes.

Cuadro 38. Instituciones educativas expuestas

N°	NIVEL	NOMBRE I.E	DEPENDENCIA	ALUMNOS	DOCENTES
01	Inicial	I.E. N° 430-04		30	2
01	Primaria	I.E. N° 38535	Pública	82	6
01	Secundaria	MANUEL SEOANE CORRALES		69	7

3.10.4 Salud

El Centro Poblado de Cocas cuenta con 01 Institución Prestadora de Servicios de Salud perteneciente a la Micro Red Totos, red huamanga DISA Ayacucho.

Cuadro 39. Centros de salud expuestas

N°	CENTRO POBLADO	TOTAL
01	- Instituciones Prestadoras de Servicios de Salud (Policlínico)	01

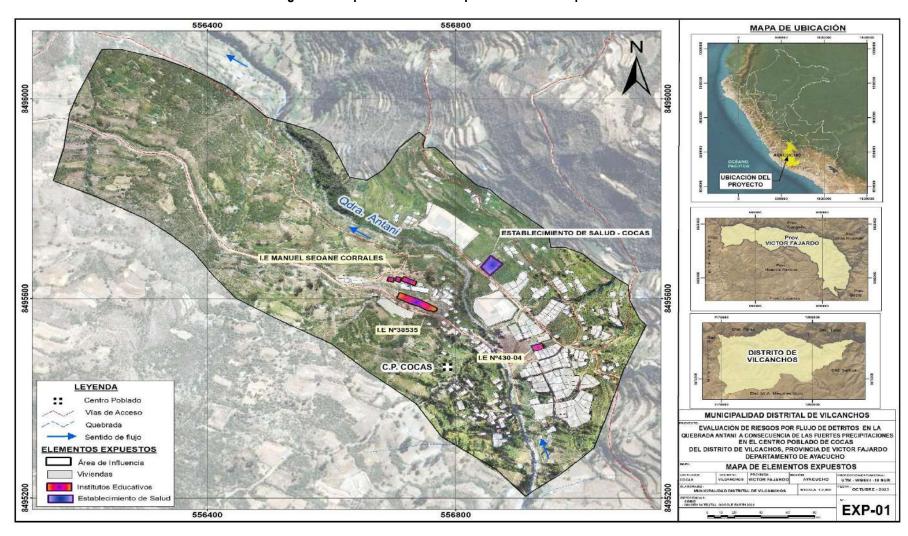


Figura 36. Mapa de elementos expuestos del centro poblado Cocas

CAPITULO IV: ANÁLISIS DE LA VULNERABILIDAD

4.1 Metodología para el análisis de la vulnerabilidad

Para realizar el análisis de vulnerabilidad, se utiliza la siguiente metodología como se muestra en el siguiente gráfico.

ANÁLISIS DE LA VULNERABILIDAD Exposición Dimensión Fragilidad Social Resiliencia Exposición Dimensión Fragilidad Económica Resiliencia Niveles de vulnerabilidad Exposición Dimensión Ambiental Fragilidad Resiliencia Estratificación de Vulnerabilidad ca a wede Cuantificación de los elementos expuestos

Gráfico 10. Metodología del análisis de la vulnerabilidad

Fuente: Equipo técnico.

Para determinar los niveles de vulnerabilidad en el área de influencia del centro poblado Cocas, del distrito Vilcanchos, se ha considerado realizar el análisis de los factores de la vulnerabilidad en la dimensión social, económica y ambiental a nivel de lote, utilizando los parámetros para ambos casos.

4.2 Análisis de la dimensión social

Para el análisis de la vulnerabilidad en su dimensión social, se evaluaron los siguientes parámetros:

Cuadro 40. Parámetros a utilizar en los factores exposición, fragilidad y resiliencia de la dimensión social

Dimensión Social			
Exposición	Fragilidad	Resiliencia	
Personas por viviendas	 Discapacidad Acceso a servicios de agua potable Acceso a servicios de alcantarillado 	Acceso a seguros de saludCapacitación en GRD	

Elaboración: Equipo Evaluador.

4.3 Análisis de la exposición en la dimensión social - ponderación de parámetros

a) Parámetro: Personas por viviendas

Cuadro 41. Matriz de comparación de pares del parámetro personas por viviendas

PERSONAS POR VIVIENDAS	Mayor a 6	6	5	4	Menor a 4
Mayor a 6	1.00	3.00	5.00	7.00	9.00
6	0.33	1.00	3.00	5.00	7.00
5	0.20	0.33	1.00	3.00	5.00
4	0.14	0.20	0.33	1.00	3.00
Menor a 4	0.11	0.14	0.20	0.33	1.00
SUMA	1.79	4.68	9.53	16.33	25.00
1/SUMA	0.56	0.21	0.10	0.06	0.04

Elaboración: Equipo Evaluador.

Cuadro 42. Matriz de normalización del parámetro personas por viviendas

PERSONAS POR VIVIENDAS	Mayor a 6	6	5	4	Menor a 4	Vector Priorización
Mayor a 6	0.560	0.642	0.524	0.429	0.360	0.503
6	0.187	0.214	0.315	0.306	0.280	0.260
5	0.112	0.071	0.105	0.184	0.200	0.134
4	0.080	0.043	0.035	0.061	0.120	0.068
Menor a 4	0.062	0.031	0.021	0.020	0.040	0.035

Elaboración: Equipo Evaluador.

Cuadro 43. Índice (IC) y Relación de Consistencia (RC) para el parámetro personas por viviendas

IC	0.061
RC	0.054

Elaboración: Equipo Evaluador.

4.3.1 Análisis de la fragilidad en la dimensión social - ponderación de parámetros

a) Parámetro: Discapacidad

Cuadro 44. Matriz de comparación de pares del parámetro discapacidad

Parámetros	Motora	Visual	Mental	Auditiva	Sin discapacidad
Motora	1.00	4.00	5.00	6.00	9.00
Visual	0.25	1.00	2.00	4.00	7.00
Mental	0.20	0.50	1.00	3.00	6.00
Auditiva	0.17	0.25	0.33	1.00	4.00
Sin discapacidad	0.11	0.14	0.17	0.25	1.00
SUMA	1.73	5.89	8.50	14.25	27.00
1/SUMA	0.58	0.17	0.12	0.07	0.04

Elaboración: Equipo Evaluador.

LILYAN LUZA ORTEGA EVALUADORA DE RIESGOS R.J. N° 039-2021-CENEPRED J CIP N° 239574

Cuadro 45. Matriz de normalización del parámetro discapacidad

Parámetros	Motora	Visual	Mental	Auditiva	Sin discapacidad	Vector Priorización
Motora	0.579	0.679	0.588	0.421	0.333	0.520
Visual	0.145	0.170	0.235	0.281	0.259	0.218
Mental	0.116	0.085	0.118	0.211	0.222	0.150
Auditiva	0.096	0.042	0.039	0.070	0.148	0.079
Sin discapacidad	0.064	0.024	0.020	0.018	0.037	0.033

Cuadro 46. Índice (IC) y Relación de Consistencia (RC) para el parámetro discapacidad

IC	0.077
RC	0.069

Elaboración: Equipo Evaluador.

b) Parámetro: Acceso a servicios de agua potable

Cuadro 47. Matriz de comparación de pares del parámetro acceso a servicios de agua potable

ACCESO A SERVICIOS DE AGUA POTABLE	Río, acequia	Pozo	Cisterna	Pileta	Red pública
Río, acequia	1.00	4.00	5.00	6.00	9.00
Pozo	0.25	1.00	3.00	5.00	7.00
Cisterna	0.20	0.33	1.00	3.00	5.00
Pileta	0.17	0.20	0.33	1.00	3.00
Red pública	0.11	0.14	0.20	0.33	1.00
SUMA	1.73	5.68	9.53	15.33	25.00
1/SUMA	0.58	0.18	0.10	0.07	0.04

Elaboración: Equipo Evaluador.

Cuadro 48. Matriz de normalización del parámetro acceso a servicios de agua potable

ACCESO A SERVICIOS DE AGUA POTABLE	Río, acequia	Pozo	Cisterna	Pileta	Red pública	Vector Priorización
Río, acequia	0.579	0.705	0.524	0.391	0.360	0.512
Pozo	0.145	0.176	0.315	0.326	0.280	0.248
Cisterna	0.116	0.059	0.105	0.196	0.200	0.135
Pileta	0.096	0.035	0.035	0.065	0.120	0.070
Red pública	0.064	0.025	0.021	0.022	0.040	0.034

Elaboración: Equipo Evaluador.

Cuadro 49. Índice (IC) y Relación de Consistencia (RC) para el parámetro de acceso a servicios de agua potable

IC	0.080
RC	0.072

Elaboración: Equipo Evaluador.

c) Parámetro: Acceso a servicios de alcantarillado

LILYAN LUZA ORTEGA EVALUADORA DE RIESGOS R.J. N°039-2021-CENEPRED J CPI N°239574

Cuadro 50. Matriz de comparación de pares del parámetro acceso a servicios de alcantarillado

ACCESO A SERVICIOS DE ALCANTARILLADO	No tiene	Río, acequia, canal	Pozo ciego / negro	Unidad básica de abastecimiento (UBS)	Red Pública
No tiene	1.00	3.00	5.00	8.00	9.00
Río, acequia, canal	0.33	1.00	4.00	7.00	8.00
Pozo ciego / negro	0.20	0.25	1.00	3.00	4.00
Unidad básica de abastecimiento (UBS)	0.13	0.14	0.33	1.00	2.00
Red Pública	0.11	0.13	0.25	0.50	1.00
SUMA	1.77	4.52	10.58	19.50	24.00
1/SUMA	0.57	0.22	0.09	0.05	0.04

Cuadro 51. Matriz de normalización del parámetro acceso a servicios de alcantarillado

ACCESO A SERVICIOS DE ALCANTARILLADO	No tiene	Río, acequia, canal	Pozo ciego / negro	Unidad básica de abastecimie nto (UBS)	Red Pública	Vector Priorización
No tiene	0.565	0.664	0.472	0.410	0.375	0.497
Río, acequia, canal	0.188	0.221	0.378	0.359	0.333	0.296
Pozo ciego / negro	0.113	0.055	0.094	0.154	0.167	0.117
Unidad básica de abastecimiento (UBS)	0.071	0.032	0.031	0.051	0.083	0.054
Red Pública	0.063	0.028	0.024	0.026	0.042	0.036

Elaboración: Equipo Evaluador.

Cuadro 52. Índice (IC) y Relación de Consistencia (RC) para el parámetro de acceso a servicios de alcantarillado

IC	0.105
RC	0.094

Elaboración: Equipo Evaluador.

d) Análisis de los parámetros del factor fragilidad en la dimensión social

Cuadro 53. Matriz de comparación de pares de los parámetros del factor fragilidad social

PARÁMETROS	Discapacidad	Acceso a servicios de agua potable	Acceso a servicios de alcantarillado
Discapacidad	1.00	4.00	8.00
Acceso a servicios de agua potable	0.25	1.00	3.00
Acceso a servicios de alcantarillado	0.13	0.33	1.00
SUMA	1.38	5.33	12.00
1/SUMA	0.73	0.19	0.08

Elaboración: Equipo Evaluador.

Cuadro 54. Matriz de normalización de los parámetros del factor fragilidad social

PARÁMETROS	Discapacidad	Acceso a servicios de agua potable	Acceso a servicios de alcantarillado	Vector Priorización
Discapacidad	0.727	0.750	0.667	0.715
Acceso a servicios de agua potable	0.182	0.188	0.250	0.206
Acceso a servicios de alcantarillado	0.091	0.063	0.083	0.079

Cuadro 55. Índice (IC) y Relación de Consistencia (RC) para los parámetros de la fragilidad social

IC	0.009
RC	0.017

Elaboración: Equipo Evaluador.

4.3.2 Análisis de la resiliencia en la dimensión social - Ponderación de parámetros

a) Parámetro: Acceso a seguros de salud

Cuadro 56. Matriz de comparación de pares del parámetro acceso a seguros de salud

ACCESO A SEGUROS DE SALUD	No tiene	SIS	ESSALUD	PNP / FFAA	Privado
No tiene	1.00	3.00	6.00	7.00	9.00
SIS	0.33	1.00	4.00	5.00	7.00
ESSALUD	0.17	0.25	1.00	3.00	5.00
PNP / FFAA	0.14	0.20	0.33	1.00	2.00
Privado	0.11	0.14	0.20	0.50	1.00
SUMA	1.75	4.59	11.53	16.50	24.00
1/SUMA	0.57	0.22	0.09	0.06	0.04

Elaboración: Equipo Evaluador.

Cuadro 57. Matriz de normalización del parámetro acceso a seguros de salud

			•	•		
ACCESO A SEGUROS DE SALUD	No tiene	SIS	ESSALUD	PNP / FFAA	Privado	Vector Priorización
No tiene	0.570	0.653	0.520	0.424	0.375	0.509
SIS	0.190	0.218	0.347	0.303	0.292	0.270
ESSALUD	0.095	0.054	0.087	0.182	0.208	0.125
PNP / FFAA	0.081	0.044	0.029	0.061	0.083	0.060
Privado	0.063	0.031	0.017	0.030	0.042	0.037

Elaboración: Equipo Evaluador.

Cuadro 58. Índice (IC) y Relación de Consistencia (RC) para el parámetro acceso a seguros de salud

IC	0.071
RC	0.064

Elaboración: Equipo Evaluador.

b) Parámetro: Capacitación e gestión de riesgo de desastre (GRD)

Cuadro 59. Matriz de comparación de pares del parámetro capacitación en GRD

CAPACITACIÓN EN GRD	Nunca	Una vez al año	2 veces al año	3 veces al año	Mas de 3 veces al año
---------------------	-------	----------------	----------------	----------------	--------------------------

LILYAN LUZA ORTEGA EVALUADORA DE RIESGOS R.J. N' 0.3 - 2021 - COREPRED J CIPI N' 238674

Nunca	1.00	4.00	6.00	7.00	9.00
Una vez al año	0.25	1.00	4.00	5.00	7.00
2 veces al año	0.17	0.25	1.00	3.00	5.00
3 veces al año	0.14	0.20	0.33	1.00	2.00
Mas de 3 veces al año	0.11	0.14	0.20	0.50	1.00
SUMA	1.67	5.59	11.53	16.50	24.00
1/SUMA	0.60	0.18	0.09	0.06	0.04

Cuadro 60. Matriz de normalización del parámetro capacitación en GRD

CAPACITACIÓN EN GRD	Nunca	Una vez al año	2 veces al año	3 veces al año	Mas de 3 veces al año	Vector Priorización
Nunca	0.599	0.715	0.520	0.424	0.375	0.527
Una vez al año	0.150	0.179	0.347	0.303	0.292	0.254
2 veces al año	0.100	0.045	0.087	0.182	0.208	0.124
3 veces al año	0.086	0.036	0.029	0.061	0.083	0.059
Mas de 3 veces al año	0.067	0.026	0.017	0.030	0.042	0.036

Elaboración: Equipo Evaluador.

Cuadro 61. Índice (IC) y Relación de Consistencia (RC) para el parámetro capacitación en GRD

IC	0.105
RC	0.094

Elaboración: Equipo Evaluador.

4.3.3 Análisis de la dimensión social - ponderación de parámetros

a) Parámetro: Dimensión Social

Cuadro 62. Matriz de comparación de pares del parámetro dimensión social

PARÁMETROS	Exposición	Fragilidad	Resiliencia
Exposición	1.00	4.00	9.00
Fragilidad	0.25	1.00	4.00
Resiliencia	0.11	0.25	1.00
SUMA	1.36	5.25	14.00
1/SUMA	0.73	0.19	0.07

Elaboración: Equipo Evaluador.

Cuadro 63. Matriz de normalización del parámetro dimensión social

PARÁMETROS	Exposición	Fragilidad	Resiliencia	Vector Priorización
Exposición	0.735	0.762	0.643	0.713
Fragilidad	0.184	0.190	0.286	0.220
Resiliencia	0.082	0.048	0.071	0.067

Elaboración: Equipo Evaluador.

Cuadro 64. Índice (IC) y Relación de Consistencia (RC) para el parámetro dimensión social

IC	0.019
RC	0.035

Elaboración: Equipo Evaluador.

LILYAN LUZA ORTEGA EVALUADORA DE RIESGOS R.J. N°039-2021-CENEPRED) CIP N°239574

4.4 Análisis de la dimensión económica

Para el análisis de la vulnerabilidad en su dimensión económica, se evaluaron los siguientes parámetros.

Cuadro 65. Parámetros de dimensión económica

Dimensión Económica						
Exposición Fragilidad Resiliencia						
Ubicación de vivienda con respecto al nivel del peligro	 Estado de conservación del predio Material predominante en paredes 	Ocupación principal (jefe del hogar)				

Elaboración: Equipo Evaluador.

4.4.1 Análisis de la exposición en la dimensión económica - ponderación de parámetros

a) Parámetro: Ubicación de vivienda con respecto al nivel del peligro

Cuadro 66. Matriz de comparación de pares del parámetro ubicación de vivienda con respecto al nivel del peligro

UBICACIÓN DE VIVIENDA CON RESPECTO AL NIVEL DEL PELIGRO	Muy Alto	Alto	Medio	Bajo	Muy Bajo
Muy Alto	1.00	3.00	5.00	7.00	9.00
Alto	0.33	1.00	4.00	5.00	7.00
Medio	0.20	0.25	1.00	3.00	5.00
Bajo	0.14	0.20	0.33	1.00	2.00
Muy Bajo	0.11	0.14	0.20	0.50	1.00
SUMA	1.79	4.59	10.53	16.50	24.00
1/SUMA	0.56	0.22	0.09	0.06	0.04

Elaboración: Equipo Evaluador.

Cuadro 67. Matriz de normalización del parámetro ubicación de vivienda con respecto al nivel del peligro

UBICACIÓN DE VIVIENDA CON RESPECTO AL NIVEL DEL PELIGRO	Muy Alto	Alto	Medio	Bajo	Muy Bajo	Vector Priorización
Muy Alto	0.560	0.653	0.475	0.424	0.375	0.497
Alto	0.187	0.218	0.380	0.303	0.292	0.276
Medio	0.112	0.054	0.095	0.182	0.208	0.130
Bajo	0.080	0.044	0.032	0.061	0.083	0.060
Muy Bajo	0.062	0.031	0.019	0.030	0.042	0.037

Elaboración: Equipo Evaluador.

Cuadro 68. Índice (IC) y Relación de Consistencia (RC) para el parámetro ubicación de vivienda con respecto al nivel del peligro

IC	0.057
RC	0.051

Elaboración: Equipo Evaluador.

4.4.2 Análisis de la fragilidad en la dimensión económica - ponderación de parámetros

a) Parámetro: Estado de conservación del predio

Cuadro 69. Matriz de comparación de pares del parámetro estado de conservación del predio

LILYAN LUZA ORTEGA EVALUADORA DE RIESGOS R.J. N° 339-2021 - CENEPRED J

ESTADO DE CONSERVACIÓN DEL PREDIO	Muy mala	Mala	Regular	Buena	Muy buena
Muy mala	1.00	3.00	5.00	7.00	9.00
Mala	0.33	1.00	3.00	5.00	7.00
Regular	0.20	0.33	1.00	3.00	5.00
Buena	0.14	0.20	0.33	1.00	3.00
Muy buena	0.11	0.14	0.20	0.33	1.00
SUMA	1.79	4.68	9.53	16.33	25.00
1/SUMA	0.56	0.21	0.10	0.06	0.04

Cuadro 70. Matriz de normalización del parámetro estado de conservación del predio

ESTADO DE CONSERVACIÓN DEL PREDIO	Muy mala	Mala	Regular	Buena	Muy buena	Vector Priorización
Muy mala	0.560	0.642	0.524	0.429	0.360	0.503
Mala	0.187	0.214	0.315	0.306	0.280	0.260
Regular	0.112	0.071	0.105	0.184	0.200	0.134
Buena	0.080	0.043	0.035	0.061	0.120	0.068
Muy buena	0.062	0.031	0.021	0.020	0.040	0.035

Elaboración: Equipo Evaluador.

Cuadro 71. Índice (IC) y Relación de Consistencia (RC) para el parámetro estado de conservación del predio

	•
IC	0.061
RC	0.054

Elaboración: Equipo Evaluador.

b) Parámetro: Material predominante en paredes

Cuadro 72. Matriz de comparación de pares del parámetro material predominante en paredes

MATERIAL PREDOMINANTE EN PAREDES	Quincha (caña con barro), estera, madera, triplay	Tapial	Adobe	Piedra con mortero de barro	Ladrillo y/o bloque de cemento
Quincha (caña con barro), estera, madera, triplay	1.00	3.00	4.00	6.00	9.00
Tapial	0.33	1.00	3.00	5.00	8.00
Adobe	0.25	0.33	1.00	4.00	7.00
Piedra con mortero de barro	0.17	0.20	0.25	1.00	4.00
Ladrillo y/o bloque de cemento	0.11	0.13	0.14	0.25	1.00
SUMA	1.86	4.66	8.39	16.25	29.00
1/SUMA	0.54	0.21	0.12	0.06	0.03

Elaboración: Equipo Evaluador.

Cuadro 73. Matriz de normalización del parámetro material predominante en paredes

		•		•	•	
MATERIAL PREDOMINANTE EN PAREDES	Quincha (caña con barro), estera, madera, triplay	Tapial	Adobe	Piedra con mortero de barro	Ladrillo y/o bloque de cemento	Vector Priorización
Quincha (caña con barro), estera, madera, triplay	0.537	0.644	0.477	0.369	0.310	0.467
Tapial	0.179	0.215	0.357	0.308	0.276	0.267

LIYAN LUZA ORTEGA EVALUADORA DE RIESGOS R.J. N° 0.39-2021-CENEPRED) CIPI N° 238674

Adobe	0.134	0.072	0.119	0.246	0.241	0.163
Piedra con mortero de barro	0.090	0.043	0.030	0.062	0.138	0.072
Ladrillo y/o bloque de cemento	0.060	0.027	0.017	0.015	0.034	0.031

Cuadro 74. Índice (IC) y Relación de Consistencia (RC) para el parámetro material predominante en paredes

parodo				
IC	0.094			
RC	0.084			

Elaboración: Equipo Evaluador.

4.4.3 Análisis de la resiliencia en la dimensión económica - ponderación de parámetros

a) Parámetro: Ocupación principal (Jefe del hogar)

Cuadro 75. Matriz de comparación de pares del parámetro ocupación principal (jefe de hogar)

OCUPACIÓN PRINCIPAL (JEFE DEL HOGAR)	Desempleado	Agricultor o Ganadería	Pesca	Trabajador Independiente	Empleador
Desempleado	1.00	4.00	5.00	6.00	9.00
Agricultor o Ganadería	0.25	1.00	3.00	5.00	6.00
Pesca	0.20	0.33	1.00	3.00	5.00
Trabajador Independiente	0.17	0.20	0.33	1.00	3.00
Empleador	0.11	0.17	0.20	0.33	1.00
SUMA	1.73	5.70	9.53	15.33	24.00
1/SUMA	0.58	0.18	0.10	0.07	0.04

Elaboración: Equipo Evaluador.

Cuadro 76. Matriz de normalización del parámetro ocupación principal (jefe de hogar)

OCUPACIÓN PRINCIPAL (JEFE DEL HOGAR)	Desempleado	Agricultor o Ganadería	Pesca	Trabajador Independiente	Empleador	Vector Priorización
Desempleado	0.579	0.702	0.524	0.391	0.375	0.514
Agricultor o Ganadería	0.145	0.175	0.315	0.326	0.250	0.242
Pesca	0.116	0.058	0.105	0.196	0.208	0.137
Trabajador Independiente	0.096	0.035	0.035	0.065	0.125	0.071
Empleador	0.064	0.029	0.021	0.022	0.042	0.036

Elaboración: Equipo Evaluador.

Cuadro 77. Índice (IC) y Relación de Consistencia (RC) para el parámetro de ocupación principal (jefe de hogar)

	5- /
IC	0.055
RC	0.050

Elaboración: Equipo Evaluador.

4.4.4 Análisis de la dimensión económica - ponderación de parámetros

a) Parámetro: Dimensión económica

Cuadro 78. Matriz de comparación de pares del parámetro dimensión económica

COMPONENTES	Fragilidad	Exposición	Resiliencia
Fragilidad	1.00	4.00	9.00

LILYAN LUZA ORTEGA EVALUADORA DE RIESGOS R.J. N° 039-2021-CENEPRED J CPP N° 239574

Exposición	0.25	1.00	4.00
Resiliencia	0.11	0.25	1.00
SUMA	1.36	5.25	14.00
1/SUMA	0.73	0.19	0.07

Cuadro 79. Matriz de normalización del parámetro dimensión económica

COMPONENTES	Fragilidad	Exposición	Resiliencia	Vector Priorización
Fragilidad	0.735	0.762	0.643	0.713
Exposición	0.184	0.190	0.286	0.220
Resiliencia	0.082	0.048	0.071	0.067

Elaboración: Equipo Evaluador.

Cuadro 80. Índice (IC) y Relación de Consistencia (RC) para el parámetro dimensión económica

IC	0.019
RC	0.035

Elaboración: Equipo Evaluador.

4.5 Análisis de la dimensión ambiental

Para el análisis de la vulnerabilidad en su dimensión ambiental, se evaluaron los siguientes parámetros.

Cuadro 81. Parámetros de dimensión ambiental

Dimensión Ambiental						
Exposición	Fragilidad	Resiliencia				
Distancia a un foco de contaminación	Disposición de Residuos sólidosDisposición de efluentes líquidos	Capacitación en temas ambientales				

Elaboración: Equipo Evaluador.

4.5.1 Análisis de la exposición en la dimensión ambiental - ponderación de parámetros

a) Parámetro: Distancia a un foco de contaminación

Cuadro 82. Matriz de comparación de pares del parámetro distancia a un foco de contaminación

DISTANCIA A UN FOCO DE CONTAMINACIÓN	Menor a 2 m.	DE 2m a 100m.	De 101 a 200 m	A 201 a 300 m	Mayor a 300m.
Menor a 2 m.	1.00	3.00	6.00	7.00	9.00
De 2m a 100m.	0.33	1.00	3.00	5.00	7.00
De 101 a 200 m	0.17	0.33	1.00	3.00	5.00
A 201 a 300 m	0.14	0.20	0.33	1.00	2.00
Mayor a 300m.	0.11	0.14	0.20	0.50	1.00
SUMA	1.75	4.68	10.53	16.50	24.00
1/SUMA	0.57	0.21	0.09	0.06	0.04

Elaboración: Equipo Evaluador.

Cuadro 83. Matriz de normalización del parámetro distancia a un foco de contaminación

DISTANCIA A UN FOCO DE CONTAMINACIÓN	Menor a 2 m.	DE 2m a 100m.	De 101 a 200 m	A 201 a 300 m	Mayor a 300m.	Vector Priorización
Menor a 2 m.	0.570	0.642	0.570	0.424	0.375	0.516
DE 2m a 100m.	0.190	0.214	0.285	0.303	0.292	0.257

LILYAN LUZA ORTEGA EVALUADORA DE RIESGOS R.J. N° 039-2021-CENEPREDI CPI N° 239574

De 101 a 200 m	0.095	0.071	0.095	0.182	0.208	0.130
A 201 a 300 m	0.081	0.043	0.032	0.061	0.083	0.060
Mayor a 300m.	0.063	0.031	0.019	0.030	0.042	0.037

Cuadro 84. Índice (IC) y Relación de Consistencia (RC) para el parámetro distancia a un foco de contaminación

IC	0.053
RC	0.047

Elaboración: Equipo Evaluador.

4.5.2 Análisis de la fragilidad en la dimensión ambiental - ponderación de parámetros

a) Parámetro: Disposición de residuos sólidos

Cuadro 85. Matriz de comparación de pares del parámetro disposición de residuos sólidos

DISPOSICIÓN DE RESIDUOS SÓLIDOS	A la intemperie	Lo quema o lo entierra	Botadero clandestino	Al reciclador	Camión recolector
A la intemperie	1.00	3.00	5.00	6.00	9.00
Lo quema o lo entierra	0.33	1.00	3.00	4.00	6.00
Botadero clandestino	0.20	0.33	1.00	3.00	5.00
Al reciclador	0.17	0.25	0.33	1.00	3.00
Camión recolector	0.11	0.17	0.20	0.33	1.00
SUMA	1.81	4.75	9.53	14.33	24.00
1/SUMA	0.55	0.21	0.10	0.07	0.04

Elaboración: Equipo Evaluador.

Cuadro 86. Matriz de normalización del parámetro disposición de residuos sólidos

DISPOSICIÓN DE RESIDUOS SÓLIDOS	A la intemperie	Lo quema o lo entierra	Botadero clandestino	Al reciclador	Camión recolector	Vector Priorización
A la intemperie	0.552	0.632	0.524	0.419	0.375	0.500
Lo quema o lo entierra	0.184	0.211	0.315	0.279	0.250	0.248
Botadero clandestino	0.110	0.070	0.105	0.209	0.208	0.141
Al reciclador	0.092	0.053	0.035	0.070	0.125	0.075
Camión recolector	0.061	0.035	0.021	0.023	0.042	0.036

Elaboración: Equipo Evaluador.

Cuadro 87. Índice (IC) y Relación de Consistencia (RC) para el parámetro disposición de residuos sólidos

IC	0.018
RC	0.017

Elaboración: Equipo Evaluador.

b) Parámetro: Disposición de efluentes líquidos

Cuadro 88. Matriz de comparación de pares del parámetro disposición de efluentes líquidos

DISPOSICIÓN DE EFLUENTES LÍQUIDOS	Al río o canal	A la intemperie	Pozo ciego	Letrina o similar	Sistema de alcantarillado
Al río o canal	1.00	3.00	5.00	7.00	9.00
A la intemperie	0.33	1.00	3.00	5.00	7.00

LILYAN LUZA ORTEGA EVALUADORA DE RIESGOS R.J. N° 039-2021-CENEPREO! CPI N° 239574

Pozo ciego	0.20	0.33	1.00	3.00	5.00
Letrina o similar	0.14	0.20	0.33	1.00	2.00
Sistema de alcantarillado	0.11	0.14	0.20	0.50	1.00
SUMA	1.79	4.68	9.53	16.50	24.00
1/SUMA	0.56	0.21	0.10	0.06	0.04

Cuadro 89. Matriz de normalización del parámetro disposición de efluentes líquidos

DISPOSICIÓN DE EFLUENTES LÍQUIDOS	Al río o canal	A la intemperie	Pozo ciego	Letrina o similar	Sistema de alcantarillado	Vector Priorización
Al río o canal	0.560	0.642	0.524	0.424	0.375	0.505
A la intemperie	0.187	0.214	0.315	0.303	0.292	0.262
Pozo ciego	0.112	0.071	0.105	0.182	0.208	0.136
Letrina o similar	0.080	0.043	0.035	0.061	0.083	0.060
Sistema de alcantarillado	0.062	0.031	0.021	0.030	0.042	0.037

Elaboración: Equipo Evaluador.

Cuadro 90. Índice (IC) y Relación de Consistencia (RC) para el parámetro disposición de efluentes líquidos

IC	0.037
RC	0.034

Elaboración: Equipo Evaluador.

4.5.3 Análisis de la resiliencia en la dimensión ambiental - ponderación de parámetros

a) Parámetro: Capacitación en temas ambientales

Cuadro 91. Matriz de comparación de pares del parámetro capacitación en temas ambientales

CAPACITACIONES EN TEMAS AMBIENTALES	Nunca	Cada 5 años	Cada 3 años	Cada 2 años	Una vez al año
Nunca	1.00	3.00	5.00	7.00	9.00
Cada 5 años	0.33	1.00	3.00	5.00	7.00
Cada 3 años	0.20	0.33	1.00	3.00	5.00
Cada 2 años	0.14	0.20	0.33	1.00	2.00
Una vez al año	0.11	0.14	0.20	0.50	1.00
SUMA	1.79	4.68	9.53	16.50	24.00
1/SUMA	0.56	0.21	0.10	0.06	0.04

Elaboración: Equipo Evaluador.

LILYAN LUZA ORTEGA EVALUADORA DE RIESGOS R.J. N° 039-2021-CENEPREO!

Cuadro 92. Matriz de normalización del parámetro capacitación en temas ambientales

CAPACITACIONES EN TEMAS AMBIENTALES	Nunca	Cada 5 años	Cada 3 años	Cada 2 años	Una vez al año	Vector Priorización
Nunca	0.560	0.642	0.524	0.424	0.375	0.505
Cada 5 años	0.187	0.214	0.315	0.303	0.292	0.262
Cada 3 años	0.112	0.071	0.105	0.182	0.208	0.136
Cada 2 años	0.080	0.043	0.035	0.061	0.083	0.060
Una vez al año	0.062	0.031	0.021	0.030	0.042	0.037

Cuadro 93. Índice (IC) y Relación de Consistencia (RC) para el parámetro capacitación en temas ambientales

IC	0.037
RC	0.034

Elaboración: Equipo Evaluador.

4.5.4 Análisis de la dimensión ambiental - ponderación de parámetros

b) Parámetro: Dimensión Ambiental

Cuadro 94. Matriz de comparación de pares del parámetro dimensión ambiental

COMPONENTES	COMPONENTES Exposición		Resiliencia
Exposición 1.00		3.00	7.00
Fragilidad	0.33	1.00	4.00
Resiliencia	0.14	0.25	1.00
SUMA	1.48	4.25	12.00
1/SUMA	0.68	0.24	0.08

Elaboración: Equipo Evaluador.

Cuadro 95. Matriz de normalización del parámetro dimensión ambiental

COMPONENTES	Exposición	Fragilidad	Resiliencia	Vector Priorización
Exposición	0.677	0.706	0.583	0.656
Fragilidad	0.226	0.235	0.333	0.265
Resiliencia	0.097	0.059	0.083	0.080

Elaboración: Equipo Evaluador.

Cuadro 96. Índice (IC) y Relación de Consistencia (RC) para el parámetro dimensión ambiental

IC	0.016
RC	0.031

Elaboración: Equipo Evaluador.

LILYAN LUZA ORTEGA EVALUADORA DE RIESGOS R.J. N° 038-2021-CENEPREDI DE 1998/74 DE 1998/7

4.6 Nivel de vulnerabilidad

En el siguiente cuadro, se muestran los niveles de vulnerabilidad y sus respectivos rangos obtenidos a través de utilizar el proceso de análisis jerárquico.

Cuadro 97. Niveles de Vulnerabilidad

NIVEL	RANGO		
MUY ALTO	0.262	≤V≤	0.493
ALTO	0.143	≤ ∨ <	0.262
MEDIO	0.068	≤ V <	0.143
BAJO	0.034	≤ ∨ <	0.068

Elaboración: Equipo Evaluador.

4.7 Estratificación de la vulnerabilidad

En el siguiente cuadro se muestra la matriz de vulnerabilidad obtenido:

Cuadro 98. Estratificación de la Vulnerabilidad

Nivel De Vulnerabilidad	Descripción	Rangos
Vulnerabilidad Muy Alta	Población De 0 a 5 años y Mayores de 65 años, con discapacidad Mental e intelectual, sin Ningún Grado de Estudios, sin seguro de salud, con vivienda de paredes de Estera o madera, con techos de Cartón, plástico, entre otros similares, con vivienda no destinada para habitaciones es decir de otro tipo, con un tipo de régimen diferente.	0.262 ≤ V ≤ 0.493
Vulnerabilidad Alta	Población De 6 a 12 años y de 60 a 64 años con discapacidad Visual, con Inicial y Primaria completa, solo con seguro SIS, con vivienda de paredes de adobe o adobon, Estera y/o paja, hojas de palmera, con vivienda tipo choza o cabaña es decir vivienda improvisada, cedida por el centro de trabajo o institución,	0.143 ≤ V < 0.262
Vulnerabilidad Media	Población De 13 a 17 años y de 45 a 60 años, con discapacidad para usar brazos y piernas, con nivel Secundaria completo, asegurado en ESSALUD. con vivienda con paredes de Quincha (bambú con barro y/o cemento y malla, Entramado de madera y plancha de calamina, con vivienda en quinta y alquilada,	0.068 ≤ V < 0.143
Vulnerabilidad Baja	Población De 18 a 45 años con discapacidad para oír y/o hablar o no tener ninguna discapacidad, con Superior técnico o Universitario y/o posgrado u Otro Similar de estudio, que cuenta con seguro Privado, con vivienda con paredes de Ladrillo o Bloque de Cemento, muro armado, placas y otros, con techos de concreto armado de teja o calaminon, con una vivienda independiente, departamento en edificio, propia o pagándola a plazos,	0.034 ≤ V < 0.068

Elaboración: Equipo Evaluador.

LILYAN LUZA ORTEGA EVALUADORA DE RIESGOS R.J. N° 039-2021-CENEPREDI DE 238674

4.8 Mapa de Vulnerabilidad

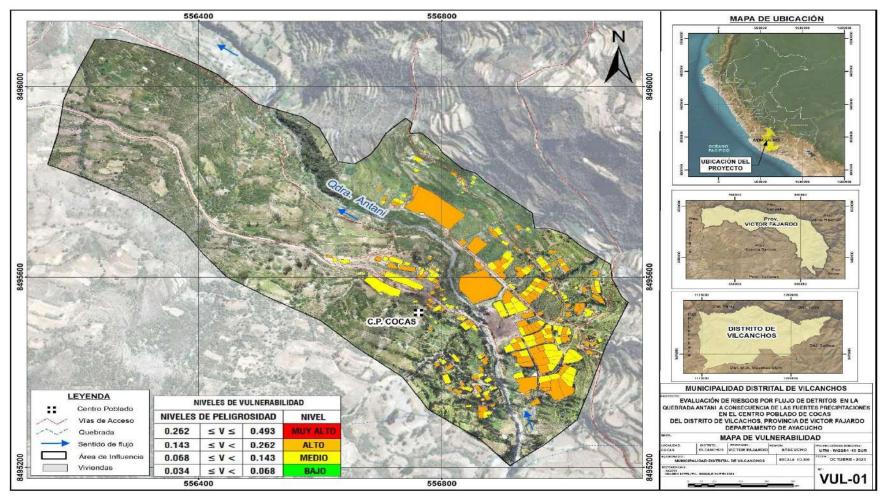


Figura 37. Mapa de vulnerabilidad del centro poblado Cocas

Elaboración: Equipo Evaluador.

CAPITULO V: CÁLCULO DEL RIESGO

5.1 Metodología para el cálculo del Riesgo

Para determinar el cálculo del riesgo de la zona de influencia, se utiliza el siguiente procedimiento:

NIVEL DE RIESGO Nivel del Riesgo MAPA DE PELIGRO 0.022 ≤ R < 0.077 0.001 ≤ R < 0.005 RANGO NIVEL **NIVEL DE RIESGO** 0276 SV S 0.430 Alta 0.160 ≤ V < 0.276 0085 ≤ V < 0.180 Media 0049 SV < 0.085 MAPA DE RIESGO MAPA DE VULNERABILIDAD

Gráfico 11. Flujograma para determinar los niveles del riesgo

Elaboración: Equipo Evaluador.

5.2 Niveles del riesgo

Los niveles de riesgo por el peligro de sismo del área de influencia del centro poblado Cocas, del distrito Vilcanchos, se detallan a continuación:

Cuadro 99. Niveles del riesgo

NIVEL	RANGO			
MUY ALTO	0.065	≤R≤	0.235	
ALTO	0.020	≤ R <	0.065	
MEDIO	0.006	≤ R <	0.020	
BAJO	0.002	≤ R <	0.006	

Elaboración: Equipo Evaluador.

5.3 Estratificación del Nivel del Riesgo

La matriz de riesgos originado por el peligro de sismo del área de influencia del centro poblado Cocas, del distrito Vilcanchos, se detallan a continuación:

Cuadro 100. Matriz del riesgo

PMA	0.477	0.032	0.068	0.125	0.235
PA	0.247	0.017	0.035	0.065	0.122
PM	0.141	0.010	0.020	0.037	0.070
PB	0.088	0.006	0.013	0.023	0.043
		0.068	0.143	0.262	0.493
		VB	VM	VA	VMA

Elaboración: Equipo Evaluador.

5.3.1 Estratificación del riesgo

Cuadro 101. Estratificación del Riesgo

NIVEL DEL RIESGO	DESCRIPCIÓN	Rangos
Riesgo Muy Alto	Precipitación superior percentil 95 (Precipitación acumulada diaria > 250mm), con una frecuencia de 1 a 3 veces por año; presenta geomorfología de Llanura o planicie inundable (PI-i); con pendientes mayores a 45°; con geología de depósitos Aluvial (Qh. – al), Dimensión social: mayores a 10 persona a nivel de lote; Grupo etario predominantemente de 0 a 5 años y mayores de 65 años; con discapacidad mental o intelectual; Con nivel educativo de inicial y/o ningún nivel; no tiene seguro de salud; existe desconocimiento de la población sobre desastres. Dimensión económica: Viviendas muy cercana a la zona de impacto. El material predominante de las paredes es Adobe o tapia y/o Piedra con Barro, con techo de estera y/o paja y/u hojas de palmera y/u otro material (cartón, plástico, entre otros similares); con estado de conservación muy malo; con ingresos promedio mensual menores a sueldo mínimo. Dimensión ambiental; Localización de suelos inestables de material antrópicos muy cerca (36m) respecto a las viviendas; con ocupación del suelo con actividades ganadería y agroforestal; con desconocimiento de conocimientos en temas de conservación ambiental.	0.065 ≤ R ≤ 0.235
Riesgo Alto	Precipitación superior percentil 95 (Precipitación acumulada diaria > 250mm), con una frecuencia de 1 a 3 veces al año; presenta geomorfología de Piedemonte coluvial - deluvial (V-cd); con pendientes entre 25°-45°, con geología de depósito coluvial (Qh-col) y depósito Proluvial (Qh-pl) Dimensión social: De 7 a 10 personas a nivel de lote; Grupo etario predominantemente de 5 a 12 años y de 60 a 65 años; con discapacidad visual; con nivel educativo de primaria; cuenta con seguro SIS; Existe escaso conocimiento de la población sobre los desastres. Dimensión económica: Viviendas cercana a la zona de impacto; El material predominante de las paredes es estera y/u otro material, con techo de estera con torta de barro; con estado de conservación malo; con ingresos de 930 a 1200 soles mensuales; Dimensión ambiental: Localización de suelos inestables de material antrópicos cerca (90m) respecto a las viviendas; con ocupación del suelo en	0.020 ≤ R < 0.065

NIVEL DEL RIESGO	DESCRIPCIÓN	Rangos
	asentamientos humanos; con básicos conocimientos en temas de conservación ambiental.	
Riesgo Medio	Precipitación superior percentil 95 (Precipitación acumulada diaria > 250mm), con una frecuencia mayor a 1 a 3 años; presenta geomorfología Terraza aluviales(T-al) y Colinas en roca sedimentaria (RCL-rs); con pendientes entre 15°- 25°; con geología de formación cachios (Jm-ca) Dimensión social: De 5 a 7 personas a nivel de lote; Grupo etario predominantemente de 12 a 15 años y de 50 a 60 años; con discapacidad para usar brazos y piernas; con nivel educativo secundaria; cuenta con seguro de las Essalud, Existe regular conocimiento de la población sobre los desastres. Dimensión ambiental: Localización de suelos inestables de material antrópicos medianamente cerca (110m) respecto a las viviendas; con ocupación del suelos de actividades cultivos transitorios; con intermedio conocimientos en temas de conservación ambiental.	0.006 ≤ R < 0.020
Riesgo Bajo	Precipitación superior percentil 95 (Precipitación acumulada diaria > 250mm), con una frecuencia de 1 a 3 años, y mayores a 3 años; presenta geomorfología de Montañas en roca sedimentaria (RM-rs) y Colinas en roca sedimentaria (RCL-rsl); con pendientes menores de 15°; y con geología de formación cachios (Jm-ca) y Grupo Pucará (Ts-Ji-P) Dimensión social: De 3 a 5 personas y menora a 3 personas a nivel de lote; Grupo etario predominantemente de 15 a 50 años; con discapacidad para oír y hablar; con nivel educativo superior no universitaria y universitaria; cuenta con seguro privado y/u otro y/o seguro de las Fuerzas Armadas y/o de la Policía Nacional del Perú; La mayoría de población tiene conocimientos sobre los desastres; y toda la población tiene conocimiento sobre los desastres. Dimensión económica: Viviendas alejadas y muy alejadas; El material predominante de las paredes es de ladrillo o bloque de cemento y/o piedra o sillar con cal o cemento, con techo de concreto armado y/o plancha de calamina y/o tejas; con estado de conservación bueno y muy bueno; con ingresos mayores a 2000 soles mensuales; Dimensión ambiental: Localización de suelos inestables de material antrópicos de alejada(138m) y de muy alejada (150m) respecto a las viviendas, con ocupación del suelo con actividades ganadería y agroforestal; con avanzado, aplica, y continuo conocimientos en temas de conservación ambiental	0.002 ≤ R < 0.006

5.3.2 Mapa del Riesgo

556400 MAPA DE UBICACIÓN UBICACIÓN DEL C.P. COCAS DISTRITO DE MUNICIPALIDAD DISTRITAL DE VILCANCHOS LEYENDA

Figura 38. Mapa de riesgo del centro poblado Cocas

Elaboración: Equipo Evaluador.

Centro Poblado

Vías de Acceso

Sentido de flujo

Área de Influencia

Quebrada

Viviendas

NIVELES DE RIESGO

0.235

0.065

0.020

0.006

NIVEL

NIY ALTO

ALTO

MEDIO

NIVELES DE RIESGO

≤ R <

≤ R <

≤ R <

0.065

0.020

0.006

0.002

556400

EVALUACIÓN DE RIESGOS POR FLUJO DE DETRITOS EN LA XUEBRADA ANTANI A CONSECUENCIA DE LAS FUERTES PRECIPITACIONE EN EL CENTRO POBLADO DE COCAS

DEL DISTRITO DE VILCACHOS, PROVINCIA DE VICTOR FAJARDO

DEPARTAMENTO DE AYACUCHO

RGO-01

MAPA DE RIESGO

5.4 Cálculo de efectos probables (cualitativa y cuantitativa)

En esta parte de la evaluación, se estiman los efectos probables que podrían generarse en el centro poblado Cocas, a consecuencia del impacto del peligro por flujo de detritos a consecuencia de las fuertes precipitaciones.

Se muestra a continuación los efectos probables en el centro poblado Cocas, siendo estos de carácter netamente referencial. El monto probable asciende a S/ 26,875,000.00, de los cuales S/ S/ 9,875,000.00 corresponde a los daños probables y S/ 3,875,000.00 corresponde a las pérdidas probables.

Cuadro 102. Efectos probables del centro poblado Cocas

EFECTOS PROBABLES	CANTIDAD	COSTO UNITARIO	TOTAL	DAÑOS PROBABLES	PERDIDAS PROBABLES
DAÑOS PROBABLES (VIVIENDAS EN RIESGOS ALTO Y MUY ALTO)					
Viviendas construidas con material de ladrillo y/o concreto	4	85,000.00	340,000.00	340,000.00	
Viviendas construidas con material precario	238	70,000.00	16,660,000.00	16,660,000.00	
PERDIDAS PROBABLES					
Costo de adquisición de carpas	250	2,500.00	625,000.00		625,000.00
Costo de adquisición de módulo de viviendas	250	35,000.00	8,750,000.00		8,750,000.00
Gastos de la atención de la emergencia	1	500,000.00	500,000.00		500,000.00
TOTAL			26,875,000.00	9,875,000.00	3,875,000.00

Elaboración: Equipo Evaluador.

5.5 Zonificación de Riesgos

El mapa de elementos expuestos nos da cierto panorama respecto al análisis del riesgo, ya que, de los 250 predios ubicados dentro del área de influencia del estudio, 11 se encuentran en Riesgo Muy Alto y 239 predios en Riesgo Alto.

Básicamente el centro poblado Cocas se encuentra expuesto a este fenómeno, y son las condiciones de fragilidad de las viviendas debido al mal estado de estas y las condiciones socioeconómicas que determinan los niveles de riesgo alto y muy alto, para lo cual es sugerible tomar las medidas de mitigación y prevención a fin de revertir situaciones adversas.

En tal sentido se infiere, que los niveles de riesgo muy alto y se localizan en toda el área de estudio donde un evento de flujo de detritos a consecuencia de las fuertes precipitaciones puede causar graves daños a la infraestructura, debido al mal estado de conservación, el material utilizado para la edificación de las viviendas y las condiciones de su entorno.

5.6 Medidas de prevención de riesgos de desastres (riesgos futuros)

5.6.1 De orden estructural

Las medidas de prevención de riesgos de desastres por flujo de detritos de orden estructural incluyen la construcción de obras y sistemas diseñados para mitigar la amenaza de estos eventos. Aquí te presento algunas medidas estructurales que pueden ayudar a prevenir o reducir los riesgos de flujos de detritos:

- Muros de Contención: La construcción de muros de contención en áreas propensas a flujos de detritos puede ayudar a frenar el avance de los sedimentos y minimizar los daños. Estos

muros deben estar diseñados para soportar la presión del flujo de detritos y redirigirlo de manera segura.

- Desviación de Flujos: Modificar el curso de las quebradas o ríos de manera controlada para desviar los flujos de detritos lejos de áreas pobladas o vulnerables. Esto puede incluir la construcción de canales de derivación o diques.
- Barreras de Contención de Materiales: Establecer barreras físicas que puedan capturar los sedimentos y proteger estructuras críticas, como viviendas, carreteras o instalaciones industriales.
- Reforestación y Vegetación de Protección: Plantar árboles y vegetación con sistemas de raíces fuertes en áreas propensas a flujos de detritos para ayudar a estabilizar el suelo y prevenir la erosión. La vegetación actúa como una barrera natural.
- Sistemas de Retención: Construir sistemas de retención de agua, como lagunas de sedimentación, para frenar el flujo de detritos y permitir que los sedimentos se asienten antes de que el agua continúe su curso.
- Canales de Desvío: Diseñar canales de desvío que redirijan el flujo de detritos hacia áreas menos pobladas o menos vulnerables.
- Protección de Taludes: Reforzar taludes y laderas con sistemas de estabilización, como geotextiles o mallas de alambre, para evitar la erosión y el deslizamiento de tierra.
- Infraestructura de Drenaje Adecuada: Garantizar que los sistemas de drenaje urbano estén diseñados para manejar grandes cantidades de agua de Iluvia, evitando así la saturación del suelo.
- Promover construcción sostenible basada en los lineamientos técnicos establecidos en la norma E.030 – Diseño sismo resistente del reglamento Nacional de edificaciones aprobado mediante D.S. 003-2016-VIVIENDA, de acuerdo con la filosofía y principios del diseño sismorresistente y la ley del SINAGERD, tomando en cuenta que el centro poblado Cocas se encuentra expuesto al fenómeno por sismo.

5.6.2 De orden no estructural

- Elaborar e implementar un plan de emergencia y/o contingencias que contemple además la señalización de rutas de evacuación y zonas de concentración seguras.
- Fortalecer la cultura de prevención y el aumento de la resiliencia mediante la realización de capacitaciones en temática de gestión de riesgo, así como la realización de simulacros que permitan al poblador conocer cómo actuar en caso de una emergencia.

5.7 Medidas de reducción de riesgos de desastres (riesgos existentes)

5.7.1 De orden estructural

- Estabilización de Taludes: Reforzar laderas y taludes con técnicas de estabilización, como la siembra de vegetación y la instalación de sistemas de geotextiles para prevenir la erosión y deslizamientos de tierra.
- Inversión en Investigación y Monitoreo: Destinar recursos a investigaciones geológicas y monitoreo constante de las áreas propensas a flujos de detritos para detectar señales de advertencia temprana y tomar medidas preventivas

- Promover programas de reforzamiento de viviendas precarias mediante el uso de material resistente en techos y paredes (Uso de bloques de cemento y/o ladrillo en paredes), desalentando el uso de material precario (adobe) por ser un material de muy fácil deterioro y vulnerable ante la ocurrencia de sismo. Dicho programa puede ser coordinado y gestionado con la municipalidad distrital, municipalidad provincial, gobierno regional y el Ministerio de Vivienda, Construcción y Saneamiento.
- Realizar la limpieza constante de escombros y desmonte en calles que obstruyen posibles rutas de evacuación y zonas de concentración seguras.
- Construcción de Barreras de Protección: Implementar barreras de protección, como muros de contención y barreras de trincheras, en áreas propensas a flujos de detritos para interceptar y redirigir el flujo y minimizar el impacto.

5.7.2 De orden no estructural

- Implementar sistema de alerta temprana (SAT) para el fenómeno de sismos. Según el artículo 2 de la Resolución Ministerial Nº 173-2015-PCM de julio de 2015 resuelve que "El INDECI es la entidad encargada de orientar y supervisar el cumplimiento de los Lineamientos para la Conformación y Funcionamiento de la Red Nacional de Alerta Temprana (RNAT) y la Conformación, Funcionamiento y Fortalecimiento de los Sistemas de Alerta Temprana (SAT)".
- Desarrollo de capacitaciones en métodos y técnicas constructivas que fortalezca las capacidades de la población, permitiendo mejorar la construcción de sus viviendas, tomando en cuenta que las edificaciones existentes se realizaron mediante técnicas de autoconstrucción.
- Conformación de comité de defensa civil zonal, que mantenga constante coordinación con las autoridades locales, provinciales y regionales que permita la reacción rápida y oportuna en caso de emergencias.
- Capacitar y conformar brigadas de evaluación de daños que facilite la labor de las autoridades como el COEL, COER y COEN, que permitirá la ayuda rápida y el pronto restablecimiento de los servicios y la ayuda inmediata en la atención de la emergencia.

CAPITULO VI: CONTROL DEL RIESGO

6.1 Control de riesgo

6.1.1 Aceptabilidad / Tolerabilidad

a) Valoración de consecuencias:

Cuadro 103. Valoración de consecuencias

Valor	Nivel	Descripción
4	Muy Alta	Las consecuencias debido al impacto de un fenómeno natural son catastróficas.
3	Alta	Las consecuencias debido al impacto de un fenómeno natural pueden ser gestionadas con apoyo externo.
2	Medio	Las consecuencias debido al impacto de un fenómeno natural pueden ser gestionadas con los recursos disponibles.
1	Baja	Las consecuencias debido al impacto de un fenómeno natural pueden ser gestionadas sin dificultad.

Elaboración: Equipo Evaluador.

Del cuadro anterior, obtenemos que las consecuencias debido al impacto de un fenómeno natural pueden ser gestionadas con apoyo externo, es decir posee el nivel 3 Alta.

b) Valoración de frecuencia:

Cuadro 104. Valoración de la frecuencia de ocurrencia

Valor	Nivel	Descripción
4	Muy Alta	Puede ocurrir en la mayoría de las circunstancias.
3	Alta	Puede ocurrir en periodos de tiempo medianamente largos según las circunstancias.
2	Medio	Puede ocurrir en periodos de tiempo largos según las circunstancias.
1	Baja	Puede ocurrir en circunstancias excepcionales.

Elaboración: Equipo Evaluador.

Del cuadro anterior, se obtiene que el evento de lluvias intensas puede ocurrir en periodos de tiempo medianamente largos según las circunstancias, es decir, posee el nivel 3 – Alta.

c) Nivel de consecuencia y daños:

Cuadro 105. Nivel de consecuencia y daños

Consecuencias	Nivel	Zona de Consecuencias y daños			
Muy Alta	4	Alta	Alta	Muy Alta	Muy Alta
Alta	3	Media	Alta	Alta	Muy Alta
Media	2	Media	Media	Alta	Alta
Baja	1	Baja	Media	Media	Alta
	Nivel	1	2	3	4
	Frecuencia	Baja	Media	Alta	Muy Alta

Elaboración: Equipo Evaluador.

De lo anterior se obtiene que el nivel de consecuencia y daño es de Nivel 3 – Alta.

d) Aceptabilidad y/o Tolerancia:

Cuadro 106. Nivel de consecuencia y daños

Valor	Descriptor	Descripción
4	Inadmisible	Se debe aplicar inmediatamente medida de control físico y de ser posible transferir inmediatamente los riesgos.
3	Inaceptable	Se deben desarrollar actividades INMEDIATAS y PRIORITARIAS para el manejo de riesgos
2	Tolerable	Se deben desarrollar actividades para el manejo de riesgos
1	Aceptable	El riesgo no presenta un peligro significativo

Elaboración: Equipo Evaluador.

De lo anterior se obtiene que la aceptabilidad y/o Tolerancia del riesgo por sismo en el centro poblado Cocas del distrito Vilcanchos, es de nivel 3 – Inaceptable.

La matriz se aceptabilidad y/o tolerancia del riesgo se indica a continuación:

LILYAN LUZA ORTEGA EVALUADORA DE RIESGOS R.J. N° 039-2021-CENEPREDI CPI N° 239574

Cuadro 107. Nivel de aceptabilidad y/o tolerancia

Riesgo	Riesgo	Riesgo	Riesgo
Inaceptable	Inaceptable	Inadmisible	Inadmisible
Riesgo	Riesgo	Riesgo	Riesgo
Tolerable	Inaceptable	Inaceptable	Inadmisible
Riesgo	Riesgo	Riesgo	Riesgo
Tolerable	Tolerable	Inaceptable	Inaceptable
Riesgo	Riesgo	Riesgo	Riesgo
Aceptable	Tolerable	Tolerable	Inaceptable

e) Prioridad de Intervención:

Cuadro 108. Prioridad de intervención

Valor	Descriptor	Nivel de priorización
4	Inadmisible	
3	Inaceptable	=
2	Tolerable	III
1	Aceptable	IV

Elaboración: Equipo Evaluador.

Del cuadro anterior se obtiene que el nivel de priorización es de II, del cual constituye se deben desarrollar actividades INMEDIATAS y PRIORITARIAS para el manejo de riesgos (deberán mejorarse la construcción de viviendas y demás edificaciones).

CONCLUSIONES

- El centro poblado Cocas en su totalidad se encuentra expuesto a flujo de detritos a consecuencia de las fuertes precipitaciones con un Peligro Medio, Alto y Muy Alto, debido a las condiciones físicas del territorio, la recurrencia de eventos geometereologicos de flujo de detritos producidos en el pasado, dejando clara evidencia de su condición.
- Los niveles de vulnerabilidad predominantemente se encuentran entre alto y muy alto, esto debido a las condiciones y estado de las viviendas, así como la materia predominante en paredes (adobe, quincha) y techos (calamina, tejas en mal estado), la casi nula capacitación y conocimiento de gestión de riesgos de desastres que conllevan a contar con un bajo nivel de resiliencia.
- De los 250 predios ubicados dentro del área de influencia del centro poblado cocas se han identificado 11 viviendas en Riesgo Muy Alto y 239 predios en Riesgo Alto.
- El nivel de aceptabilidad y tolerancia del riesgo es inaceptable, teniendo en cuenta que las paredes de adobe y quincha presentan evidencia de agrietamientos y rupturas estructurales, lo cual implica desarrollar actividades inmediatas y prioritarias, para evitar el incremento del riesgo existente y prevenir.
- Para el control de riesgo se estima un cálculo de efectos probables ascendente a
- S/ 26,875,000.0 soles. Ante el impacto de flujo de detritos a consecuencia de las fuertes precipitaciones.

LILYAN LUZA ORTEGA EVALUADORA DE RIESGOS R.J. N°039-2021-CENEPRED J CPI N°239574

RECOMENDACIONES

La Municipalidad Distrital de Vilcanchos se enfrenta al desafío de realizar un estudio exhaustivo y meticuloso con el objetivo de evaluar y desarrollar obras de protección que mitiguen el riesgo de flujos de detritos en el centro poblado de Cocas. Esta área es particularmente susceptible a este tipo de peligro, especialmente durante episodios de precipitaciones de fuertes a intensas que activan la quebrada Antani. La ejecución de este estudio es crucial para proporcionar información detallada sobre los niveles de peligro, vulnerabilidad y riesgo que enfrenta la comunidad y desarrollar obras que cumplan con los requerimientos establecidos.

Es importante tener en cuenta que la elección de la vegetación debe adaptarse a las condiciones locales y las especies de plantas que sean resistentes a las precipitaciones intensas y que tengan sistemas de raíces fuertes para fortalecer la estabilidad del suelo. Además, se deben realizar estudios de ingeniería detallados.

Para llevar a cabo un estudio completo, se sugiere realizar los siguientes estudios específicos:

Estudio Geotécnico Detallado: Un análisis geotécnico exhaustivo será esencial para comprender la estructura del suelo en la zona. Esto permitirá identificar las propiedades del suelo, la capacidad de carga y otros factores que son esenciales para el diseño de obras de protección efectivas.

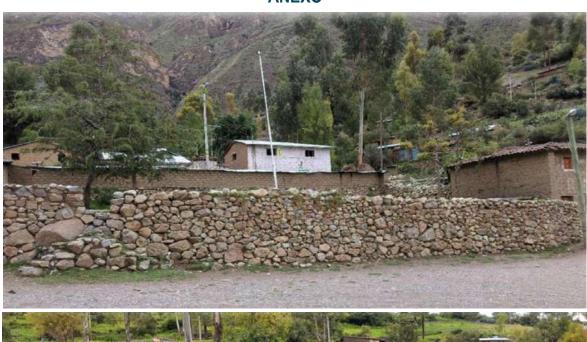
Estudio Hidrológico e Hidráulico Detallado: Realizar un estudio hidrológico e hidráulico en profundidad para analizar cómo se comporta la quebrada Antani en respuesta a las precipitaciones extremas. Esto incluye la recopilación de datos de lluvia, caudales de la quebrada y modelización hidráulica para determinar los flujos máximos.

Determinación de la Faja Marginal de la Quebrada: Identificar y mapear con precisión la faja marginal de la quebrada para definir las áreas que requieren protección y regulación en función de su vulnerabilidad.

Simulación Estructural de Obras de Protección: Realizar simulaciones detalladas de las obras de protección proyectadas para peligros de flujos de detritos. Esto incluye evaluar cómo estas estructuras pueden contener y desviar el flujo de manera eficiente y segura.

Cumplimiento de Normas Técnicas: Asegurarse de que todas las obras proyectadas cumplan con los lineamientos y normas técnicas aplicables. Esto garantizará que las estructuras estén diseñadas con los más altos estándares de seguridad y resistencia.

La realización de estos estudios y la implementación de las recomendaciones derivadas de ellos son fundamentales para brindar una protección sólida y efectiva al centro poblado de Cocas. Además, se promoverá la seguridad y la tranquilidad de la comunidad ante futuros episodios de flujos de detritos y eventos climáticos extremos.


Al momento de construir sus viviendas la población expuesta deberá dar el cumplimiento de la Norma Nacional de Edificaciones – RNE (E.O.30 Diseño Sismo resistente, E.O.5 Suelos y Cimentaciones, E.O.60 Concreto Armado, y E.O.70 Albañilería), según estudios técnicos.

BIBLIOGRAFÍA

- Centro Nacional de Estimación, Prevención y reducción del Riesgo de Desastres (CENEPRED), 2014. Manual para la evaluación de riesgos originados por fenómenos naturales. 2da versión.
- Instituto Nacional de Estadística e Informática (INEI), 2016. Sistema de Información Estadístico de apoyo a la prevención a los efectos del Fenómeno de El Niño y otros Fenómenos Naturales.
- Instituto Nacional de Estadística e Informática (INEI), 2017. Censo de Población, Vivienda e infraestructura Publica afectada por "El Niño Costero"
- SENAMHI, 1988. Mapa de Clasificación Climática del Perú. Método de Thornthwaite. Eds. SENAMHI Perú, 14 pp.
- Senamhi, Clasificación de climas de Werrn Thornthwaite: www.senamhi.gog.pe
- MINAGRI- SENAMHI. 2013. Normales Decadales de temperatura y precipitación y calendario de siembras y cosechas. Lima, Perú. 439 pp.
- SENAMHI, 2014. Estimación de Umbrales de Precipitaciones Extremas para la Emisión de Avisos meteorológicos, 11pp.
- Informe Técnico N° 004-2021 evaluación geológica en el sector de Cocas. (INGEMMET; Norma, S. –2019).
- Vílchez M., Ochoa M., Parí W. (2019), Boletín N° 70, serie C, geodinámica e ingeniería geológica: "Peligro geológico en la región Ayacucho"
- Morche, W., Ávila A., De La Cruz J., Zeballos F., (1995), Boletín N° 61, serie A, Carta Geológica Nacional: "Geología del cuadrángulo de Ayacucho"
- Reporte Complementario N° 1701, de fecha 24 de abril de 2020 COEN –INDECI.
- -Suárez Diaz, J. (. (1998). Deslizamientos y Estabilidad de Taludes en Zonas Tropicales. En I. d. Deslizamientos., Deslizamientos y Estabilidad de Taludes en Zonas Tropicales (pág. 541).

ANEXO

Fuente: Elaboración por el equipo técnico

DE CUADROS

Cuadro 1. Emergencias ocurridas en el Distrito de Vilcanchos, provincia victor fajardo, Ayacucho	8
Cuadro 2. características de ubicación de Área de Estudio	11
Cuadro 3. Accesibilidad al Centro Poblado de Cocas	13
Cuadro 4. Características de la población según sexo	14
Cuadro 5. Población según grupos de edades	14
Cuadro 6. Material predominante en las paredes	
Cuadro 7. Material predominante de paredes en el centro poblado colcas	
Cuadro 8. Material predominante en los techos	
Cuadro 9. Tipo de abastecimiento de agua	
Cuadro 10. Viviendas con servicios higiénicos	
Cuadro 11. Instituciones Educativas Publicas Presentes En Centro Poblado De Cocas	
Cuadro 12. Población en edad de trabajar según rama de actividad	
Cuadro 13. Umbrales de precipitación	
Cuadro 14. Resultado prueba de la Bondad de Ajuste – precipitaciones	
Cuadro 15. Resultado prueba de la Bondad de Ajuste – Qmax (Caudales máximos)	
Cuadro 16. Resumen de los Caudales máximos probables para diferentes periodos de retorno, quebrada Ai	
Cuadro 17. Matriz de comparación de pares del parámetro Distancia al curso de flujo	
Cuadro 18. Matriz de comparación de pares del parámetro Distancia al curso de flujo	
Cuadro 19. Índice (IC) y Relación de Consistencia (RC) del parámetro de evaluación	
· · · ·	
Cuadro 20. Parámetros a considerar en la evaluación de la susceptibilidad	
Cuadro 21. Matriz de comparación de pares del parámetro umbrales de precipitaciones	
Cuadro 22. Matriz de normalización del parámetro umbrales de precipitación	50
Cuadro 23. Índice de Consistencia (IC) y Relación de Consistencia (RC) para el parámetro umbrales de	
precipitación	
Cuadro 24. Matriz de comparación de pares del parámetro Pendiente	
Cuadro 25. Matriz de normalización del parámetro Pendiente	
Cuadro 26. Índice de Consistencia (IC) y Relación de Consistencia (RC) para el parámetro pendiente	
Cuadro 27. Matriz de comparación de pares del parámetro unidad geológica	
Cuadro 28. Matriz de normalización del parámetro unidad geológica	
Cuadro 29. Índice de Consistencia (IC) y Relación de Consistencia (RC) para el parámetro unidad geológica	
Cuadro 30. Matriz de comparación de pares del parámetro unidad geomorfológica	
Cuadro 31. Matriz de normalización del parámetro unidad geomorfológica	
Cuadro 32. Índice de Consistencia (IC) y Relación de Consistencia (RC) para el parámetro unidad geomorfo	
Cuadro 33. Matriz de comparación de pares de los parámetros utilizados en el factor condicionante	
Cuadro 34. Matriz de normalización de los parámetros utilizados en el factor condicionante	
Cuadro 35. Índice de Consistencia (IC) y Relación de Consistencia (RC) para los parámetros utilizados en e	
condicionante	
Cuadro 36. Población Expuesta	
Cuadro 37. Viviendas expuestas	
Cuadro 38. Instituciones educativas expuestas	
Cuadro 39. Centros de salud expuestas	
Cuadro 40. Parámetros a utilizar en los factores exposición, fragilidad y resiliencia de la dimensión social	
Cuadro 41. Matriz de comparación de pares del parámetro personas por viviendas	
Cuadro 42. Matriz de normalización del parámetro personas por viviendas	
Cuadro 43. Índice (IC) y Relación de Consistencia (RC) para el parámetro personas por viviendas	
Cuadro 44. Matriz de comparación de pares del parámetro discapacidad	65
Cuadro 45. Matriz de normalización del parámetro discapacidad	66
Cuadro 46. Índice (IC) y Relación de Consistencia (RC) para el parámetro discapacidad	66
Cuadro 47. Matriz de comparación de pares del parámetro acceso a servicios de agua potable	66
Cuadro 48. Matriz de normalización del parámetro acceso a servicios de agua potable	
Cuadro 49. Índice (IC) y Relación de Consistencia (RC) para el parámetro de acceso a servicios de agua pot	
Cuadro 50. Matriz de comparación de pares del parámetro acceso a servicios de alcantarillado	
Cuadro 51. Matriz de normalización del parámetro acceso a servicios de alcantarillado	
Cuadro 52. Índice (IC) y Relación de Consistencia (RC) para el parámetro de acceso a servicios de alcantari	
Cuadro 53 Matriz de comparación de pares de los parámetros del factor fragilidad social	67

Cuadro 54. Matriz de normalización de los parámetros del factor fragilidad social	67
Cuadro 55. Índice (IC) y Relación de Consistencia (RC) para los parámetros de la fragilidad social	
Cuadro 56. Matriz de comparación de pares del parámetro acceso a seguros de salud	
Cuadro 57. Matriz de normalización del parámetro acceso a seguros de salud	
Cuadro 58. Índice (IC) y Relación de Consistencia (RC) para el parámetro acceso a seguros de salud	68
Cuadro 59. Matriz de comparación de pares del parámetro capacitación en GRD	68
Cuadro 60. Matriz de normalización del parámetro capacitación en GRD	69
Cuadro 61. Índice (IC) y Relación de Consistencia (RC) para el parámetro capacitación en GRD	69
Cuadro 62. Matriz de comparación de pares del parámetro dimensión social	69
Cuadro 63. Matriz de normalización del parámetro dimensión social	
Cuadro 64. Índice (IC) y Relación de Consistencia (RC) para el parámetro dimensión social	
Cuadro 65. Parámetros de dimensión económica	
Cuadro 66. Matriz de comparación de pares del parámetro ubicación de vivienda con respecto al nivel del p	
	70
Cuadro 67. Matriz de normalización del parámetro ubicación de vivienda con respecto al nivel del peligro	
Cuadro 68. Índice (IC) y Relación de Consistencia (RC) para el parámetro ubicación de vivienda con respect	
nivel del peligro	
Cuadro 69. Matriz de comparación de pares del parámetro estado de conservación del predio	
Cuadro 70. Matriz de normalización del parámetro estado de conservación del predio	
Cuadro 71. Índice (IC) y Relación de Consistencia (RC) para el parámetro estado de conservación del predic	
Cuadro 72. Matriz de comparación de pares del parámetro material predominante en paredes	
Cuadro 73. Matriz de normalización del parámetro material predominante en paredes	
Cuadro 74. Índice (IC) y Relación de Consistencia (RC) para el parámetro material predominante en paredes	
Cuadro 75. Matriz de comparación de pares del parámetro ocupación principal (jefe de hogar)	
Cuadro 76. Matriz de normalización del parámetro ocupación principal (jefe de hogar)	
Cuadro 77. Índice (IC) y Relación de Consistencia (RC) para el parámetro de ocupación principal (jefe de ho	
Cuadro 78. Matriz de comparación de pares del parámetro dimensión económica	
Cuadro 79. Matriz de normalización del parámetro dimensión económica	
Cuadro 80. Índice (IC) y Relación de Consistencia (RC) para el parámetro dimensión económica	
Cuadro 81. Parámetros de dimensión ambiental	
Cuadro 82. Matriz de comparación de pares del parámetro distancia a un foco de contaminación	
Cuadro 83. Matriz de normalización del parámetro distancia a un foco de contaminación	
Cuadro 84. Índice (IC) y Relación de Consistencia (RC) para el parámetro distancia a un foco de contaminac Cuadro 85. Matriz de comparación de pares del parámetro disposición de residuos sólidos	
Cuadro 86. Matriz de normalización del parámetro disposición de residuos sólidos	
Cuadro 87. Índice (IC) y Relación de Consistencia (RC) para el parámetro disposición de residuos sólidos	
Cuadro 88. Matriz de comparación de pares del parámetro disposición de efluentes líquidos	
Cuadro 89. Matriz de comparación de pares del parametro disposición de efluentes líquidos	
Cuadro 90. Índice (IC) y Relación de Consistencia (RC) para el parámetro disposición de efluentes líquidos.	
Cuadro 91. Matriz de comparación de pares del parámetro capacitación en temas ambientales	
Cuadro 92. Matriz de comparación del parés del parametro capacitación en temas ambientales	
Cuadro 93. Índice (IC) y Relación de Consistencia (RC) para el parámetro capacitación en temas ambientale	
Cuadro 94. Matriz de comparación de pares del parámetro dimensión ambiental	
Cuadro 95. Matriz de comparación del parámetro dimensión ambiental	
Cuadro 96. Índice (IC) y Relación de Consistencia (RC) para el parámetro dimensión ambiental	
Cuadro 97. Niveles de Vulnerabilidad	
Cuadro 98. Estratificación de la Vulnerabilidad	
Cuadro 99. Niveles del riesgo	
Cuadro 100. Matriz del riesgo	
Cuadro 101. Estratificación del Riesgo	
Cuadro 102. Efectos probables del centro poblado Cocas	
Cuadro 103. Valoración de consecuencias	
Cuadro 104. Valoración de la frecuencia de ocurrencia	
Cuadro 105. Nivel de consecuencia y daños	
Cuadro 106. Nivel de consecuencia y daños	
Cuadro 107. Nivel de aceptabilidad y/o tolerancia	
Cuadro 108. Prioridad de intervención	

LISTA DE GRÁFICOS

Gráfico 1. Características de la población según sexo	14			
Gráfico 2. Población según grupos de edades Gráfico 3. Material predominante en las paredes Gráfico 4. Tipo de abastecimiento de agua				
			Gráfico 5. Viviendas con servicios higiénicos	
			Gráfico 6. Población en edad de trabajar según rama de actividad	
Gráfico 8. Flujograma general del proceso de análisis de información				
Gráfico 9. Identificación de peligros en el centro poblado cocas				
Gráfico 10. Metodología del análisis de la vulnerabilidad				
Gráfico 11. Flujograma para determinar los niveles del riesgo				
Grando I II I lajogrania para doto inima 100 involoc doi 1100go				
LISTA DE FIGURAS				
Figura 1. Reporte de emergencia en la zona de Estudio				
Figura 2. Mapa de ubicación				
Figura 3. Vía de Acceso de Huamanga al Centro Poblado Cocas				
Figura 4. Vista de la Institución Educativa				
Figura 5. Vista de la Institución Educativa	19			
Figura 6. Mapa geológico del centro poblado cocas	21			
Figura 7. Esquema general de una ladera	22			
Figura 8. Mapa de Coeficiente de Rugosidad (Coeficiente de Manning)	24			
Figura 9. Mapa de Geomorfología	26			
Figura 10. Mapa de Pendiente	27			
Figura 11. Identificación de Red Hdrográfica de la Intercuenca del río pampas 49987	28			
Figura 12. Mapa de Red Hidrográfico en la Zona de Estudio	30			
Figura 13. Mapa de Clasificación climática y Ubicación de Estaciones Meteorológicas	32			
Figura 14. Registro Histórico – Estación Huancapi	33			
Figura 15. Registro Histórico – Estación Cangallo	34			
Figura 16. Registro Histórico – Estación Chusqui	35			
Figura 17. Registro Histórico – Estación Paras	36			
Figura 18. Registro Histórico – Estación Pampas				
Figura 19. Registro Histórico – Estación Pisco	38			
Figura 20. Registro Históricos de las Estaciones meteorológicas de estudio (Huancapi, Cangallo, Chusqui,				
data pisco)				
Figura 21. Hidrograma del registro histórico del promedio máximo de las estaciones de estudio	39			
Figura 22. Registro Histórico – Promedio máximo de las Estaciones de Estudio				
Figura 23. Diagrama de la metodología para el cálculo del hidrograma de avenida				
Figura 24. Resultado de la simulación para cada escenario (TR2) y (TR5)	45			
Figura 25. Perfil Longitudinal de la Quebrada Antani				
Figura 26. Secciones Transversales de resultados de la simulación (TR5)				
Figura 27. Resultado de la simulación para cada escenario (TR20) y (TR50)				
Figura 28. Secciones Transversales de resultados de la simulación (TR50)				
Figura 29. Resultado de la simulación para cada escenario (TR100)				
Figura 30. Secciones Transversales de resultados de la simulación (TR100)				
Figura 31. Discusión De Los Resultados				
Figura 32. Susceptibilidad a movimientos de masa reporte del IGEMMET - 2021				
Figura 33. Emergencias ocurridas en el periodo del 2003 – 2023				
Figura 34. Parámetro de evaluación general del peligro por flujo de detritos				

INFORME DE EVALUACION DE RIESGO POR FLUJO DE DETRITOS EN LA QUEBRADA ANTANI A CONSECUENCIA DE LAS FUERTES PRECIPITACIONES, EN EL CENTRO POBLADO DE COCAS, DEL DISTRITO DE VILCANCHOS, PROVINCIA DE VICTOR FAJARDO, DEPARTAMENTO DE AYACUCHO

Figura 35. Mapa de peligro del centro poblado Cocas	61
Figura 36. Mapa de elementos expuestos del centro poblado Cocas	
Figura 37. Mapa de vulnerabilidad del centro poblado Cocas	
Figura 38. Mapa de riesgo del centro poblado Cocas	